实验一:离散信号采样、傅里叶变换、Z变换

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

z变换 傅里叶变换 联系和差别

z变换 傅里叶变换 联系和差别

一、引言在数学和工程领域中,z变换和傅里叶变换是两个重要的概念。

它们在信号处理、控制系统、电路分析等领域有着广泛的应用。

本文将探讨z 变换和傅里叶变换的联系和差别,帮助读者更好地理解这两个概念。

二、z变换的概念和用途1. z变换是一种离散时间信号的转换方法,可以将离散时间域中的信号转换为z域中的信号。

它在数字滤波、数字信号处理等领域有着重要的应用。

2. z变换可以将离散时间域中的差分方程转换为z域中的代数方程,从而简化系统的分析和设计。

3. z变换的应用范围广泛,涉及数字滤波器的设计、控制系统的稳定性分析、信号的频域分析等多个领域。

三、傅里叶变换的概念和用途1. 傅里叶变换是一种连续时间信号的频域分析方法,可以将时域中的信号转换为频域中的信号,展现信号的频谱特性。

2. 傅里叶变换在通信、电子电路、光学等领域有着广泛的应用,可以用于信号的滤波、频谱分析、信号合成等方面。

3. 傅里叶变换可以将时域中的信号分解为不同频率的正弦和余弦信号,从而更直观地理解信号的频谱特性。

四、z变换和傅里叶变换的联系1. z变换和傅里叶变换都是一种信号分析的方法,z变换主要针对离散时间信号,而傅里叶变换主要针对连续时间信号。

2. 在频域中,z变换和傅里叶变换都可以将时域中的信号转换为频域中的信号,为信号的分析提供了重要手段。

3. 在数字信号处理中,z变换可以用于数字滤波器的设计和频域特性分析,而傅里叶变换可以用于时域信号的频谱分析和频率特性展现。

五、z变换和傅里叶变换的差别1. z变换是一种离散时间信号的频域分析方法,可以将差分方程转换为代数方程,而傅里叶变换是一种连续时间信号的频域分析方法,可以将时域信号分解为频域信号。

2. z变换适用于数字信号处理和数字系统分析,而傅里叶变换适用于模拟信号处理和连续系统分析。

3. z变换和傅里叶变换在数学形式上有所不同,z变换主要通过z域中的复平面上的积分来表示,而傅里叶变换主要通过复指数函数的积分来表示。

第二章 z变换与离散时间傅里叶变换(DTFT)

第二章 z变换与离散时间傅里叶变换(DTFT)

2.2 z变换
定义: X ( z ) = ΖT [ x (n) ]
注意符号:时域小写 x 变换域大写 X
= ∑ x(n)z − n
n =−∞ ∞

=
n =−∞
∑ x(n)r
− n − jω n
e
复变量: z = re jω ,复平面上的点 r = z 幅度,到原点的距离 ω 数字角频率, 与水平轴之间的夹角
重叠区域。一般缩小,个别扩大
十一、时域乘积定理 x(n) ⋅ h(n) ←⎯ → X ( z) ∗ H ( z) Rx − Rh− < z < Rx + Rh + 1 ⎛ z ⎞ −1 = ⎟ν dν ∫ X (ν )H ⎜ 2π j C ν ⎝ ⎠ 1 ⎛ z ⎞ −1 = ⎟ν dν ∫ H (ν )X ⎜ 2π j C ν ⎝ ⎠
Rx − < z < Rx +
Rx − < z < Rx +
2.4 z变换的基本性质和定理

ZT x(n) ←⎯→ X ( z)
Rx − < z < Rx +
五、共轭序列 x *(n) ←⎯ → X * ( z *)
Rx − < z < Rx +
六、翻摺序列
⎛1⎞ → X ⎜ ⎟, x(− n) ←⎯ ⎝z⎠ 1 1 < z < Rx + Rx −
实用公式——根据极点的阶,用相应的公式求留数
若zr 是X ( z )z n -1 的多重极点(l 阶极点),则该点处的留数
n -1 ⎤ X z Res ⎡ ( )z ⎣ ⎦ z = zr
1 d l −1 ⎡ l = ⋅ l −1 ( z − zr ) X ( z )z n -1 ⎤ ⎦ z = zr ( l-1)! dz ⎣

连续与离散信号三大变换(傅立叶、拉斯、Z变换)性质总结

连续与离散信号三大变换(傅立叶、拉斯、Z变换)性质总结
一、连续傅里叶变换性质
连续傅里叶变换对
相对偶的连续傅里叶变换对
名称
连续时间函数
傅里叶变换
名称
连续时间函数
傅里叶变换
线性
对称性
尺度变换
时移
频移
时域微分
频域微分
时域积分
频域积分
时域卷积
频域卷积
时域抽样
频域抽样
希尔伯特变换
帕什瓦尔公式
, :能量谱密度
二、离散傅里叶变换性质
连续傅里叶变换对
相对偶的连续傅里叶变换对
名称
连续时间函数
傅里叶变换
名称
连续时间函数
傅里叶变换
线性
对称性
尺度变换
为整数
时移
频移
频域微分
差分
时域卷积
频域卷积
时域对偶
频域对偶
帕什瓦尔公式
, :能量谱密度
三、拉氏变换与
双边拉氏变换对
双边 变换对
连续时间函数
像函数
离散时间序列
像函数
1
1





,,Βιβλιοθήκη ,四、拉氏变换性质
连续拉普拉斯变换对
相对偶的连续拉普拉斯变换对
1
1
七、
变换对
相对偶的 变换对
名称
离散时间函数
变换
名称
离散时间函数
变换
线性
收敛域
收敛域
尺度变换
收敛域:
收敛域:
时移
频移
收敛域:
收敛域:
收敛域:
收敛域:
Z域微分
时域卷积
Z域卷积
初值定理
若 是因果序列,则

傅立叶变换、拉普拉斯变换、Z变换最全攻略

傅立叶变换、拉普拉斯变换、Z变换最全攻略

傅立叶变换、拉普拉斯变换、Z变换最全攻略傅立叶变换、拉普拉斯变换、Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换。

研究的都是什么?从几方面讨论下。

这三种变换都非常重要!任何理工学科都不可避免需要这些变换。

傅立叶变换,拉普拉斯变换, Z变换的意义【傅里叶变换】在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。

在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。

理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。

我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。

傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。

傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。

这都是一个信号的不同表示形式。

它的公式会用就可以,当然把证明看懂了更好。

对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。

幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。

在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。

实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。

离散信号的傅立叶变换

离散信号的傅立叶变换

离散信号的傅立叶变换一、傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:/pdfbook.htm要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。

二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。

当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。

法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要求:a、画出原始波形; b、画出其采样信号;
实验信号(2)

x(n) cos(0.48n) cos(0.52n),(0 n 100)
• 要求:a、画出原始波形; • b、画出傅里叶变换的幅频特性图以 及相频特性图;
1 1 n 实验信号(3) x ( n) [( ) ( ) n ]u ( n) 2 3
ylabel('幅值','FontName','Times New Roman','FontSize',10);
• • • • • • • • • • • • • • • • • • • • •
实验三程序 clear all; clc; syms n % N=50; % n=0:N-1; f=(1/2).^n+(1/3).^n; %定义离散信号 stem(n,f); F=ztrans(f); %z变换 pretty(F); B=[2 -5/6];A=[1 -5/6 1/6]; subplot(2,2,1); stem(n,f); subplot(2,2,2); zplane(B,A); [H,w]=freqz(B,A); subplot(2,2,3); plot(w/pi,abs(H)); xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|'); axis([0,1 0,2.5]); subplot(2,2,4);plot(w/pi,angle(H)); xlabel('\omega/\pi');ylabel('\phi(\omega)');
z z X(Z)= z 1/ 2 z 1/ 3
5 1 2 z 6 5 1 1 2 1 z z 6 6
• 1、求出该序列的Z变换; • 2、画出Z变换的零极点图; • 3、画出Z变换的幅频特性和相频特性图。
实验一信号 程序
• • • • • • • • • • • • • • • • • • • • %% 模拟信号采样、 Z 变换、傅里叶变换 clc; clear all; %清楚所有变量 f=0.2;phi=pi/3; % 赋值,这一步可省略 t=0:0.1:20; % 时间长度及取值 x=cos(2*pi*f*t+phi); % 表达式 % 画图 %% 采样 Ts=1/5; % 采样周期 n=0:Ts:20; % n1=0:2*Ts:20; n2=0:3*Ts:20; X=cos(2*pi*f*n+phi); X1=cos(2*pi*f*n1+phi); X2=cos(2*pi*f*n2+phi); subplot(221) plot(t,x), grid on, title('原始信号') xlabel('时域时间值','FontName','Times New Roman','FontSize',10); ylabel('幅值','FontName','Times New Roman','FontSize',10);
title('原始信号') xlabel('时域时间值 ','FontName','Times New Roman','FontSize',10); ylabel('幅值','FontName','Times New Roman','FontSize',10); subplot(2,2,2) k=0:length(magxk)-1; stem(k,magxk); title('傅里叶变换') xlabel('时域离散值 Ts=1/5','FontName','Times New Roman','FontSize',10);
subplot(222) stem(n,X,'.'); grid on; title('采样信号') xlabel('时域离散值Ts=1/5','FontName','Times New Roman','FontSize',10); ylabel('幅值','FontName','Times New Roman','FontSize',10); subplot(223); stem(n1,X1,'r.'); grid on; title('采样信号') xlabel('时域离散值Ts=2/5','FontName','Times New Roman','FontSize',10); ylabel('幅值','FontName','Times New Roman','FontSize',10); subplot(224); stem(n2,X2,'g.'); grid on; title('采样信号') xlabel('时域离散值Ts=3/5','FontName','Times New Roman','FontSize',10);
实验一: 信号采样、Z变换及离散傅里叶变换
一、实验目的
1、从采样实验中理解连续信号到离散信号的过程。
2、利用matlab验证计算序列的傅里叶变换、Z变换。
3、利用傅立叶反变换、逆Z变换进行相关运算。
实验信号 ( 1)
xa (t ) cos(2 ft ), f 0.2Hz , / 2,Ts 1/ 5
ylabel('幅值','FontName','Times New Roman','FontSize',10);
实验二对应程序 clc; clear all; N=50; n=0:N-1; xn=cos(0.48*pi*n)+cos(0.52*pi*n); % xn=cos(0.48*pi*n); xk=fft(xn,N); magxk=abs(xk); subplot(2,2,1) stem(n,xn);
相关文档
最新文档