孪生素数猜想与弱波林那克猜想的证明
孪生素数猜想证明

Bounded gaps between primesYitang ZhangAbstractIt is proved that(p n+1−p n)<7×107,lim infn→∞where p n is the n-th prime.Our method is a refinement of the recent work of Goldston,Pintz and Yildirim on the small gaps between consecutive primes.A major ingredient of the proof is a stronger version of the Bombieri-Vinogradov theorem that is applicable when the moduli are free from large prime divisors only(see Theorem2below),but it is adequate for our purpose.Contents1.Introduction22.Notation and sketch of the proof33.Lemmas74.Upper bound for S1165.Lower bound for S222binatorial arguments247.The dispersion method278.Evaluation of S3(r,a)299.Evaluation of S2(r,a)3010.A truncation of the sum of S1(r,a)3411.Estimation of R1(r,a;k):The Type I case3912.Estimation of R1(r,a;k):The Type II case4213.The Type III estimate:Initial steps4414.The Type III estimate:Completion48References5511.IntroductionLet p n denote the n-th prime.It is conjectured thatlim infn→∞(p n+1−p n)=2.While a proof of this conjecture seems to be out of reach by present methods,recently Goldston,Pintz and Yildirim[6]have made significant progress toward the weaker con-jecturelim infn→∞(p n+1−p n)<∞.(1.1) In particular,they prove that if the primes have level of distributionϑ=1/2+ for an (arbitrarily small) >0,then(1.1)will be valid(see[6,Theorem1]).Since the result ϑ=1/2is known(the Bombieri-Vinogradov theorem),the gap between their result and (1.1)would appear to be,as said in[6],within a hair’s breadth.Until very recently,the best result on the small gaps between consecutive primes was due to Goldston,Pintz andYildirim[7]that giveslim infn→∞p n+1−p n√log p n(log log p n)2<∞.(1.2)One may ask whether the methods in[6],combined with the ideas in Bombieri,Fried-lander and Iwaniec[1]-[3]which are employed to derive some stronger versions of the Bombieri-Vinogradov theorem,would be good enough for proving(1.1)(see Question1 on[6,p.822]).In this paper we give an affirmative answer to the above question.We adopt the following notation of[6].LetH={h1,h2,...,h k}(1.3) be a set composed of distinct non-negative integers.We say that H is admissible if νp(H)<p for every prime p,whereνp(H)denotes the number of distinct residue classes modulo p occupied by the h i.Theorem 1.Suppose that H is admissible with k0≥3.5×106.Then there are infinitely many positive integers n such that the k0-tuple{n+h1,n+h2,...,n+h k}(1.4) contains at least two primes.Consequently,we havelim infn→∞(p n+1−p n)<7×107.(1.5) The bound(1.5)results from the fact that the set H is admissible if it is composed of k0distinct primes,each of which is greater than k0,and the inequalityπ(7×107)−π(3.5×106)>3.5×106.2This result is,of course,not optimal.The condition k 0≥3.5×106is also crude and there are certain ways to relax it.To replace the right side of (1.5)by a value as small as possible is an open problem that will not be discussed in this paper.2.Notation and sketch of the proofNotationp −a prime number.a ,b ,c ,h ,k ,l ,m −integers.d ,n ,q ,r −positive integers.Λ(q )−the von Mangoldt function.τj (q )−the divisor function,τ2(q )=τ(q ).ϕ(q )−the Euler function.µ(q )−the M¨o bius function.x −a large number.L =log x .y,z −real variables.e (y )=exp {2πiy }.e q (y )=e (y/q ).||y ||−the distance from y to the nearest integer.m ≡a (q )−means m ≡a (mod q ).¯c /d −means a/d (mod 1)where ac ≡1(mod d ).q ∼Q −means Q ≤q <2Q .ε−any sufficiently small,positive constant,not necessarily the same in each occur-rence.B −some positive constant,not necessarily the same in each occurrence.A −any sufficiently large,positive constant,not necessarily the same in each occur-rence.η=1+L −2A .κN −the characteristic function of [N,ηN )∩Z . ∗l (mod q )−a summation over reduced residue classes l (mod q ).C q (a )−the Ramanujan sum∗l (mod q )e q (la ).We adopt the following conventions throughout our presentation.The set H given by(1.3)is assumed to be admissible and fixed.We write νp for νp (H );similar abbreviations will be used in the sequel.Every quantity depending on H alone is regarded as a constant.For example,the absolutely convergent productS = p1−νp p 1−1p −k 03is a constant.A statement is valid for any sufficiently smallεand for any sufficiently large A whenever they are involved.The meanings of“sufficiently small”and“sufficiently large”may vary from one line to the next.Constants implied in O or ,unless specified,will depend on H,εand A at most.Wefirst recall the underlying idea in the proof of[6,Theorem1]which consists in evaluating and comparing the sumsS1=n∼xλ(n)2(2.1)andS2=n∼x k0i=1θ(n+h i)λ(n)2,(2.2)whereλ(n)is a real function depending on H and x,andθ(n)=log n if n is prime, 0otherwise.The key point is to prove,with an appropriate choice ofλ,thatS2−(log3x)S1>0.(2.3) This implies,for sufficiently large x,that there is a n∼x such that the tuple(1.4) contains at least two primes.In[6]the functionλ(n)mainly takes the formλ(n)=1(k0+l0)!d|P(n)d≤Dµ(d)logDdk0+l0,l0>0,(2.4)where D is a power of x andP(n)=k0j=1(n+h j).Let∆(γ;d,c)=n∼xn≡c(d)γ(n)−1ϕ(d)n∼x(n,d)=1γ(n)for(d,c)=1,andC i(d)={c:1≤c≤d,(c,d)=1,P(c−h i)≡0(mod d)}for1≤i≤k0.4The evaluations of S1and S2lead to a relation of the formS2−(log3x)S1=(k0T∗2−LT∗1)x+O(x L k0+2l0)+O(E)for D<x1/2−ε,where T∗1and T∗2are certain arithmetic sums(see Lemma1below),andE=1≤i≤k0d<D2|µ(d)|τ3(d)τk0−1(d)c∈C i(d)|∆(θ;d,c)|.Let >0be a small constant.IfD=x1/4+ (2.5) and k0is sufficiently large in terms of ,then,with an appropriate choice of l0,one can prove thatk0T∗2−LT∗1L k0+2l0+1.(2.6)In this situation the error E can be efficiently bounded if the primes have level of distri-butionϑ>1/2+2 ,but one is unable to prove it by present methods.On the other hand,for D=x1/4−ε,the Bombieri-Vinogradov theorem is good enough for bounding E, but the relation(2.6)can not be valid,even if a more general form ofλ(n)is considered (see Soundararajan[12]).Ourfirst observation is that,in the sums T∗1and T∗2,the contributions from the termswith d having a large prime divisor are relatively small.Thus,if we impose the constraint d|P in(2.4),where P is the product of the primes less than a small power of x,the resulting main term is still L k0+2l0+1with D given by(2.5).Our second observation,which is the most novel part of the proof,is that with D given by(2.5)and with the constraint d|P imposed in(2.4),the resulting error1≤i≤k0d<D2d|Pτ3(d)τk0−1(d)c∈C i(d)|∆(θ;d,c)|(2.7)can be efficiently bounded.This is originally due to the simple fact that if d|P and d is not too small,say d>x1/2−ε,then d can be factored asd=rq(2.8) with the range for rflexibly chosen(see Lemma4below).Thus,roughly speaking,the characteristic function of the set{d:x1/2−ε<d<D2,d|P}may be treated as a well factorable function(see Iwaniec[10]).The factorization(2.8)is crucial for bounding the error terms.It suffices to prove Theorem1withk0=3.5×1065which is henceforth assumed.Let D be as in(2.5)with=1 1168.Let g(y)be given byg(y)=1(k0+l0)!logDyk0+l0if y<D,andg(y)=0if y≥D,wherel0=180.WriteD1=x ,P=p<D1p,(2.9)D0=exp{L1/k0},P0=p≤D0p.(2.10)In the case d|P and d is not too small,the factor q in(2.8)may be chosen such that (q,P0)=1.This will considerably simplify the argument.We chooseλ(n)=d|(P(n),P)µ(d)g(d).(2.11)In the proof of Theorem1,the main terms are not difficult to handle,since we deal with afixed H.This is quite different from[6]and[7],in which various sets H are involved in the argument to derive results like(1.2).By Cauchy’s inequality,the error(2.7)is efficiently bounded via the followingTheorem2.For1≤i≤k0we haved<D2 d|Pc∈C i(d)|∆(θ;d,c)| x L−A.(2.12)The proof of Theorem2is described as follows.First,applying combinatorial argu-ments(see Lemma6below),we reduce the proof to estimating the sum of|∆(γ;d,c)| with certain Dirichlet convolutionsγ.There are three types of the convolutions involved in the argument.Writex1=x3/8+8 ,x2=x1/2−4 .(2.13) In thefirst two types the functionγis of the formγ=α∗βsuch that the following hold.(A1)α=(α(m))is supported on[M,ηj1M),j1≤19,α(m) τj1(m)L.6(A2)β=(β(n))is supported on[N,ηj2N),j2≤19,β(n) τj2(n)L,x1<N<2x1/2.For any q,r and a satisfying(a,r)=1,the following”Siegel-Walfisz”assumption is satisfied.n≡a(r) (n,q)=1β(n)−1ϕ(r)(n,qr)=1β(n) τ20(q)N L−200A.(A3)j1+j2≤20,[MN,η20MN)⊂[x,2x).We say thatγis of Type I if x1<N≤x2;we say thatγis of Type II if x2<N<2x1/2.In the Type I and II estimates we combine the dispersion method in[1]with the factorization(2.8)(here r is close to N in the logarithmic scale).Due to the fact that the modulo d is at most slightly greater than x1/2in the logarithmic scale,after reducing the problem to estimating certain incomplete Kloosterman sums,we need only to save a small power of x from the trivial estimates;a variant of Weil’s bound for Kloosterman sums(see Lemma11below)will fulfill it.Here the condition N>x1,which may be slightly relaxed,is essential.We say thatγis of Type III if it is of the formγ=α∗κN1∗κN2∗κN3such thatαsatisfies(A1)with j1≤17,and such that the following hold.(A4)N3≤N2≤N1,MN1≤x1.(A5)[MN1N2N3,η20MN1N2N3)⊂[x,2x).The Type III estimate essentially relies on the Birch-Bombieri result in the appendix to[5](see Lemma12below),which is employed by Friedlander and Iwaniec[5]and by Heath-Brown[9]to study the distribution ofτ3(n)in arithmetic progressions.This result in turn relies on Deligne’s proof of the Riemann Hypothesis for varieties overfinitefields (the Weil Conjecture)[4].We estimate each∆(γ;d,c)directly.However,if one applies the method in[5]alone,efficient estimates will be valid only for MN1 x3/8−5 /2−ε. Our argument is carried out by combining the method in[5]with the factorization(2.8) (here r is relatively small);the latter will allow us to save a factor r1/2.In our presentation,all theα(m)andβ(n)are real numbers.3.LemmasIn this section we introduce a number of prerequisite results,some of which are quoted from the literature directly.Results given here may not be in the strongest forms,but they are adequate for the proofs of Theorem1and Theorem2.Lemma1.Let 1(d)and 2(d)be the multiplicative functions supported on square-free integers such that1(p)=νp, 2(p)=νp−1.7LetT∗1=d0d1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2)andT∗2=d0d1d2µ(d1d2) 2(d0d1d2)ϕ(d0d1d2)g(d0d1)g(d0d2).We haveT∗1=1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0)(3.1)andT∗2=1(k0+2l0+1)!2l0+2l0+1S(log D)k0+2l0+1+o(L k0+2l0+1).(3.2)Proof.The sum T∗1is the same as the sum T R(l1,l2;H1,H2)in[6,(7.6)]with H1=H2=H(k1=k2=k0),l1=l2=l0,R=D,so(3.1)follows from[6,Lemma3];the sum T∗2is the same as the sum˜T R(l1,l2;H1,H2,h0)in[6,(9.12)]withH1=H2=H,l1=l2=l0,h0∈H,R=D, so(3.2)also follows from[6,Lemma3].2Remark.A generalization of this lemma can be found in[12].Lemma2.LetA1(d)=(r,d)=1µ(r) 1(r)rg(dr)andA2(d)=(r,d)=1µ(r) 2(r)ϕ(r)g(dr).Suppose that d<D and|µ(d)|=1.Then we haveA1(d)=ϑ1(d)l0!SlogDdl0+O(L l0−1+ε)(3.3)andA2(d)=ϑ2(d)(l0+1)!SlogDdl0+1+O(L l0+ε),(3.4)whereϑ1(d)andϑ2(d)are the multiplicative functions supported on square-free integerssuch thatϑ1(p)=1−νpp−1,ϑ2(p)=1−νp−1p−1−1.8Proof.Recall that D 0is given by (2.10).Since 1(r )≤τk 0(r ),we have triviallyA 1(d ) 1+ log(D/d ) 2k 0+l 0,so we may assume D/d >exp {(log D 0)2}without loss of generality.Write s =σ+it .Forσ>0we have(r,d )=1µ(r ) 1(r )r1+s =ϑ1(d,s )G 1(s )ζ(1+s )−k 0whereϑ1(d,s )=p |d1−νpp 1+s−1,G 1(s )= p 1−νpp 1+s1−1p 1+s −k 0.It follows thatA 1(d )=12πi(1/L )ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s dss k 0+l 0+1.Note that G 1(s )is analytic and bounded for σ≥−1/3.We split the line of integration into two parts according to |t |≤D 0and |t |>D 0.By a well-known result on the zero-free region for ζ(s ),we can move the line segment {σ=1/L ,|t |≤D 0}toσ=−κ(log D 0)−1,|t |≤D 0 ,where κ>0is a certain constant,and apply some standard estimates to deduce thatA 1(d )=12πi |s |=1/L ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s ds s k 0+l 0+1+O (L −A).Note that ϑ1(d,0)=ϑ1(d )andϑ1(d,s )−ϑ1(d )=ϑ1(d,s )ϑ1(d )l |dµ(l ) 1(l )l(1−l −s ).If |s |≤1/L ,then ϑ1(d,s ) (log L )B ,so that,by trivial estimation,ϑ1(d,s )−ϑ1(d ) L ε−1.On the other hand,by Cauchy’s integral formula,for |s |≤1/L we haveG 1(s )−S 1/L .It follows that12πi |s |=1/L ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s ds s k 0+l 0+1−12πi ϑ1(d )S|s |=1/L(D/d )s ds s l 0+1 L l 0−1+ε.9This leads to(3.3).The proof of(3.4)is analogous.We have only to note thatA2(d)=12πi(1/L)ϑ2(d,s)G2(s)ζ(1+s)k0−1(D/d)s dss k0+l0+1withϑ2(d,s)=p|d1−νp−1(p−1)p s−1,G2(s)=p1−νp−1(p−1)p s1−1p1+s1−k0,and G2(0)=S.2Lemma3.We haved<x1/4 1(d)ϑ1(d)d=(1+4 )−k0k0!S−1(log D)k0+O(L k0−1)(3.5)andd<x1/4 2(d)ϑ2(d)ϕ(d)=(1+4 )1−k0(k0−1)!S−1(log D)k0−1+O(L k0−2),(3.6)Proof.Noting thatϑ1(p)/p=1/(p−νp),forσ>0we have∞ d=1 1(d)ϑ1(d)d1+s=B1(s)ζ(1+s)k0,whereB1(s)=p1+νp(p−νp)p s1−1p1+sk0.Hence,by Perron’s formula,d<x1/4 1(d)ϑ1(d)d=12πi1/L+iD01/L−iD0B1(s)ζ(1+s)k0x s/4sds+O(D−1L B).Note that B1(s)is analytic and bounded forσ≥−1/3.Moving the path of integration to[−1/3−iD0,−1/3+iD0],we see that the right side above is equal to1 2πi|s|=1/LB1(s)ζ(1+s)k0x s/4sds+O(D−1L B).Since,by Cauchy’s integral formula,B1(s)−B1(0) 1/L for|s|=1/L,andB1(0)=ppp−νp1−1pk0=S−1,10it follows thatd<x1/4 1(d)ϑ1(d)d=1k0!S−1L4k0+O(L k0−1).This leads to(3.5)since L/4=(1+4 )−1log D by(2.5).The proof of(3.6)is analogous.We have only to note that,forσ>0,∞ d=1 2(d)ϑ2(d)ϕ(d)p s=B2(s)ζ(1+s)k0−1withB2(s)=p1+νp−1(p−νp)p s1−1p1+sk0−1,and B2(0)=S−1.2Recall that D1and P are given by(2.9),and P0is given by(2.10).Lemma4.Suppose that d>D21,d|P and(d,P0)<D1.For any R∗satisfyingD21<R∗<d,(3.7)there is a factorization d=rq such that D−11R∗<r<R∗and(q,P0)=1.Proof.Since d is square-free and d/(d,P0)>D1,we may write d/(d,P0)asd (d,P0)=nj=1p j with D0<p1<p2<...<p n<D1,n≥2.By(3.7),there is a n <n such that(d,P0)nj=1p j<R∗and(d,P0)n +1j=1p j≥R∗.The assertion follows by choosingr=(d,P0)nj=1p j,q=nj=n +1p j,and noting that r≥(1/p n +1)R∗.2Lemma5.Suppose that1≤i≤k0and|µ(qr)|=1.There is a bijectionC i(qr)→C i(r)×C i(q),c→(a,b)11such that c(mod qr)is a common solution to c≡a(mod r)and c≡b(mod q).Proof.By the Chinese remainder theorem.2The next lemma is a special case of the combinatorial identity due to Heath-Brown[8].Lemma6Suppose that x1/10≤x∗<ηx1/10.For n<2x we haveΛ(n)=10j=1(−1)j−110jm1,...,m j≤x∗µ(m1)...µ(m j)n1...n j m1...m j=nlog n1.The next lemma is a truncated Poisson formula.Lemma7Suppose thatη≤η∗≤η19and x1/4<M<x2/3.Let f be a function of C∞(−∞,∞)class such that0≤f(y)≤1,f(y)=1if M≤y≤η∗M,f(y)=0if y/∈[(1−M−ε)M,(1+M−ε)η∗M],andf(j)(y) M−j(1−ε),j≥1,the implied constant depending onεand j at most.Then we havem≡a(d)f(m)=1d|h|<Hˆf(h/d)ed(−ah)+O(x−2)for any H≥dM−1+2ε,whereˆf is the Fourier transform of f,i.e.,ˆf(z)=∞−∞f(y)e(yz)dy.Lemma8.Suppose that1≤N<N <2x,N −N>xεd and(c,d)=1.Then for j,ν≥1we haveN≤n≤N n≡c(d)τj(n)νN −Nϕ(d)L jν−1,the implied constant depending onε,j andνat most.Proof.See[11,Theorem1].2The next lemma is(essentially)contained in the proof of[5,Theorem4].Lemma9Suppose that H,N≥2,d>H and(c,d)=1.Then we haven≤N (n,d)=1minH,||c¯n/d||−1(dN)ε(H+N).(3.8)12Proof.We may assume N≥H without loss of generality.Write{y}=y−[y]and assumeξ∈[1/H,1/2].Note that{c¯n/d}≤ξif and only if bn≡c(mod d)for some b∈(0,dξ],and1−ξ≤{c¯n/d}if and only if bn≡−c(mod d)for some b∈(0,dξ],Thus, the number of the n satisfying n≤N,(n,d)=1and||c¯n/d||≤ξis bounded byq≤dNξq≡±c(d)τ(q) dεN1+εξ.Hence,for any interval I of the formI=(0,1/H],I=[1−1/H,1),I=[ξ,ξ ]or I=[1−ξ ,1−ξ]with1/H≤ξ<ξ ≤1/2,ξ ≤2ξ,the contribution from the terms on the left side of (3.8)with{c¯n/d}∈I is dεN1+ε.This completes the proof.2Lemma10.Suppose thatβ=(β(n))satisfies(A2)and R≤x−εN.Then for any q we haver∼R 2(r)∗l(mod r)n≡l(r)(n,q)=1β(n)−1ϕ(r)(n,qr)=1β(n)2 τ(q)B N2L−100A.Proof.Since the inner sum is ϕ(r)−1N2L B by Lemma8,the assertion follows by Cauchy’s inequality and[1,Theorem0].2Lemma11Suppose that N≥1,d1d2>10and|µ(d1)|=|µ(d2)|=1.Then we have, for any c1,c2and l,n≤N (n,d1)=1 (n+l,d2)=1ec1¯nd1+c2(n+l)d2(d1d2)1/2+ε+(c1,d1)(c2,d2)(d1,d2)2Nd1d2.(3.9)Proof.Write d0=(d1,d2),t1=d1/d0,t2=d2/d0and d=d0t1t2.LetK(d1,c1;d2,c2;l,m)=n≤d(n,d1)=1(n+l,d2)=1ec1¯nd1+c2(n+l)d2+mnd.We claim that|K(d1,c1;d2,c2;l,m)|≤d0|S(m,b1;t1)S(m,b2;t2)|(3.10) for some b1and b2satisfying(b i,t i)≤(c i,d i),(3.11)13where S(m,b;t)denotes the ordinary Kloosterman sum.Note that d0,t1and t2are pairwise coprime.Assume thatn≡t1t2n0+d0t2n1+d0t1n2(mod d)andl≡t1t2l0+d0t1l2(mod d2).The conditions(n,d1)=1and(n+l,d2)=1are equivalent to(n0,d0)=(n1,t1)=1and(n0+l0,d0)=(n2+l2,t2)=1 respectively.Letting a i(mod d0),b i(mod t i),i=1,2be given bya1t21t2≡c1(mod d0),a2t1t22≡c2(mod d0),b1d20t2≡c1(mod t1),b2d2t1≡c2(mod t2),so that(3.11)holds,by the relation1 d i ≡¯tid0+¯dt i(mod1)we havec1¯n d1+c2(n+l)d2≡a1¯n0+a2(n0+l0)d0+b1¯n1t1+b2(n2+l2)t2(mod1).Hence,c1¯n d1+c2(n+l)d2+mnd≡a1¯n0+a2(n0+l0)+mn0d0+b1¯n1+mn1t1+b2(n2+l2)+m(n2+l2)t2−ml2t2(mod1).From this we deduce,by the Chinese remainder theorem,thatK(d1,c1;d2,c2;l,m)=e t2(−ml2)S(m,b1;t1)S(m,b2;t2)n≤d0(n,d0)=1(n+l0,d0)=1e da1¯n+a2(n+l0)+mn,whence(3.10)follows.By(3.10)with m=0and(3.11),for any k>0we havek≤n<k+d(n,d1=1 (n+l,d2)=1ec1¯nd1+c2d2≤(c1,d1)(c2,d2)d0.14It now suffices to prove(3.9)on assuming N≤d−1.By standard Fourier techniques, the left side of(3.9)may be rewritten as−∞<m<∞u(m)K(d1,c1;d2,c2;l,m)withu(m) minNd,1|m|,dm2.(3.12)By(3.10)and Weil’s bound for Kloosterman sums,wefind that the left side of(3.9)isd0|u(0)|(b1,t1)(b2,t2)+(t1t2)1/2+εm=0|u(m)|(m,b1,t1)1/2(m,b2,t2)1/2.This leads to(3.9)by(3.12)and(3.11).2 Remark.In the case d2=1,(3.9)becomesn≤N (n,d1)=1e d1(c1¯n) d1/2+ε1+(c1,d1)Nd1.(3.13)This estimate is well-known(see[2,Lemma6],for example),and it willfind application somewhere.Lemma12.LetT(k;m1,m2;q)=l(mod q)∗t1(mod q)∗t2(mod q)e q¯lt1−(l+k)t2+m1¯t1−m2¯t2,whereis restriction to(l(l+k),q)=1.Suppose that q is square-free.Then we haveT(k;m1,m2;q) (k,q)1/2q3/2+ε.Proof.By[5,(1.26)],it suffices to show thatT(k;m1,m2;p) (k,p)1/2p3/2.In the case k≡0(mod p),this follows from the Birch-Bombieri result in the appendix to[5](the proof is straightforward if m1m2≡0(mod p));in the case k≡0(mod p),this follows from Weil’s bound for Kloosterman sums.2154.Upper bound for S1Recall that S1is given by(2.1)andλ(n)is given by(2.11).The aim of this section is to establish an upper bound for S1(see(4.20)below).Changing the order of summation we obtainS1=d1|Pd2|Pµ(d1)g(d1)µ(d2)g(d2)n∼xP(n)≡0([d1,d2])1.By the Chinese remainder theorem,for any square-free d,there are exactly 1(d)distinct residue classes(mod d)such that P(n)≡0(mod d)if and only if n lies in one of these classes,so the innermost sum above is equal to1([d1,d2])[d1,d2]x+O( 1([d1,d2])).It follows thatS1=T1x+O(D2+ε),(4.1)whereT1=d1|Pd2|Pµ(d1)g(d1)µ(d2)g(d2)[d1,d2]1([d1,d2]).Note that 1(d)is supported on square-free integers.Substituting d0=(d1,d2)and rewriting d1and d2for d1/d0and d2/d0respectively,we deduce thatT1=d0|Pd1|Pd2|Pµ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).(4.2)We need to estimate the difference T1−T∗1.We haveT∗1=Σ1+Σ31,whereΣ1=d0≤x1/4d1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2),Σ31=x1/4<d0<Dd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).In the case d0>x1/4,d0d1<D,d0d2<D and|µ(d1d2)|=1,the conditions d i|P,i=1,2 are redundant.Hence,T1=Σ2+Σ32,16whereΣ2=d0≤x1/4d0|Pd1|Pd2|Pµ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2),Σ32=x1/4<d0<Dd0|Pd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).It follows that|T1−T∗1|≤|Σ1|+|Σ2|+|Σ3|,(4.3)whereΣ3=x1/4<d0<Dd0 Pd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).First we estimateΣ1.By M¨o bius inversion,the inner sum over d1and d2inΣ1is equal to1(d0) d0(d1,d0)=1(d2,d0)=1µ(d1) 1(d1)µ(d2) 1(d2)d1d2g(d0d1)g(d0d2)q|(d1,d2)µ(q)=1(d0)d0(q,d0)=1µ(q) 1(q)2q2A1(d0q)2.It follows thatΣ1=d0≤x1/4(q,d0)=11(d0)µ(q) 1(q)2d0q2A1(d0q)2.(4.4)The contribution from the terms with q≥D0above is D−10L B.Thus,substitutingd0q=d,we deduce thatΣ1=d<x1/4D0 1(d)ϑ∗(d)dA1(d)2+O(D−1L B),(4.5)whereϑ∗(d)=d0q=dd0<x1/4q<D0µ(q) 1(q)q.By the simple boundsA1(d) L l0(log L)B(4.6) which follows from(3.3),ϑ∗(d) (log L)B17andx1/4≤d<x1/4D0 1(d)dL k0+1/k0−1,(4.7)the contribution from the terms on the right side of(4.5)with x1/4≤d<x1/4D0is o(L k0+2l0).On the other hand,assuming|µ(d)|=1and noting thatq|d µ(q) 1(q)q=ϑ1(d)−1,(4.8)for d<x1/4we haveϑ∗(d)=ϑ1(d)−1+Oτk0+1(d)D−1,so that,by(3.3),ϑ∗(d)A1(d)2=1(l0!)2S2ϑ1(d)logDd2l0+Oτk0+1(d)D−1L B+O(L2l0−1+ε).Inserting this into(4.5)we obtainΣ1=1(l0!)2S2d≤x1/41(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).(4.9)Together with(3.5),this yields|Σ1|≤δ1k0!(l0!)2S(log D)k0+2l0+o(L k0+2l0),(4.10)whereδ1=(1+4 )−k0.Next we estimateΣ2.Similar to(4.4),we haveΣ2=d0≤x1/4d0|P(q,d0)=1q|P1(d0)µ(q) 1(q)2d0q2A∗1(d0q)2.whereA∗1(d)=(r,d)=1r|Pµ(r) 1(r)g(dr)r.In a way similar to the proof of(4.5),we deduce thatΣ2=d<x1/4D0d|P 1(d)ϑ∗(d)dA∗1(d)2+O(D−1L B).(4.11) 18Assume d|P.By M¨o bius inversion we haveA∗1(d)=(r,d)=1µ(r) 1(r)g(dr)rq|(r,P∗)µ(q)=q|P∗1(q)qA1(dq),whereP∗=D1≤p<Dp.Noting thatϑ1(q)=1+O(D−11)if q|P∗and q<D,(4.12) by(3.3)we deduce that|A∗1(d)|≤1l0!Sϑ1(d)logDdl0q|P∗q<D1(q)q+O(L l0−1+ε).(4.13)If q|P∗and q<D,then q has at most292prime factors.In addition,by the prime number theorem we haveD1≤p<D 1p=log293+O(L−A).(4.14)It follows thatq|P∗q<D 1(q)q≤1+292ν=1((log293)k0)νν!+O(L−A)=δ2+O(L−A),say.Inserting this into(4.13)we obtain|A∗1(d)|≤δ2l0!Sϑ1(d)logDdl0+O(L l0−1+ε).Combining this with(4.11),in a way similar to the proof of(4.9)we deduce that|Σ2|≤δ22(l0!)2S2d<x1/41(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).Together with(3.5),this yields|Σ2|≤δ1δ22k0!(l0!)2S(log D)k0+2l0+o(L k0+2l0).(4.15) 19We now turn toΣ3.In a way similar to the proof of(4.5),we deduce thatΣ3=x1/4<d<D 1(d)˜ϑ(d)dA1(d)2,(4.16)where˜ϑ(d)=d0q=dx1/4<d0d0 P µ(q) 1(q)q.By(4.6)and(4.7),wefind that the contribution from the terms with x1/4<d≤x1/4D0 in(4.16)is o(L k0+2l0).Now assume that x1/4D0<d<D,|µ(d)|=1and d P.Noting that the conditions d0|d and x1/4<d0together imply d0 P,by(4.8)we obtain˜ϑ(d)=d0q=dx1/4<d0µ(q) 1(q)q=ϑ1(d)−1+Oτk0+1(d)D−1.Together with(3.3),this yields˜ϑ(d)A1(d)2=1(l0!)2S2ϑ1(d)logDd2l0+Oτk0+1(d)D−1L B+O(L2l0−1+ε).Combining these results with(4.16)we obtainΣ3=1(l0!)2S2x1/4D0<d<Dd P1(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).(4.17)By(4.12),(4.14)and(3.5)we havex1/4<d<Dd P 1(d)ϑ1(d)d≤d<D1(d)ϑ1(d)dp|(d,P∗)1≤D1≤p<D1(p)ϑ1(p)pd<D/p1(d)ϑ1(d)d≤(log293)δ1(k0−1)!S−1(log D)k0+o(L k0)Together with(4.17),this yields|Σ3|≤(log293)δ1(k0−1)!(l0!)2S(log D)k0+2l0+o(L k0+2l0).(4.18)20Since1k0!(l0!)2=1(k0+2l0)!k0+2l0k02l0l0,it follows from(4.3),(4.10),(4.15)and(4.18)that|T1−T∗1|≤κ1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0),(4.19)whereκ1=δ1(1+δ22+(log293)k0)k0+2l0k0.Together with(3.1),this implies thatT1≤1+κ1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0).Combining this with(4.1),we deduce thatS1≤1+κ1(k0+2l0)!2l0l0S x(log D)k0+2l0+o(x L k0+2l0).(4.20)We conclude this section by giving an upper bound forκ1.By the inequalityn!>(2πn)1/2n n e−nand simple computation we have1+δ22+(log293)k0<2((log293)k0)292292!2<1292π(185100)584andk0+2l0k0<2k2l0(2l0)!<1√180π(26500)360.It follows thatlogκ1<−3500000log 293292+584log(185100)+360log(26500)<−1200.This givesκ1<exp{−1200}.(4.21)21。
孪生素数猜想

孪生素数猜想1849年,波林那克提出孪生素数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。
孪生素数即相差2的一对素数。
例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数。
孪生素数是有限个还是有无穷多个?这是一个至今都未解决的数学难题.一直吸引着众多的数学家孜孜以求地钻研.早在20世纪初,德国数学家兰道就推测孪生素数有无穷多.许多迹象也越来越支持这个猜想.最先想到的方法是使用欧拉在证明素数有无穷多个所采取的方法.设所有的素数的倒数和为:s=1/2+1/3+1/5+1/7+1/11+...如果素数是有限个,那么这个倒数和自然是有限数.但是欧拉证明了这个和是发散的,即是无穷大.由此说明素数有无穷多个.1919年,挪威数学家布隆仿照欧拉的方法,求所有孪生素数的倒数和:b=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+...如果也能证明这个和比任何数都大,就证明了孪生素数有无穷多个了.这个想法很好,可是事实却违背了布隆的意愿.他证明了这个倒数和是一个有限数,现在这个常数就被称为布隆常数:b=1.90216054...布隆还发现,对于任何一个给定的整数m,都可以找到m个相邻素数,其中没有一个孪生素数.1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积。
若用p(x)表示小于x的孪生素数对的个数.下表是1011以下的孪生素数分布情况:x p(x)1000 3510000 205100000 12241000000 816910000000 58980100000000 4403121000000000 342450610000000000 27412679100000000000 224376048迄今为止在证明孪生素数猜想上的成果大体可以分为两类。
第一类是非估算性的结果,这一方面迄今最好的结果是一九六六年由已故的我国数学家陈景润(顺便说一下,美国数学学会在介绍Goldston 和Yildirim 成果的简报中提到陈景润时所用的称呼是“伟大的中国数学家陈”) 利用筛法(sieve method) 所取得的。
孪生素数猜想初等证明详解

孪生素数猜想初等证明详解齐宸孪生素数是指相差2的素数对,例如3和5,5和7,11和13…。
孪生素数猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
孪生素数由两个素数组成,相差为2。
为了证明孪生素数猜想,无数的数学家曾为之奋斗,但美丽的公主仍然犹抱琵琶半遮面。
1.孪生素数分类及无个位表示方法孪生素数按两个素数个位不同划分3类(不包括10以下的3-5、5-7),分别是:1、孪生素数中两个素数个位为1和3,如11-13,41-43等;2、孪生素数中两个素数个位为7和9,如17-19,107-109等;3、孪生素数中两个素数个位为9和1,如29-31,59-61等。
三类孪生素数中个位为1和3的第一类是我们需要重点研究的,其他两类可以忽略不计。
因为只要第一类孪生素数无限,也就等价于证明了孪生素数猜想。
自有孪生素数概念以来它们就是由两个素数表示的。
若是能简化成一个数字那孪生素数猜想这一世界数学难题也许就向前迈进了一步。
无论这一步是一小步,还是一大步。
但毕竟能将两个素数组成的孪生素数降格成了像素数那样的单个数字。
分析一下个位为1和3的这一类孪生素数,如41-43这对孪生素数。
首先,分别去掉个位1和3后,可以看到剩下了两个数字4和4。
用这两个数字完全可以表示一对孪生素数,当然我们心里要想着在这两个数字后面是有个位1和3的。
其次,这两个去掉个位的数字又是完全相同的,都是一个数字“4”。
这样也就完全可以用一个数字“4”来表示一对孪生素数,也可以说4是一个单数字无个位孪生素数。
当然表面上看只有第一类、第二类孪生素数可以用一个数字表示(实际上第三类也可以)。
为什么一定要去掉个位呢?可将自然数变成互为补集的两类:孪生素数和非孪生素数。
并利用一种简单的筛法,将自然数中的非孪生素数及其补集孪生素数分开。
而且这个筛法所要得到的是非孪生素数。
关于孪生素数猜想的一个证明

科技视界
关于孪生素数猜想的一个证明
张跃 渊湖南师范大学物理系袁湖南 长沙 410081冤
揖摘 要铱根据计算机的整数取值有限袁本文提出了一个基本假设遥 在此假设的基础上袁利用 C 语言编程袁证明了院对应于无穷多个素数 p袁 存在无穷多个 p+2 的素数曰即孪生素数猜想遥
3 冷再生混合料性能验证
采用 F2 配方的乳化沥青袁 按照 叶公路沥青路面再生技术规范曳 渊JTG F41-2008冤中规定的方法袁最终结果见表 5尧表 6遥
表 5 最佳乳化沥青用量及含水量试验结果
混合料类 型
最佳乳化 沥青掺量
渊%冤
最佳含水 率渊%冤
毛体积相 对密度渊g/
cm3冤
实测最大理 论相对密度
在假设中袁显然袁R(k+1)劢R(k)袁R(k+1)原R(k)=k+1袁仅仅多一个 k+1 的数字遥 如果计算机对整数的取值范围没有限制袁可以设 k 为任意大 的整数袁但是不会当 k 大到某一整数之后袁j以i袁因为素数 p 有无穷多 个袁可能成为素数的 k+1 的数也有无穷多个袁故 j逸i 的情形有无穷多遥
由于计算机的二进制运算仅与逻辑电路或者布尔代数有关系袁其 运算规则和结果不因计算机的二进制数码的位数多少而引起变化遥 因 此袁可以作以下假设遥
假设院已知计算机限制的整数的最大取值为 n袁p 为无穷多个素数 p1约p2约噎约pn噎的集合遥 任意取一个整数 k渊k约n冤袁命 R(k)={pr+2} (r=1, 噎, i; pi+2臆k)为所有小于或者等于 k 的 i 个 p+2 的素数组成的集合袁 如果 R(k+1)={pt+2}(t=1,噎,j;pj+2臆k+1)为所有小于或者等于 k+1渊k+ 1臆n冤的 j 个 p+2 的素数组成的集合袁且 j逸i 恒成立袁则表明所有 p+2 的素数组成一个无穷集合遥
孪生素数猜想证明简述

孪生素数猜想证明简述一:逻辑证明(最简单,但逻辑思维要求高)根据素数新定义:从祖素数2开始,素数倍数后不连续的数即为素数。
易知素数除了2以外全是奇数,所以在奇数数轴上研究素数会有奇效。
奇数数轴:3,5,7,9,11,13,15,17,19,21,23,25,27,29,31......,无数对相差为2(相连)的数;假设只有3为素数,去掉其倍数后数轴变为:3,5,7,11,13,17,19,23,25,29,31......,只少了一点,但依旧有无穷对素数相差2;添加5为素数,去掉其倍数后数轴变为3,5,7,11,13,17,19,23,29,31......,少的更少,剩下相差为2的素数对肯定是无穷多;等等;如此可以无穷下去,但少的越来越少,而且剩余差值为2的素数对肯定是无穷多。
所以孪生素数肯定是无穷多的。
一目了然!!!当然也很容易看出,P和P+2k的素数对也是无穷多的(波利尼亚克猜想成立)。
(参考文献:奇数轴中素数量与合数宽度的研究)二:公式证明(难度极大)在上述的逻辑证明中,我们若将奇数数轴设为单位1;则3的倍数占比为:1/35的倍数占比为:1/5-1/157的倍数占比为:1/7-1/21-1/35+1/105等等,最后可得到孪生素数在奇数中的占比(LiKe级数公式)约为:1-1/3-(1/5-1/15)-(1/7-1/21-1/35+1/105)-(1/11-1/3*11-1/5*11-...+...)-...=1-1/3-1/5-1/7-......-1/p+1/15+1/21+......+1/pq-1/105-1/165-......-1/pqr+...-...=1-∑1/P+∑1/pq-∑1/pqr+…±∑1/∏P (1)(式中所有素数为奇素数,分母为偶数个素数积时取和,为奇数时取差)关于该新颖级数的求和不在此演示。
不过它是发散的(其值应该不为0),该级数本身足以说明了孪生素数的无穷多。
网友再次发现了有关孪生素数的一个猜想——杜伯纳猜想

网友再次发现了有关孪生素数的一个猜想——杜伯纳猜想不久前看到知乎上有人提出了一个关于孪生素数的猜想。
原问题比较晦涩,改述一下题主的问题,其意思是:对任意孪生素数对,总存在另两对孪生素数对,使得另两对的和等于前者。
那么化简一下问题:如果某孪生素数对是(a, a+2),猜想就是说,要存在孪生素数(b, b+2)和(c,c+2),使得: a+(a+2)=b+(b+2)+c+(c+2)化简后可得:a-1=b+c那么以上等式两边加2,即可得:a+1 = (b+1) + (c+1)此处,a+1,b+1和c+1,恰好都是某对孪生素数之间的那个偶数。
如果把一对孪生素数中间的那个偶数叫做“夹心偶数”,则猜想就是:对任意一个“夹心偶数”,都能表示成另两个“夹心偶数”的和。
第一眼看上去,这个猜想不太像是能成立,所以我写了个程序去验证下。
没想到验证了前10万对孪生素数,全部成立。
以下是一些跑出的组合结果:12 = 6 + 618 = 6 + 12108 = 6 + 102198 = 6 + 192828 = 6 + 8221488 = 6 + 14821878 = 6 + 18722088 = 6 + 20823258 = 6 + 32523468 = 6 + 346230 = 12 + 1842 = 12 + 3072 = 12 + 60150 = 12 + 138192 = 12 + 180240 = 12 + 228282 = 12 + 270432 = 12 + 420822 = 12 + 8106270 = 2688 + 35826552 = 2730 + 38226570 = 2802 + 37686300 = 2970 + 33306792 = 2970 + 38226450 = 3120 + 33306660 = 3120 + 35406702 = 3120 + 35826780 = 3252 + 35286690 = 3300 + 33906762 = 3300 + 34626828 = 3300 + 35286870 = 3330 + 35407128 = 3360 + 37686948 = 3390 + 35587212 = 3390 + 38227350 = 3528 + 38227308 = 3540 + 37687590 = 3768 + 3822这个结果让我有点惊讶。
孪生素数

孪生素数要介绍孪生素数,首先当然要说一说素数这个概念。
素数是除了1 和它本身之外没有其它因子的自然数。
素数是数论中最纯粹、最令人着迷的概念。
除了 2 之外,所有素数都是奇数(因为否则的话除了 1 和它本身之外还有一个因子2,从而不满足素数的定义),因此很明显大于2 的两个相邻素数之间的最小可能间隔是2。
所谓孪生素数指的就是这种间隔为2 的相邻素数,它们之间的距离已经近得不能再近了,就象孪生兄弟一样。
最小的孪生素数是(3, 5),在100 以内的孪生素数还有(5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61) 和(71,73),总计有8组。
但是随着数字的增大,孪生素数的分布变得越来越稀疏,寻找孪生素数也变得越来越困难。
那么会不会在超过某个界限之后就再也不存在孪生素数了呢?我们知道,素数本身的分布也是随着数字的增大而越来越稀疏,不过幸运的是早在古希腊时代,Euclid 就证明了素数有无穷多个(否则今天许多数论学家就得另谋生路)。
长期以来人们猜测孪生素数也有无穷多组,这就是与Goldbach猜想齐名、集令人惊异的简单表述和令人惊异的复杂证明于一身的著名猜想- 孪生素数猜想:孪生素数猜想:存在无穷多个素数p, 使得p+2 也是素数。
究竟谁最早明确提出这一猜想我没有考证过,但是一八四九年法国数学Alphonse de Polignac 提出猜想:对于任何偶数2k,存在无穷多组以2k 为间隔的素数。
对于k=1,这就是孪生素数猜想,因此人们有时把Alphonse de Polignac作为孪生素数猜想的提出者。
不同的k 对应的素数对的命名也很有趣,k=1 我们已经知道叫做孪生素数,k=2 (即间隔为4) 的素数对被称为cousin prime (比twin 远一点),而k=3 (即间隔为6) 的素数对竟然被称为sexy prime (这回该相信“书中自有颜如玉”了)!不过别想歪了,之所以称为sexy prime 其实是因为sex 正好是拉丁文中的6。
孪生素数猜想证明

根据素数定理,以及就平均而言 p k 1 p k ln p k
3
∴
2 [ pk , p k21 ) p 2 p k2 2 p k ln p k ln 2 p k ln p k k 1 1 2 2 pk pk p k ln p k p k ln p k
∴
2 [ pk , p k21 ) p [ p k2 , p k21 ) p ln p k p = k k (1 ) <2 k psk p sk pk psk pk p sk
e 2 n 2 p 1 Sh(n) ( ) (1 ) 2 2 3 p n p p |a p 2
2n= pu p v 的哥德巴赫猜想解个数 G(2n)
G (2n) (
e 2 n 2 p 1 ) (1 ) 2 2 3 p n p p|n p 2
证明:
2 2 2 2 ∵ n=3+(8-3)+(24-8)+(48-24)+…+ ( p k 1 p k ) +…+ ( p i 1 p i ) 2 2
∴ 根据引理 1,区间[ p k , p k 1 )的素数个数可近似表示为
k
2 ( p k21 p k ) (1
j 1
sk
2 2 w(k)= | ( p k 1 p k )
(1 p
j 1
1
j
) -π[ p k2 , p k21 )|
w(S)=|
sk 2 1 2 ( p p ) ) ( n) | k 1 k (1 p k 1 j 1 j i
1 ) pj
2 pk 1 / pk 1 时,p k 到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
THE PROOFS OF TWIN PRIME CONJECTURE AND WEAKER POLIGNAC’S CONJECTUREWAN-DONG XUSchool of Science,Tianjin University,Tianjin,300072,Chinae-mail:wandongx@Abstract:This paper advanced a new method of appointedly cov-ering prime circles with level colors of black degree,and showed twinprime conjecture and weaker Polignac’s conjecture to be true withthe proof by contradiction.Keywords:prime;distribution of primes;twin primes;Polignac’sconjecture;Goldbach-type problem.2000MSC:11A41,11P32,11N051.Introduction.After C.Goldbach and L.Euler presented their famous conjecture by a letter in1742which states that every number>2is the sum of two primes[1,2p421],A.de Polignac presented yet his famous conjecture in1849[1,2p424,3p11],One named it the conjecture of twin primes,which statesConjecture1:Even number2is the difference of two consecutive primes in an infinitude of ways.Then he advanced extendedly another famous conjecture also in that pa-per,it statesConjecture2:Every even number is the difference of two consecutive primes in an infinitude of ways.One named it Polignac’s conjecture.Conjecture2is a very stronger con-jecture,one couldn’t now not only show it but decide whether it is true as well.And one have advanced a slightly weaker conjecture which is analogous as the former,we name it a weaker Polignac’s conjecture,it states Conjecture3:Every even number is the difference of two primes in an infinitude of ways.Owing to Conjecture3doesn’t need that two primes are in order,that is, it is allowed that there are some other primes between these two primes,its condition is weaker than Conjecture2and it is possible to show it.Although Conjecture3is weaker,yet it still includes Conjecture1as a special one.In this paper we will advance a method of appointedly covering prime circles with the level colors of black degree,and show Conjectures3and1to be true with the proof by contradiction.Some symbols using in the paper is analogous as those in ref.[4,5,6,7].2.Preparative works.Prior to showing this important problem in number theory or in mathematics,we should do some things.1a.A sequence of odd numbers.Firstly,we should write a sequence of odd numbers except1,and denote ordinal number of odd numbers by i and its increment by i and i ,and ordinal number of odd prime numbers by s and its increment byσ.That iso dd number:3,5,7,9,11,13,15,17,19,21,···, o rdinal number i:12345678910···, o rdinal number s:123−45−67−···.b.An additive graph of difference formulae of odd numbers.Sec-ondly,we can draw a graph with two-color circles indicating odd numbers. This graph is analogous as Fig.3in ref.[5],n heading numbers was cut offfrom a sequence of odd numbers and rearranged vertically in right line,then, an ordinal sequence of odd numbers was arranged paralleling with former in left,both the right and left lines construct a column for an even number, and there were imaginatively a minus sign between correspondingly two odd numbers in the same row in this column indicating this even number.we denote ordinal number of odd number vertically laying infirst column by k which is starting at2,and its increment by k .There are two kinds of backed circles colored with black and snow,the black is to prime number,the snow to odd composite number.For all n,here n=1,2,···,we can draw out some analogous columns consisted of odd numbers and get an additive graph of these numbers(Fig.1).In Fig.1we draw a horizontal dotted line for every column which is parting the difference formulae of odd numbers into two parts:one part,laying up on the dotted line,contains n difference formulae of odd numbers for the n th column which includes some formulae consisted of two primes;another, laying down under the dotted line,contains infinitely many of rest difference formulae.c.An important conclusion.According to our showing in ref.[5-7],there must exist some difference formulae of two odd primes above the dotted line for every column,that is,Polignac-Xu’s number is≥1,i.e.,#{D(n)}≥1, and it is oscillatingly increased as even number increases.So we can conclude Conclusion4:For every even number its Polignac-Xu’s number is≥1and is oscillatingly increased as even number increases.d.Some convention of using symbols.In order to conveniently indicate its significant for some mathematical items,we use some symbols to denote them.For an odd number laying at a sit in the n th column,we use a front superscript n to denote it is in the n th column,a front subscript r to denote it is in the right line,a front subscript l to denote it in the left,we use a letter c to denote a composite number,a letter p to denote an odd prime,and the ordinal number i for indicating an odd number which is in the i th row in left line in the n th column sits at a back superscript,the ordinal number k for indicating an odd number which is in the k th row in right line in the n th column sits at a back superscript also,the ordinal number s for displayingan odd prime number sits at a back subscript,that is,n r c k,n r p k s,nl c i,or nlp i s.Furthermore,we use symbol“|=|”to indicate a prime meet another prime in the i th row in the n th column,that is,there is n r p k s+n|=|nlp i s,and use2Figure 1.The appointed couples of two primes after re-arranged vertically the sequence of odd numbers.symbol“ ”to indicate a prime circle is being covered by a level color with black degree,that is,n r p k s+n n r p k s+n.3e.About the levels of black degree.And here the term“black degree”possesses the mathematical significant.We define snow is zero level of black degree and black is infinite level of black degree,there are integer levels between them,so that,the potence of the set of the levels of black degree #{B d}is equal to that of the set of nonnegative integers#{N}.We know that according to the theorem of prime numbers[8,p153-180],the potence of the set of odd prime numbers#{P r}is infinity of lower order comparing to that of natural number#{N∗},we all know there is#{N}=#{N∗},so there is#{B d}>#{P r}and the number of the levels of black degree for covering prime circles is sufficiently.f.Three relationship formulae.And from Fig.1there are some important relationship formulae.For a prime in the n th column,here n≤K−1and K is sufficiently large,there are(1)k=i+n.(2)k =i .(3)n r p k s+n=2n+n l p i s.(4)n r p k s+σ=n l p i+ns+σ.3.The proof of conjecture3.Proof.We use the proof by contradiction.Assume that Conjecture3is not true,thus,it could deduce four cases possible.a.Thefirst cases assumes that every even number is the difference of two primes but not in an infinitude of ways.It is directly in contradiction with Conclusion4.Thefirst case indicates that for all even number its Polignac-Xu’s number isfinitely,but Conclusion4indicates that for a sufficiently larger even number its Polignac-Xu’s number is infinitely.Both is in contradiction each other,and the assumption is wrong.b.The second cases assumes that all sufficiently larger even numbers are the difference of two primes in an infinitude of ways but all not sufficiently larger even numbers aren’t in an infinitude of ways.For this cases possible,all even number<M,here M is a sufficiently larger number,is onlyfinite many of the difference formulae of two primes not in an infinitude of ways.That is,we may assume that when k≥K,every even number<M doesn’t be expressed as the difference of two primes(Note: When an even number approaches to M,n is to approach to m,here m also is a sufficiently larger number).This will introduce some error conclusion.Let we return to Fig.1,for n=1,suppose that there is a last pair of twin primes in the(K−1)th row in1st column,according to the assumption of the proof by contradiction,there weren’t any appointed pair of two primes in all rows while k≥K and n<m.Now let we consider a sufficiently larger number K,and draw a horizontal real line between K−1and K. And if there then appears a prime meet another prime under this real line,1 r p K s+1|=|1lp i s in1st column,we cover1r p K s+1and1lp i+1s+1with the1st level colorof black degree,and there are1r p K s+1 1r p K s+1and1l p i+1s+11lp i+1s+1.And if4there appear some primes meet other primes yet in this column,1r p K+ks+1|=|1 l p i+is,we cover1r p K+ks+1and1lp i+i +1s+1for all pairs of k ,i andσwith thatlevel color,and cover continually again any2r p K s+1and2l p i+1s+1,and all2r p K+ks+σand2l p i+i +1sin2nd column,3r p K s+1and3lp i+1s+1,and all3r p K+ks+σ+1and3lp i+i +1s+σ+1in3rd column,and go on.Thus,there are1r p K+ks+σ+1 1r p K+ks+σ+1,2r p K s+12 r p K s+1,2r p K+ks+σ+12r p K+ks+σ+1,3r p K s+1 3r p K s+1,and3r p K+ks+σ+13r p K+ks+σ+1,···;and1 l p i+i +1s+σ+11r p i+i +1s+σ+1,2lp i+1s+12lp i+1s+1,2lp i+i +1s+σ+12lp i+i +1s+σ+1,3lp i+1s+13lp i s+1,and3 l p i+i +1s+σ+13lp i+i +1s+σ+1,···.Next,for n=2and k≥K,if there appear some primes meet others,2 r p K+ks+σ|=|2lp i+is,in2nd column,we cover2r p K+ks+σ,2lp i+i +is+σ,3r p K+ks+σ,3lp i+i +is+σ,···with2nd level color.Thus,there are2r p K+ks+σ 2r p K+k 2s+σ,2lp i+i +is+σ2 l p i+i +is+σ,3r p K+ks+σ3r p K+ks+σ,3lp i+i +is+σ3lp i+i +is+σ,···,and go on.Then,we do this for ever and ever for all n,here n=1,2,3,···,n−1(Fig.2).For example,let we see in Fig.2,There are some clearly examples.Thereis1r432113|=|1l 412012in1st column,then,we cover1r432113and1l432113with1st levelcolor,and cover n r432113and nl 4320+113for all n>1;and there is1r612917|=|1l592916yet in that column,and we cover1r612917and1l613017with that level color,andcover n r612917and nl 6129+117for all n>1.And there are n r 432113,nl4320+113,n r 612917,and nl 6129+117for all n=1,2,···.There is2r412012|=|2l 371811in2nd column,then,we cover1r412012and2l4118+212with2nd level color,and cover n r412012and nl 4118+212for all n>2,there aren r 412012and nl4118+212for all n=1,2,···.And there is3r532615|=|3l472314in3rd column,and we cover3r532615and3l5323+315with3rd level color,and we cover n r532615and nl 5323+315for all n>3;and thereis3r673317|=|3l 613017also in3rd column,and we cover3r673317and3l6730+317withthat level color,and cover n r673317and nl 6730+317for all n>3.So that there aren r 412012,nl4118+212,n r 532615,nl5323+315,n r 673317,nl6730+317.When n from1to n−1,due to n=K−i now,all black prime circlesbetween1st and k th in left line will be through all black circles between (k+1)th and(2K+1)th in right line,and all these circle were being coveredwith K−1level colors of black degree.And there are n−1r p K+ks+σn−1rp K+ks+σand n−1l p i+is+σn−1lp i+is+σfor all pairs of k andσin right line in the(n−1)thcolumn.While n turns from n−1to n,there will appear n r p K+ks+σ+n |=|nlp i+is+σand turnall nl p i+i +is+σ+nto nlp i+i +is+σ+nfor all pairs of K+k and s+σ,here1≤i+i ≤Kand K+1≤K+k ≤2K+1,And we do not consider that there were probably the primes meet primes in infinitely in the n th column.So we can conclude three error conclusions:(i)There is not any appointed pair between two primes,i.e.,#{D(n)}=0and there is no Polignac-Xu’s number,above dotted line while n≥K,this is contradiction with Conclusion4;(ii)There is no prime in open interval(K,2K)under dotted line also while n≥K, this is contradiction with a prime theorem that there must exist at least one5Figure2.Nearly all prime circles would be covered when aneven number is sufficiently large.prime between K and2K,and(iii)There is no prime in open interval(K,∞) also under dotted line while n→∞,this is contradiction with Euclid’s prime6theorem that there are infinitely many primes in natural numbers.And the assumption is wrong.c.The third cases assumes that all sufficiently larger even numbers and some not sufficiently larger even numbers are the difference of two primes in an infinitude of ways but some not sufficiently larger even numbers aren’t in an infinitude of ways.In this status,we divide all even number in to two sets,A and B,the set A contains the former,and the set B contains the latter.For all even number in B we take analogous method of covering sufficiently larger odd primes in the column indicating these even numbers.After processed all these columns we mayfind that all prime number≥K have been covered.Of cause,all odd primes≥K which lay in all columns indicating all even numbers in Ashould also be covered.And there is n r p K+ks+σ+n |=|nlp i+is+σfor all pairs of K+kand s+σfor all columns in A,so that there is no n r p K+ks+σ+n |=|nlp i+is+σ,and theassumption is contradiction itself in this case and it is wrong.d.In the last case one assumes that every even number except2is the difference of two primes in an infinitude of ways.There is indeed no good method to show this assumption to be wrong.But if it were true,one yet assumes that every even number except4is the difference of two primes in an infinitude of ways;every even number except6is the difference of two primes in an infinitude of ways;and go on.That will introduce a new antinomy.The assumption is wrong.Up to now,we havefinished showing Conjecture3to be true and also Conjecture1to be true.Acknowledge:I am grateful to Prof.Rong-Qing Jia,Prof.Geng-Pu Yu, Prof.Zai-De Wu,Prof.Jing Xu,Eng.Yu-Zhi Li,and Bachelor Heng Xu for beneficial discussion,and my student Yue-Bo Ding for her verifying all of the data in this paper.REFERENCE[1]D.Hilbert,Mathematische Problems,Archiv5.Math.u.Phys.3,Bd.1(1901),44-63;213-237.[2]L.E.Dickson,History of the theory of numbers,Carnegie Institute of Washington,Washington,vol I.1919.[3]T.M.Apostol,Introduction to Analytic Number Theory,Springer-Verlag,NewYork,1976.[4]W.-D.Xu,A new two-dimension sieve method and the proof of Goldbach’s con-jecture,/200606266(unpublished).[5],Every even number is the difference of two odd prime numbers,www./2006006456(unpublished).[6],A C++source program of calculating Polignac-Xu’s number with recur-sion method,/200609373(unpublished).[7],A FORTRAN source program of calculating Polignac-Xu’s number withrecursion method,/200609392(unpublished).[8]P.Ribenboim,The Book of Prime Number Records,(Second Edition),Springer-Verlag,Berlin,1989.7。