Parallel decoders of polar codes

合集下载

基于深度学习的polar码译码算法研究

基于深度学习的polar码译码算法研究

基于深度学习的polar码译码算法研究基于深度学习的polar码译码算法研究摘要:随着5G通信技术的快速发展,无线通信的需求不断增加,更高的数据传输速率对可靠的信道编码和译码算法提出了更高的要求。

本文研究了一种基于深度学习的polar码译码算法,通过利用深度学习网络的优势,提高了polar码的解码性能。

关键词:深度学习,polar码,译码算法,5G通信1. 引言在5G通信时代,高速、可靠的数据传输成为了无线通信领域的关键挑战。

海量的数据需要通过可靠的信道编码和译码算法进行传输。

传统的编码和译码算法在满足性能要求的同时,也带来了较大的计算复杂度。

因此,提出一种快速且性能优越的信道编码和译码算法变得尤为重要。

2. 相关工作在过去的几十年中,研究者们提出了多种信道编码和译码算法,以提高无线通信的可靠性。

其中,基于冻结和融合的polar码在5G通信中表现出了出色的性能。

然而,传统的polar码译码算法在计算复杂度方面存在较大的挑战。

3. 基于深度学习的polar码译码算法设计为了提高polar码的解码性能,并减少计算复杂度,本文提出了一种基于深度学习的polar码译码算法。

该算法主要包括两个步骤:训练和译码。

3.1 训练在训练过程中,我们通过大量的信道编码和译码数据来构建深度学习网络模型。

首先,我们生成了一系列的信道编码数据,然后利用已知的信道状态信息(CSI)将数据传输到信道中。

接着,我们使用已知的编码器对数据进行编码,得到编码后的数据。

最后,我们使用高斯信道模型模拟信道传输,得到接收端的接收信号。

3.2 译码在译码过程中,我们将接收信号输入到预训练好的深度学习网络中。

深度学习网络通过学习已知的编码器和信道传输过程,能够准确地还原原始数据。

通过反向传播算法,我们优化网络的权重和偏差,以提高译码的性能。

4. 实验与结果分析为了验证基于深度学习的polar码译码算法的性能,我们进行了一系列的实验。

实验结果表明,与传统的polar码译码算法相比,基于深度学习的算法在误比特率(BER)和帧错误率(FER)方面具有更好的性能,且计算复杂度显著降低。

polar编码原理

polar编码原理

polar编码原理Polar编码是一种使用极化技术进行编码的信道编码方案,由Erdal Arikan于2009年提出。

Polar编码的基本原理是通过对信道进行“极化”,将原始信息通过极化转换成几个特定的可靠信道和几个较差的不可靠信道。

然后,将需要传输的信息通过在可靠信道上的编码,利用冗余码并通过不可靠信道上的“冻结位”以抵御噪声干扰的影响,实现可靠的信息传输。

Polar编码的实现通常采用二进制数字传输,并通过使用递归构造编码和译码算法来实现高效的编码和译码过程。

具体而言,Polar编码的编码过程包括以下步骤:1. 构造信道转换矩阵(Channel Transformation Matrix):根据输入信道的性质,构造一个2×2的信道转换矩阵,将原始信道转换成两个新的信道。

2. 递归地构造信道转换矩阵:通过不断地重复应用信道转换矩阵,将原始信道不断细分成更多的子信道,直到达到所需的编码长度。

3. 选择可靠信道和冻结位:根据子信道的性能,选择一部分子信道作为可靠信道,用于传输原始信息,同时将其他子信道对应的比特位置为冻结位,用于抵御噪声干扰。

4. 通过冗余码对可靠信道进行编码:利用选择的可靠信道,对原始信息进行编码,生成冗余码,用于检测和修复传输中的错误。

Polar编码的译码过程与编码过程相反,包括以下步骤:1. 执行信道估计:通过接收到的信号,对接收信道进行估计,以获取对各个子信道的可靠性度量。

2. 运用递归信道外译码算法(Successive Cancellation algorithm,SC算法)进行译码:根据子信道的可靠性度量,使用SC算法对接收到的信息进行译码。

3. 修复冻结位:通过译码过程中获得的冗余信息,对原始信息对应的冻结位进行修复。

通过以上编码和译码过程,Polar编码能够在高信噪比情况下实现较低的误码率,并且能够利用冗余信息对传输中的错误进行修复,提高传输可靠性。

5g polar编码

5g polar编码

5g polar编码【实用版】目录1.5G 技术简介2.极化编码技术概述3.5G 极化编码的优势4.5G 极化编码的应用场景5.我国在 5G 极化编码方面的发展正文【5G 技术简介】5G,即第五代移动通信技术,是继 2G、3G、4G 之后的新一代无线通信技术。

相较于前代技术,5G 在传输速率、时延、连接数量等方面均有显著提升,从而为用户带来更优质的通信体验。

同时,5G 技术还将为众多行业的数字化转型提供有力支持,助力我国产业升级。

【极化编码技术概述】极化编码(Polar Coding)是一种信道编码技术,其基本思想是将信道中的信息比特映射到信道输出的比特上,使得信道输出的比特之间具有较高的相关性。

这种相关性使得信道输出的比特在经过信道传输后,仍能保持较高的信噪比,从而提高传输的可靠性。

【5G 极化编码的优势】5G 极化编码技术具有以下优势:1.较低的误码率:由于极化编码技术使得信道输出比特之间具有较高的相关性,因此可以提高传输的可靠性,降低误码率。

2.较高的编码效率:极化编码技术能够在保证传输可靠性的同时,实现较高的编码效率,从而提高频谱利用率。

3.适用于各种场景:5G 极化编码技术不仅适用于高速率、低时延的通信场景,还可以应用于低速率、高可靠性的通信场景。

【5G 极化编码的应用场景】5G 极化编码技术在以下场景中具有广泛的应用前景:1.增强现实/虚拟现实(AR/VR):5G极化编码技术可以为AR/VR应用提供低时延、高可靠性的传输,为用户带来沉浸式的体验。

2.无人驾驶:5G 极化编码技术可以为无人驾驶车辆提供实时、高可靠性的通信,保障车辆行驶的安全。

3.工业互联网:5G 极化编码技术可以支持大量设备的连接和数据传输,为工业互联网提供高效、可靠的通信基础设施。

【我国在 5G 极化编码方面的发展】我国在 5G 极化编码技术方面取得了重要进展。

我国企业和科研机构积极参与 5G 极化编码技术的研究与标准制定,推动我国在 5G 极化编码领域取得国际领先地位。

分块编码和polar编码

分块编码和polar编码

分块编码和polar编码?
答:分块编码和Polar编码是两种不同的编码技术,它们在数据传输和存储中被广泛使用。

1. 分块编码:
分块编码是一种将数据分成固定大小的块,并对每个块进行独立编码的策略。

这种编码方法可以用于数据压缩、加密、错误检测等应用中。

常见的分块编码方法包括ASCII编码、UTF-8编码、哈夫曼编码等。

在分块编码中,数据被分成固定大小的块,每个块独立进行编码。

这种编码方式具有简单、易于实现和高效的特点。

然而,如果数据不均匀分布,可能会造成空间的浪费,或者在某些情况下导致数据块的分割不均匀,影响编码效果。

2. Polar编码:
Polar编码是一种基于信道极化的编码技术,它通过将信息位映射到更可靠的信道比特上,以达到更高的数据传输效率。

Polar编码具有低复杂度、低延迟和低误码率等优点,因此在5G通信、存储和计算领域得到了广泛应用。

Polar编码的基本思想是将信道分为两个部分:一部分用于传输校验位,另一部分用于传输信息位。

通过信道极化,将可靠性较高的信道用于传输信息位,可靠性较低的信道用于传输校验位,从而提高了数据的传输效率。

分段CRC辅助极化码SCL比特翻转译码算法

分段CRC辅助极化码SCL比特翻转译码算法

现代电子技术Modern Electronics Technique2021年4月1日第44卷第7期Apr.2021Vol.44No.70引言极化码是一种可以严格证明达到香农极限[1]的编码方案,是5G 信道编码技术之一。

文献[1]提出串行抵消(Successive Cancellation ,SC )译码算法,但是SC 译码器在有限码长下,其译码算法纠错性能不理想。

为获得更好的译码效果,极化码串行抵消列表(Successive Cancellation List ,SCL )译码器[2],始终保持L 条最佳候选路径,可实现接近最大似然(ML )译码的性能,但其列表较大,计算复杂度较高。

CRC 辅助SCL (CRC⁃AidedSCL ,CA⁃SCL )译码算法[3]通过在信息比特序列后添加CRC 检验,筛选出最优的候选路径,以此提高译码性能。

在此基础上,又提出一种分段CRC 辅助SCL 译码方案[4],该方案可显著降低译码复杂度。

类似地,CRC 纠错辅助连续抵消列表(CRC⁃EC⁃SCL )译码的基本译码方案[5]也从另一角度提高译码性能。

与CRC⁃polar codes 类似的还有Hash⁃polar codes [6],其检验位可以分散在信息位里,性能优于奇偶检验极化码。

在SC 译码过程中,信道噪声或由于先前错误比特引起的错误传播是产生错误比特的原因,通过对引起错误传播的第一个错误比特翻转,可获得较好的性能增益。

根据译码树结构,总结出极化码三种相应的节点类型[7],提供节点合并,以减少译码器延迟。

基于翻转译码的思想,一种翻转译码算法[8]被提出,通过对数似然比分段CRC 辅助极化码SCL 比特翻转译码算法崔建明,王庆祥,张小军,李恒忠(山东科技大学,山东青岛266590)摘要:极化码是一种被严格证明到达信道容量的信道编码方法。

虽然串行抵消列表比特翻转(SCLF )译码算法可提高译码性能,但导致较高的译码复杂度。

Polar码译码算法的分析与研究

Polar码译码算法的分析与研究

Polar码译码算法的分析与研究标题:Polar码译码算法的分析与研究摘要:随着通信技术的高速发展,对于高质量和高速率的无线通信需求正日益增加。

极化码作为一种新型的错误纠正码,具有很好的性能和低复杂度特点,吸引了众多学者的关注。

本文拟对极化码的译码算法进行深入分析和研究,以期为极化码的实际应用提供理论基础和技术支持。

一、引言随着移动通信和互联网的迅猛发展,人们对于数据传输的要求越来越高,特别是在高速率和可靠性方面。

在无线通信中,由于受到信道噪声和干扰的影响,数据传输过程中经常发生错误。

因此,正确编码和译码算法的研究变得至关重要。

极化码作为一种新型的通信编码方案,具有独特的优势,逐渐受到学术界和工业界的关注。

二、极化码的基本原理极化码是基于信道极化理论提出的一种码型。

信道极化理论中,通过特定的设计方法,将N个相同的独立线性二元信道分成两类:易于传输的好信道和困难传输的坏信道。

通过串行串联这些信道,便可以得到对应的极化码。

三、极化码的译码算法分析(一)信道识别算法信道识别算法是极化码译码的重要环节。

通过识别好信道和坏信道,可以对信道进行相应的调整和编码。

其中,常用的信道识别算法有排序法和似然度比较法。

排序法通过对信道输出序列进行排序,从而确定好信道和坏信道;似然度比较法则是通过计算每个信道对应的似然度以进行判断。

(二)SC译码算法SC(Successive Cancellation)译码算法是极化码译码的一种重要算法。

其基本思想是先假设部分比特已经解码,然后根据这些已解码的比特来解码剩余的比特。

SC译码算法具有较低的计算复杂度,但由于是串行处理,速率相对较慢。

(三)SCL译码算法SCL(Successive Cancellation List)译码算法是对SC算法的改进。

该算法在解码过程中维护一个路径列表,将解码的可能性扩展到多条路径上,从而提高了编码的可靠性。

同时,SCL译码算法还可以通过设置一个列表大小参数来控制性能和复杂度的平衡。

多进制LDPC码及Polar码的编译码研究

多进制LDPC码及Polar码的编译码研究
随着信息技术的发展,人们对通信速率要求越来越高,LDPC码因为其良好的性能而得到人们的广泛关注。

而对于二进制LDPC码的研究已经相对很充分,近年来越来越多的人开始研究多进制LDPC码。

作为二进制LDPC码的扩展,多进制LDPC码有更好的性能,但复杂度也更高。

而Arikan在2007年提出的一种基于信道极化理论的全新的信道编码方法Polar 码,因其良好的性能和低复杂度成为信道编码理论的研究热点。

本文主要研究了多进制LDPC码译码算法,构造方法和Polar码的原理及编译码算法。

在多进制LDPC码译码算法方面,首先系统总结了基于消息传递的多进制LDPC码的和积译码算法,再和二进制LDPC码做比较,分析了对数域的和积译码算法;引入雅克比对数,对对数域和积译码算法进行简化得到Min-Sum译码算法;进一步,分析研究了相对于硬件实现方面,可能是最好的译码算法的Min-Max算法。

在多进制LDP C码的构造方面,首先提出构造需满足的条件,在此基础上介绍传统随机构造,分析其性能好的但不便于硬件实现情况,并引入便于硬件实现的QC-LDPC码的构造。

分析研究了基于有限域循环子群,乘法群等有限域特殊结构的QC-LDPC码的构造方法,详细推导其构造原理及过程。

针对多进制LDPC码编译码的高复杂度等问题,引出最近研究越来越多的Polar码,一种基于信道极化理论的能达到香农限的全新的信道编码方法。

分析研究了信道极化理论,并在此基础上,引出Polar码,分析其性能好,编译码复杂度低的原因及存在的短码长时极化率低和吞吐率低等问题。

最后详细分析研究了Polar码的构造过程和SC译码算法。

分块编码和polar编码

分块编码和Polar编码1. 引言分块编码和Polar编码是两种常用的信道编码技术,被广泛应用于无线通信系统中。

本文将详细介绍分块编码和Polar编码的原理、优势及应用。

2. 分块编码2.1 原理分块编码是一种将输入数据划分为多个独立的块,并对每个块进行独立的编码的技术。

其主要包括三个步骤:划分、编码和解码。

在划分阶段,输入数据被划分为多个相等大小或不等大小的块。

每个块都被独立地进行编码和解码,以提高系统的可靠性。

在编码阶段,每个数据块通过添加冗余信息进行编码。

冗余信息可以通过各种纠错技术实现,如海明码、卷积码等。

这些冗余信息可以增加系统对传输错误的容忍度。

在解码阶段,接收到的数据经过解调后,被恢复为原始数据块。

如果发生了传输错误,解码器可以利用添加的冗余信息进行纠错,并尽可能恢复原始数据。

2.2 优势•提高信道传输的可靠性:分块编码通过添加冗余信息,可以有效地纠正传输过程中产生的错误,提高信道传输的可靠性。

•简化系统设计:分块编码将输入数据划分为多个独立的块,使得系统设计更加模块化和灵活,可以针对每个数据块采用不同的编码方式。

•降低延迟:由于每个数据块可以独立地进行解码,分块编码可以降低解码延迟,提高系统的实时性。

2.3 应用分块编码广泛应用于无线通信领域。

例如,在LTE(Long Term Evolution)和5G等移动通信标准中,分块编码被用于提高无线链路的可靠性和吞吐量。

此外,在存储系统中也常使用分块编码来增加数据的冗余度,以提高存储系统的可靠性和容错能力。

3. Polar编码3.1 原理Polar编码是一种基于极化原理的信道编码技术。

它通过将N个相互独立且具有相同输入输出关系的信道转换为一个好信道和一个差信道,并利用好信道进行信息传输。

Polar编码主要包括两个步骤:信道极化和编码。

在信道极化阶段,通过串联多个相同的信道,将这些信道转换为一个好信道和一个差信道。

好信道具有较低的错误率,而差信道具有较高的错误率。

关于polar码的毕业设计

关于polar码的毕业设计首先,你可以考虑选择一个与polar码相关的具体问题作为毕业设计的主题。

以下是一些可能的方向:1. 构建polar码编码器和解码器,你可以设计并实现一个polar码编码器和解码器,通过编码和解码过程来验证polar码的性能和可靠性。

你可以使用MATLAB或Python等工具来实现算法,并通过模拟和仿真来评估编码和解码的性能。

2. 优化polar码的性能,你可以研究和实现一些优化技术,以提高polar码的性能。

例如,你可以尝试优化信道估计、信道编码率选择或者信道反馈等方面,以进一步提高polar码在不同信道条件下的性能。

3. 构建基于polar码的通信系统,你可以设计并实现一个基于polar码的通信系统,包括信道编码、调制、信道估计和解调等模块。

通过搭建实际的通信系统,你可以验证polar码在实际通信环境中的性能和可行性。

4. 研究polar码在多用户场景下的应用,你可以研究polar码在多用户场景下的应用,例如多用户检测、多用户信道编码等。

通过研究多用户场景下的polar码应用,你可以探索polar码在未来无线通信系统中的潜力。

在选择毕业设计题目后,你可以进行以下步骤:1. 文献综述,对polar码的相关文献进行综述,了解polar码的基本原理、性能分析和优化技术等方面的研究进展。

2. 系统设计,根据你选择的主题,设计你的毕业设计系统框架,包括模块划分、算法选择等。

3. 算法实现,根据系统设计,实现相关的算法。

你可以使用MATLAB或Python等工具来实现算法,并进行仿真和实验。

4. 性能评估,通过仿真和实验,评估你设计的系统的性能。

你可以考虑使用误码率、传输速率等指标来评估系统的性能。

5. 结果分析,对实验结果进行分析和讨论,总结你的设计的优点和不足之处,并提出改进的建议。

最后,你可以撰写毕业设计报告,包括引言、相关工作综述、系统设计、实验结果、分析和总结等部分。

希望以上的建议能够帮助你开始进行关于polar码的毕业设计。

74HC238 74HCT238 3-到-8线解码器 分复用器说明书

74HC238; 74HCT2383-to-8 line decoder/demultiplexerRev. 5 — 13 June 2018Product data sheet1General descriptionThe 74HC238; 74HCT238 decodes three binary weighted address inputs (A0, A1 andA2) to eight mutually exclusive outputs (Y0 to Y7). The device features three enableinputs (E1 and E2 and E3). Every output will be LOW unless E1 and E2 are LOW andE3 is HIGH. This multiple enable function allows easy parallel expansion to a 1-of-32(5 to 32 lines) decoder with just four '238 ICs and one inverter. The '238 can be usedas an eight output demultiplexer by using one of the active LOW enable inputs as thedata input and the remaining enable inputs as strobes. Inputs include clamp diodes. Thisenables the use of current limiting resistors to interface inputs to voltages in excess ofV CC.2Features and benefits•Demultiplexing capability•Multiple input enable for easy expansion•Ideal for memory chip select decoding•Active HIGH mutually exclusive outputs•Multiple package options•Complies with JEDEC standard no. 7A•Input levels:–For 74HC238: CMOS level–For 74HCT238: TTL level•ESD protection:–HBM JESD22-A114F exceeds 2000 V–MM JESD22-A115-A exceeds 200 V•Specified from -40 °C to +85 °C and from -40 °C to +125 °C3Ordering information3-to-8 line decoder/demultiplexer4Functional diagram001aag7523 TO 8 DECODERENABLE EXITING A01A12A23E14E25E36Y015Y114Y213Y312Y411Y510Y69Y77Figure 1. Logic symbol 001aag7533 TO 8 DECODERENABLE EXITINGA01A12A23E14E25E36Y015Y114Y213Y312Y411Y510Y69Y77Figure 2. Functional diagram3-to-8 line decoder/demultiplexer 5Pinning information5.1Pinning5.2Pin description3-to-8 line decoder/demultiplexer 6Functional descriptionTable 3. Function tableH = HIGH voltage level; L = LOW voltage level; X = don’t care.7Limiting valuesTable 4. Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).[1]The input and output voltage ratings may be exceeded if the input and output current ratings are observed.[2]For SO16 package: above 70 °C the value of P tot derates linearly at 8 mW/K.For SSOP16 and TSSOP16 packages: above 60 °C the value of P tot derates linearly at 5.5 mW/K.For DHVQFN16 package: above 60 °C the value of P tot derates linearly at 4.5 mW/K.3-to-8 line decoder/demultiplexer 8Recommended operating conditionsTable 5. Recommended operating conditionsVoltages are referenced to GND (ground = 0 V).9Static characteristicsTable 6. Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground = 0 V).3-to-8 line decoder/demultiplexer3-to-8 line decoder/demultiplexer 10Dynamic characteristicsTable 7. Dynamic characteristicsGND = 0 V; test circuit see Figure 8.3-to-8 line decoder/demultiplexer[1]t pd is the same as t PHL and t PLH.[2]t t is the same as t THL and t TLH.[3]C PD is used to determine the dynamic power dissipation (P D in μW):P D = C PD x V CC2 x f i x N + ∑ (C L x V CC2 x f o) where:f i = input frequency in MHz;f o = output frequency in MHz;C L = output load capacitance in pF;V CC = supply voltage in V;N = number of inputs switching;∑ (C L x V CC2 x f o) = sum of outputs.10.1Waveforms and test circuit3-to-8 line decoder/demultiplexer3-to-8 line decoder/demultiplexer3-to-8 line decoder/demultiplexer 11Package outline3-to-8 line decoder/demultiplexer3-to-8 line decoder/demultiplexer3-to-8 line decoder/demultiplexer3-to-8 line decoder/demultiplexer 12Abbreviations13Revision history3-to-8 line decoder/demultiplexer 14Legal information14.1 Data sheet status[1]Please consult the most recently issued document before initiating or completing a design.[2]The term 'short data sheet' is explained in section "Definitions".[3]The product status of device(s) described in this document may have changed since this document was published and may differ in case of multipledevices. The latest product status information is available on the Internet at URL .14.2 DefinitionsDraft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.14.3 DisclaimersLimited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracyor completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation -lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.Right to make changes — Nexperia reserves the right to make changesto information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunctionof an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above thosegiven in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.Terms and conditions of commercial sale — Nexperia products aresold subject to the general terms and conditions of commercial sale, as published at /profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance orthe grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.3-to-8 line decoder/demultiplexerNon-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.14.4 TrademarksNotice: All referenced brands, product names, service names and trademarks are the property of their respective owners.3-to-8 line decoder/demultiplexerContents1General description (1)2Features and benefits (1)3Ordering information (1)4Functional diagram (2)5Pinning information (3)5.1Pinning (3)5.2Pin description (3)6Functional description (4)7Limiting values (4)8Recommended operating conditions (5)9Static characteristics (5)10Dynamic characteristics (7)10.1Waveforms and test circuit (8)11Package outline (11)12Abbreviations (15)13Revision history (15)14Legal information (16)Please be aware that important notices concerning this document and the product(s)described herein, have been included in section 'Legal information'.Mouser ElectronicsAuthorized DistributorClick to View Pricing, Inventory, Delivery & Lifecycle Information:N experia:74HC238BQ,11574HC238D,65274HC238DB,11274HC238DB,11874HC238D,65374HC238N,65274HC238PW,11274HC238PW,11874HCT238BQ,11574HCT238D,65274HCT238DB,11274HCT238DB,118 74HCT238D,65374HCT238N,65274HCT238PW,11274HCT238PW,118。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

where
N /2 a1
N /2 v1
N vN / 21
and
b1N / 2
.
From (3), we can see that one Polar code of block size N can be decomposed into two sub Polar codes each with a block size of N / 2 , but the encoding bits a1N / 2 and b1N / 2 arer passing
N x1
through a channel, we have the received
signal y1N . We propose a parallel SC decoder to decode the received signal as follows. The parallel SC decoder consists of two component SC decoders: one uses y1N / 2 as input to decode
II. PARALLEL SC AND SC-LIST DECODERS I. INTRODUCTION A. Polar Codes Let F , F n is a N N matrix, where N 2 n , n 1 1 denotes nth Kronecker power, and F n F F n1 . Let the n-bit binary representation of integer i be bn 1, bn 2 ,..., b0 . The n-bit representation b0 , b1,..., bn is a bit-reversal order of i. The generator matrix of polar code is defined as generated by
1 0
GN BN F n , where
BN is a bit-reversal permutation matrix. The polar code is
(1)
where
N x1 x1, x2 ,..., x N
is the encoded bit sequence, and
N u1 u1, u2 ,..., u N
(2)
N vN / 21BN / 2

Furthermore, we have
N N /2 x1 a1 BN / 2 F (n1)

b1N / 2 BN / 2 F (n1)
N vN / 21

(3)
Bin Li and Hui Shen are with the Communications Technology Research Lab., Huawei Technologies, Shenzhen, P. R. China (e-mail:{binli.binli, hshen}@). David Tse is with the Dept. of Electrical Engineering and Computer Science, University of California at Berkeley, CA 94720-1170, USA (e-mail: dtse@).
1
Parallel Decoders of Polar Codes
Bin Li, Hui Shen, and David Tse, Fellow, IEEE
Abstract—In this letter, we propose parallel SC (Successive Cancellation) decoder and parallel SC-List decoder for polar codes. The parallel decoder is composed of M 2 m (m 1) component decoders working in parallel and each component decoder decodes a Polar code of a block size of 1 / M of the original Polar code. Therefore the parallel decoder has M times faster decoding speed. Our simulation results show that the parallel decoder has almost the same error-rate performance as the conventional non-parallel decoder. Index Terms—Polar codes, SC decoder, SC-LIST decoder
F ( n1) N N x1 u1 B N ( n1) F F
( n1)
0
( n1) F 0

N /2 v1 BN / 2
N vN / 21 B N / 2

where
N N /2 u1 BN v1 BN / 2

F ( n1) ( n1) F
N /2 , a1
N /4 N /4 x1 a1 B N / 4 F ( n 2 ) N /2 N /4 ( n 2 ) x N / 41 b1 B N / 4 F 3N / 4 N /4 ( n 2 ) x N / 21 c1 B N / 4 F N x3 N / 41 d1N / 4 B N / 4 F ( n 2)
N N N x1 u1 GN u1 BN F n
P
olar codes are a major breakthrough in coding theory [1]. They can achieve Shannon capacity with a simple encoder and a simple successive cancellation decoder, both with low complexity of the order of ON log N , where N is the code block size. When the code block size is long enough, the simple SC decoder can approaches Shannon capacity. But for short and moderate lengths, the error rate performance of polar codes with the SC decoding is not as good as LDPC or turbo codes. A new SC-list decoding algorithm was proposed for polar codes recently [2], which performs better than the simple SC decoder and performs almost the same as the optimal ML (maximum likelihood) decoding at high SNR. In order to improve the low minimum distance of polar codes, the concatenation of polar codes with simple CRC was proposed [2], and it was shown that a simple concatenation scheme of polar code (2048, 1024) with a 16-bit CRC using the SC-List decoding can outperform Turbo and LDPC codes [3][4]. Although Polar codes provide good error-rate performance, the SC and SC-List decoder work in a serial fashion. They decode information bits one-by-one. It is very hard to achieve a high decoding speed or low latency due to this serial decoding. Some work [5][6] has been on reducing the decoding latency of SC decoder of Polar codes by optimizing the hardware design of the SC decoder, and the improvement in the decoding speed is 2 times faster. In this letter, we propose both parallel SC and SC-List decoder to overcome this drawback. This parallel decoder consists of many component decoders which work in
is the encoding bit sequence. The bit indexes
of u1N are divided into two subsets: the one containing the information bits and the other containing the frozen bits. For simplicity, the frozen bits are set “0”. B. Parallel SC Decoder with Two Component Decoders Due to the special structure of F n , Polar code can be expressed as
相关文档
最新文档