有限差分方法24差分方程的相容性收敛性和稳定性
有限差分法

有限差分法finite difference method用差分代替微分,是有限差分法的基本出发点。
是一种微分方程和积分微分方程数值解的方法。
把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
龙格库塔龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
9-5相容性收敛性与稳定性

相容性、收敛性
相容性 如果增量函数(x, y, h) 关于 h 连续且满足条件
(x, y,0) f (x, y)
则称单步法与问题(*)相容,也称问题(**)与(*)相容。
收敛性 如果某种数值方法对任意初值 y0 , x a,b 都有
lim
h0
yn
y(x)
则称该数值方法是收敛的。
x a nh
n1
(1
h
2 h 2
2
)
故改进 Euler 法的绝对稳定区域为
1 h 2h2 1
2
梯形公式旳稳定性
梯形公式用于模型方程则为
yn1
yn
h 2
(
yn
yn1)
1
1
h
2
h
yn
2
故其绝对稳定区域为
1 h
2
1 h
1
2
即
1 h 1 h
2
2
Re(h) 0
因此梯形公式是 A―稳定的。
龙格-库塔法旳稳定性
1.0000 1.0000
1.0000
2.0000 2.5000101 2.5000
4.0000 6.2500102 6.2500
8.0000 1.5625102 1.5626101
1.60001013.9063103 3.9063101
3.20231019.7656104 9.7656101
精确解 y e30 x
作业:P264 1(1),4,13 上机试验
h0
lim (1
h0
ha) h
eax
容易验证 y eax 是初值问题的解。
稳定性
例:考察初值问题
差分方程及其稳定性分析

差分方程及其稳定性分析随着科技的不断发展和应用,数学作为一门基础学科,得到了越来越广泛的应用。
其中,差分方程作为一种离散化的微积分,被广泛地运用于电子、天文、生物、经济等领域中的模型计算和分析。
本文将介绍差分方程的基本概念和常见类型,以及如何对其进行稳定性分析。
一、差分方程的基本概念差分方程是指在内插点上的函数值之间的关系方程,其通常形式为:$$x_{n+1} = f(x_n)$$其中,$x_{n}$ 表示第 $n$ 个内插点的函数值,$f$ 是描述$x$ 的随时间变化关系的任意函数。
当然,差分方程还可以有更多的变量和函数,形式也可以更加复杂。
二、差分方程的类型根据差分方程的形式和特征,可将其分为以下几种类型:1、线性差分方程线性差分方程的一般形式为:$$x_{n+1} = ax_n+b$$其中,$a,b$ 为常数,$x_n$ 为第 $n$ 个内插点的函数值。
线性差分方程的求解可以采用常数变易法、特征方程法、生成函数法等多种方法。
2、非线性差分方程非线性差分方程是指其中的关系函数 $f$ 不是线性函数。
一般来说,非线性差分方程更难于求解。
3、线性递推方程线性递推方程是指卷积和形式的一类差分方程。
其形式为:$$x_{n+k} = a_1x_{n+k-1} + a_2x_{n+k-2} + \cdots + a_kx_n$$其中,$a_1,a_2,\cdots,a_k$ 为常数。
三、稳定性分析差分方程作为一种离散化的微积分,常常代表系统的动态演化过程。
因此,判断差分方程的解在过程中是否保持稳定性非常重要。
下面将介绍两种常见的差分方程稳定性分析方法。
1、线性稳定性分析法线性稳定性分析法是指对线性差分方程的解进行稳定性分析。
对于一般型的线性差分方程:$$\Delta x_{n+1} = a\Delta x_n$$其中,$\Delta x_n = x_{n+1} - x_n$,$a$ 为常数。
通过求解特征方程 $r-1=ar$,求得 $a$ 的值,便可判断差分方程解的稳定性。
有限差分方法(2010-07-19)

椭圆型微分方程的有限差分法 主讲: 谭 林基本思想(步骤):(1) 将求解区域(无限个点)限制在有限个离散点上,一般可通过网格剖分获得。
(2) 在离散点处,将求微分问题(无限计算问题)近似化为求若干(相邻)离散点上函数值的线性组合问题(有限计算问题),一般利用数值微商(分)(不同有限元法)。
形成所谓的差分方程。
(3) 差分方程的适定性、收敛性和稳定性分析。
(4) 差分方程的解法。
下面以两点边值问题为例介绍有限差分法全过程一、常见的有限差分方法 (1) 直接差分法模型问题1:椭圆型方程第一边值问题。
⎪⎩⎪⎨⎧==<<=+-=,)( ,)(a ,22βαb u a u b x f qu dx ud Lu 其中,],[,0)(),(,b a I x q I C f q =≥∈ 模型问题2:⎪⎩⎪⎨⎧==<<=++-=,)( ,)(a ,)(βαb u a u bx f qu dx du r dx du p d d Lu 其中,],[,0)(),(,,,0],[min 1b a I x q I C f q r p p I C p =≥∈>≥∈○1首先对模型问题1 讨论其有限差分方法的基本步骤 ●求解区域的离散化做均匀网格剖分:b x x x a N =<<<=Λ10其中,分点ih x x i +=0剖分步长n ab h -=● 在节点i x 处,对微分方程离散化22()ii x d uqu f x dx -+= )(12 )()(2)(344222211h O dx u d h dx u d h x u x u x u ii i i i +⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+--+有[]112()2()():()()()i i i i i i i u x u x u x Lu qu x hf x R u +--+=-+=+其中2434()()12i ih d u R u O h dx ⎡⎤=-+⎢⎥⎣⎦记u 在节点N k x k )1(0,=数值解为 N k u k )1(0,=, 则有1)1(1 ,2:211-==++--=-+N i f u q hu u u u L i i i i i i i h (*1)比较知)()(:)(u R x f x u L i i i h +=所以[]()()i h i i R u L u x Lu =-表示用差分算子h L 代替微分算子L 产生的误差称之为(局部)截断误差。
偏微(03)相容性收敛性稳定性

−u
n j
改写为 u
n+1 j
Lh 是一个依赖于τ 和h的线性算子 的线性算子
h τ n n n = u j − aλ u j + 1 − u j ↔
+a
u
n j +1
−u
n j
=0
(
)
u
n+1 j
= Lh u
n j
u
= Lh u = u n − aλ u n+1 − u n j j j
n j
定 义 平 移 Iu j = u j Tu j = u j + 1 T −1 u j = u j − 1
∆ − x v ( x , t ) = v ( x , t ) − v ( x − ∆x , t ) .
2.1 有限差分格式的截断误差 中心差分
1 1 δ t v ( x , t ) = v x , t + ∆t − v x , t − ∆t , 2 2 1 1 δ x v ( x , t ) = v x + ∆x , t − v x − ∆x , t . 2 2
T ( x j , t n ) = Su( x j , t n ) − Lu( x j , t n )
不在边界上的任意一点 ( x j , t n )定义截断误差为
T x j , tn =
(
)
u( x j , t n+1 ) − u( x j , t n )
τ
−a
u( x j +1 , t n ) − 2u( x j , t n ) + u( x j −1 , t n ) h2
有限差分法

有限差分法有限差分法finite difference method微分方程和积分微分方程数值解的方法。
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
关于差分格式的构造一般有以下3种方法。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
有限差分法

有 限 差 分 法流体运动的控制方程多为偏微分方程,在复杂的情况下不存在解析解。
但是对于一些简单的情况存在解析解,偏微分方程的解析解可用精确的数学表达式表示,该表达式给出了因变量在整个定义域中的连续变化状况。
有限差分法(Finite Difference Method ,FDM )是数值计算中比较经典的方法,由于其计算格式直观且计算简便,因此被广泛地应用在计算流体力学中。
有限差分法首先将求解区域划分为差分网格,变量信息存储在网格节点上,然后将偏微分方程的导数用差商代替,代入微分方程的边界条件,推导出关于网格节点变量的代数方程组,通过求解代数方程组,获得偏微分方程的近似解。
偏微分方程被包含离散点未知量的代数方程所替代,这个代数方程能求出离散节点处的变量,这种离散方法叫做有限差分法。
2.1有 限 差 分 逼 近2.1.1 有限差分网格 由于有限差分法求解的是网格节点上的未知量值,因此首先介绍有限差分网格。
图2.1 – 1是x-y 平面上的矩形差分网格示意图。
在x 轴方向的网格间距为△x ,在y 轴方向的网格间距为△y ,网格的交点称为节点,计算变量定义在网格节点上。
称△x 和△y 为空间步长,△x 一般不等于△y ,且△x 和△y 也可以不为常数。
取各方向等距离的网格,可以大大简化数学模型推导过程,并且经常会取得更加精确的数值解。
本章作为计算流体力学入门知识,假设沿坐标轴的各个方向网格间距分别相等,但是并不要求各方向的网格间距一致。
例如假设△x 和△y 是定值,但是不要求△x 等于△y 。
在图2.1 - 1中,网格节点在x 方向用i 表示,在y 方向用j 表示。
因此,假如(i ,j )是点P 在图2.1 – 1中的坐标,那么,点P 右边的第一个点的就可以用(i+1,j )表示;在P 左边的第一个点的就可以用(i —1,j )表示;点P 上边的第一个点的就可以用(i ,j+1)表示;点P 下边的第一个点的就可以用(i ,j —1)表示。
差分方程稳定性

(10)
二阶方程的上述结果可以找到n阶线 形方程,即稳定平衡的条件是特征 方程—— n 次代数方程的根 λ i ( i = 1, 2 ,..., n ) 均有 | λ i |< 1 考虑到高阶方程和方程组的相互转化, 这个条件与(5)、(6)给出的结论是 一致的。
最后讨论一阶非线形差分方程
容易看出,可以用变量代换方法将方程 (1)的平衡点的稳定性问题转换为:
x k +1 + ax k = 0
(2)
的平衡点 x * = 0的稳定性问题。
而对于方程(2),因为其解显然可表为
x k = ( a ) k x 0 , k = 1, 2 ,...
所以立即可知当且仅当
(3)
| a |< 1
(4)
时方程(2)的平衡点(从而方程(1)的平衡点) 才是稳定的
顺便指出, 顺便指出,
对于 n 维向量 x ( k ) 和 n × n 常数 矩陈 A 构成的方程组
x(k + 1) + Ax(k ) = 0
λi , (i = 1,2,..., n )均有
(5)
其平衡点稳定的< 1
(12)
(12)是(11)的近似线形方程
x*也是( )的平衡点。 12
关于线形方程(12)的稳定平衡点 的讨论已由(1)——(4)给出
而当 | f / ( x * ) |≠ 1时方程(11)与(12) 平衡点的稳定性相同, 于是得到当
(13) x 时,对于非线形方程(11), * 是稳定的;
| f / ( x * ) |< 1
差分方程的稳定性
本节主要是介绍差分方程稳定性的知识 差分方程的平衡点及其稳定性的慨念与微分方程 的有关概念是一致的 ,例如一阶线形常系数差 分方程: (1) x k +1 + ax k = b , k = 0 ,1,... 的平衡点由 解得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为离散化误差。
定义2:节点 x p , t p 为微分方程求解区域 内任意一点,当
当
n u u 精确解 u ,即 en j j 0 ,则差分方程收敛于微分方程。
x xp , t t p
时,差分方程数值解 u n j 趋近于微分方程
差分方程收敛性有两种证明方法,直接证明法和数值试验法。
•
n
n
当 t , x 0时,上等式右侧所有项都趋近0,差分方程趋近 于原微分方程,即FTCS差分方程和原方程是相容的。
•
①
关于差分方程相容性需要作以下说明:
相容性是对求解区域内任意一点差分方程逼近于微分方程的 程度,相容性是有限差分算法(包括有限体积算法)首先必 须满足的有效性条件。
②
相容性要求对于求解区域内任意点 x j , t n ,在 t , x 同时趋近于0, 截断误差R n 趋近于0。如果 t , x 不是同时趋近于0或并不趋近于0, j 而是趋近于某值,或结论并不是对每个点
2.4.1 相容性(Consistency )
• 差分方程相容性是讨论当 t , x 0 时,差分方程逼近于微分方 程的程度,因此,相容性是讨论差分方程和微分方程的关系。
• 定义:对于一足够光滑函数 u ,若时间步长 t ,空间步长 x n R 趋近于0时,差分方程截断误差 j 对于每一点 x j , t n 都趋近于
计算力学基础
第二章 有限差分方法
2.4 差分方程的相容性、收敛性和稳定性
一个微分方程采用不同的方法可以得到不同的差分方程。那么,
我们要问,对于这些不同的差分方程是否都同样有效,同样可靠,而
且能得到同样的计算结果呢? 答案是否定的。事实上,不同的差分方程和原方程有完全不同的
对应关系,它们具有各自不同的性质,因此,数值结果也完全不同。
一、直接证明法
u u a 0 的FTBS差分格式为: 对流方程 t x
1 n n 0 un (1 r ) u ru , u j j j 1 j ( x j )
(a)
设求解区域内任意一点 x p ,t p ,它的微分方程精确解为u, n n 差分方程解为 u n ,则离散化误差为 e u u j j j ,把差分方 程和微分方程相减可得离散化误差方程:
1 作为t的函数,在 邻域展开成Taylor级数,把 u n t un n j j 1
和 un 作为x的函数,在 x j 邻域展开成Taylor级数: j 1
1 2u 1 3u u n 1 n 2 u j u j t 2 t 3 t 3 (t 4 ) 2 t j 6 t j t j
差分方程收敛性是讨论当 t , x 0 时,差分方程的解和微分
方程的解是否一致性的问题,也就是讨论差分方程的解和微分
方程的解的逼近程度。
n 定义1:差分方程 Lun 的数值解为 ,微分方程的精确 0 u j j n n 解为 u ,它们之间的误差用 en 表示,则 e u u j j 0 称 j
x
j
,t 都成立,则差分方 n
程就不满足相容性条件,差分方程也就不逼近于微分方程。 ③ 相容性条件不仅要求差分方程截断误差R n 趋近于0,而且要求差分方 j 程定解条件截断误差rjn 也同时趋近于0。 ④ 差分格式有两种不同形式的相容性,即无条件相容和有条件相容。
2.4.2 收敛性(Convergence )
在这些差分方程中有些差分方程是有效的、可靠的;些差分方程只有 在一定的条件下是有效的、可靠的;有些差分方程则是完全无效的、 不可靠的。所以,如何判断和分析差分方程有效性和可靠性就成为非 常必要和现实的问题了。 在这一节中我们首先对差分方程有效性的一些基本概念(如相容 性、收敛性、稳定性)作简单介绍,为本章以后各节的分析讨论奠定 基础。
1 u 1 u u n 2 3 4 un u x x 2 3 x (x ) j 1 j 2 x j 6 x j x j
2 3 n n n
n
n
n
1 2u 1 3u u n n 2 u j 1 u j x 2 x 3 x3 (x 4 ) 2 x j 6 x j x j
n
n
n
将 uj
n 1
n n u 和 u 、 j 1 j 1
代入FTCS格式中,即可得到:
u 2u 1 2u 1 3u 2 3 2 t x 2 2 t 2 t 6 t 3 t (t ) (x ) j j
n j
设a≥0, a
t ≤1,则0≤ x
a ≤1,于是有:
t x
e
n 1 j
t n t n 1 a e j a e j 1 O(x, t ) x x t t n 1 a max en a max e j j O( x, t ) j j x x
0,则该差分方程 Lun 逼近微分方程 Lu 0,即差分方程与 j 0 微分方程是相容的。 • 差分方程相容性可以通过Taylor展开方法来证明。例如,扩散方 程的FTCS差分格式为:
1 n un u j j
t
n n un 2 u u j 1 j j 1
x
2
0
• 把
1 n n en (1 r ) e re j j j 1 O(x, t )
(b)
由(b)式可以看出离散化误差方程在形式上和差分方程是完全 相同的,由此可以得到:
e
n 1 j
t n n e a (e j e j 1 ) O(x, t ) x t n t n 1 a e j a e j 1 O(x, t ) x x