常见连续时间信号的频谱资料
信号与系统中的连续时间信号分析

信号与系统中的连续时间信号分析在信号与系统学科中,连续时间信号分析是一项重要的研究领域。
它涉及到对连续时间信号的特性和行为进行深入的研究与分析。
通过对连续时间信号的理解,我们可以更好地理解和应用于实际系统中。
连续时间信号是一种在时间上是连续的信号,与离散信号相对应。
通过对连续时间信号的分析,我们可以研究信号的频谱特性、系统响应以及信号处理等方面的问题。
下面将介绍一些连续时间信号分析的重要概念和方法。
一、连续时间信号的分类在连续时间信号的分析中,我们将信号分为不同的类型,以便更好地理解和处理它们。
常见的连续时间信号类型包括周期信号、非周期信号、能量信号和功率信号。
1. 周期信号周期信号是指信号在时间上具有重复性质的信号。
在数学上,周期信号可以表示为f(t) = f(t ± T),其中T是信号的周期。
周期信号在通信系统中经常出现,例如正弦信号、方波信号等。
2. 非周期信号非周期信号是指无法用周期性来描述的信号。
非周期信号在实际应用中也非常常见,例如脉冲信号、指数信号等。
3. 能量信号能量信号是指信号的总能量有限,即信号在无穷远处的能量为零。
能量信号通常在短时间内集中能量,如方波信号、冲激信号等。
4. 功率信号功率信号是指信号的功率在无穷远处有限,即信号的总功率为有限值。
功率信号通常在长时间内分散能量,如正弦信号等。
二、连续时间信号的频谱分析频谱分析是连续时间信号分析的重要手段,通过对信号的频谱特性进行研究,可以了解信号的频率成分以及频率响应等信息。
1. 傅里叶变换傅里叶变换是一种将信号从时域转换到频域的重要工具。
通过傅里叶变换,我们可以将连续时间信号表示为不同频率分量的叠加。
2. 频谱密度函数频谱密度函数是描述信号功率随频率变化的函数。
通过计算信号的频谱密度函数,我们可以了解信号的频率特性和功率分布等信息。
三、连续时间系统的分析连续时间信号的分析还涉及到对系统的研究和分析。
连续时间系统是通过输入信号产生输出信号的物理系统,例如滤波器、放大器等。
信号与系统PPT-cp3-连续时间信号的频谱

( 0, 2 )内是一个正交函数集
电气工程学院
3.1 用完备正交函数集表示信号
(2)
n 1
n 1
2
0
sin t cos ntdt 0
sin t 在区间( 0, 2 )内与{cos nt }正交。故函数集 cosnt 在区间(0, 2 )内不是完备正交函数集。
即 (3)
2
0
mn
T
2
1
为指数函数的公共周期
当n , e jn1t 为一完备的正交函数集
电气工程学院
3.1 用完备正交函数集表示信号
3)函数集: Sa [ ( t nT )] (其中n 0, 1, 2) T 对于有限带宽信号类来说是一个完备的正交函数集。
ir
ir
2
0
1 sin(i r )t sin(i r )t 2 cosit cosrtdt 0 2 ir ir 0
2
2
0
cosit cosrtdt
0
1 1 1 2 1 sin 2it dt t sin 2it 2 2 2i 0
m, n 为任意整数
mn
t 1T t 1T t1 cosm1t cosn1tdt t1 sinm1t sinn1tdt 0 t 1T t 1T 2 T 2 cos n tdt sin n tdt 1 1 t1 t1 2 2 T 三角函数的公共周期 1
在 (t1 , t2 ) 内构成归一化正交函数集。
电气工程学院
3.1 用完备正交函数集表示信号
正交复变函数集
设
常见连续时间信号的频谱PPT(46张)

6. 单位阶跃信号 u(t)
u(t) 1 {u(t) u(-t)} 1 {u(t) - u(-t)} 1 1 sgn(t)
2
2
22
F[u(t)] πd () 1 j
u(t) 1
t 0
F( j)
(π)
0
( )
π/2
0 -π/2
2022/3/22
阶跃信号及其频谱
10
二、常见周期信号的频谱密度
2
]
0
0 0
-
2 d 2 arctan( ) 2π
2 2
-
2022/3/22
6
一、常见非周期信号的频谱
4. 直流信号f (t)
直流信号及其频谱 1
F ( j)
(2π)
0
t
0
对照冲激、直流时频曲线可看出:
时域持续越宽的信号,其频域的频谱越窄;
时域持续越窄的信号,其频域的频谱越宽。
2022/3/22
傅里叶级数:
dT
(t)
d
n-
(t
-
nT
)
1 T
e
n-
jn0t
F[d T
(t)]
2π
n-
1d
T
(
-
n0
)
0
d
n-
(
-
n0
)
2022/3/22
15
二、常见周期信号的频谱密度
4. 单位冲激串
dT (t) d (t - nT ) n-
F[d T
(t)]
2π
n-
1d
T
(
-
n0
)
0
d (
第三章连续信号的频谱介绍

第三章连续信号的频谱介绍连续信号的频谱是指将连续信号在频域上的表示,它能够展示信号在不同频率上的能量分布情况。
频谱分析是信号处理中的重要内容,能够帮助我们理解信号的特性,并进行信号的分析与处理。
在本章中,我们将详细介绍连续信号的频谱分析方法和相关概念。
1.连续信号的频谱连续信号是指在时间上是连续变化的信号,可以通过连续时间的函数来表示。
在频域上,连续信号可以通过傅里叶变换来表示。
傅里叶变换将信号从时域转换到频域,给出了信号在不同频率上的能量分布情况。
连续信号的频谱是傅里叶变换结果的模值,它反映了信号在不同频率上的能量大小。
2.连续傅里叶变换连续傅里叶变换(CFT)是一种将连续信号从时域转换到频域的方法。
通过对连续信号进行积分运算,可以得到信号的频谱表示。
连续傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-jωt)dt其中,F(ω)表示频率为ω的频谱,f(t)表示时域信号,e^(-jωt)是复指数函数。
通过计算不同频率ω下的复指数函数与信号的积分,可以得到连续信号的频谱。
3.连续信号的频谱性质连续信号的频谱具有以下几个重要性质:-零频率分量:频谱中的零频率分量表示了信号的直流分量,即信号在频域上的平均能量。
它在频谱中通常位于中心位置。
-频谱对称性:如果原始信号是实数信号,则频谱具有共轭对称性,即F(ω)=F*(-ω),其中F*(-ω)表示F(ω)的共轭复数。
-线性性质:信号的线性组合的频谱等于各个信号频谱的线性组合。
-平移性质:将信号在时域上平移,会导致频谱在频域上平移同样的量。
- 抽样定理:如果信号的最高频率为f_max,则抽样频率f_s至少应为2f_max才能完整地恢复信号。
4.频谱分析方法为了获取连续信号的频谱信息,需要进行频谱分析。
-傅里叶变换:利用积分运算将信号从时域转换到频域。
-快速傅里叶变换(FFT):快速傅里叶变换是一种高效的傅里叶变换算法,能够快速计算信号的频谱。
-功率谱密度(PSD):功率谱密度是对信号能量在频域上进行定量描述的方法,可以用于分析信号的频率成分。
第3章 连续信号的频谱——傅里叶变换ppt课件

f( t) 2 E co w 1 t)s 1 3 ( co 3 w 1 ts ) ( 1 5 co 5 w 1 ts ) (
f (t)
E
2
T1
T1
4
4
0
t
E 2
f (t)
2E
cos(w1t)
T1
T1
4
4
0
E 2
只取基 波分量 一项
t
最新课件
24
2E
其 中 基 波 — — 角 频 率 为 1 的 分 量 ; n次 谐 波 — — 角 频 率 为 n 1 的 分 量
最新课件
8
直流分量:a0
1 T1
t0 T1 f (t)dt 1
t0
T1
T1 f (t)dt
0
其中余弦分量幅度:an
2 T1
t0 T1 t0
f
(t) cos(n1t)dt
正弦分量幅奇谐函数信号:若波形沿时间轴平移半个周期并相对于 该轴上下反转,此时波形并不发生变化,即满足:
f (t)f (t T1) 2
a0 0
n为偶,an bn 0
c0 a0 0, cn
n
arctg
bn an
an2+bn2,
1 Fn 2cn
n为奇,an
4 T1
0 w1 3w1
nw 1
w ? 包络线”。
n
周期信号的主要特点:
具 有 离 散 性 、 谐 波 性 、 收 敛 性
0
w1 3w1
nw 1
w
最新课件
13
二、指数形式的傅里叶级数
1、指数形式的傅里叶级数的形式 设f(为 t) 任意周期信 T1,角 号频 ( 1率 周 2T1期 )
常见连续时间信号的频谱

2020/5/31
金品质•高追求
我们让你更放心!
18返回
2
◆语文•选修\中国小说欣赏•(配人教版)◆
傅立叶变换的基本性质
● 线性性质 F [a f1(t) f2 (t)] aF [ f1(t)] F [ f2(t)] ● 位移性质 F [ f (t t0 )] e jt0 F [ f (t)] ● 微分性质 F [ f (n) (t)] ( j)n F [ f (t)]
10返回
◆语文•选修二\中、国小常说见欣赏周•(期配人信教号版)的◆ 频谱密度
1. 虚指数信号 e j0t (- t )
F ( j)
(2π)
由-1 e-jt dt 2πd ()
0 0
虚指数信号频谱密度
得F[e j0t ] - e-j(-0 )t dt 2πd ( - 0 )
同理:
F[e-j0t ] - e-j(0 )t dt 2πd ( 0 )
金品质•高追求
F ( j) 1 a2 2
() - arctan( ) a
我们让你更放心!
2返回
◆语文•选修\一中国、小常说欣见赏非•(配周人期教版信)◆号的频谱
1. 单边指数信号
F ( j) 1 a2 2
f (t) e -at u(t),a 0,
() - arctan( ) a
单边指数信号及其幅度频谱与相位频谱
1 a
-
-j x
f (x)e a dx
1
F(j)
aa
时域压缩,则频域展宽;展宽时域,则频域压缩。
2020/5/31
金品质•高追求
我们让你更放心!
25返回
8
◆语文•选修\中国小说欣4赏.•(展配人缩教特版)性◆
常见连续时间信号的频谱

19
1. 线性特性
若f1 (t) F F1 ( j); f 2 (t) F F2 ( j), 则af1 (t) bf 2 (t) F aF1 ( j) bF2 ( j) 其中a和b均为常数。
2020/2/29
20
3
2. 共轭对称特性
若 f (t) F F ( j)
1
F( j)
(π)
(π)
t -0
0
0
余弦信号及其频谱函数
2020/2/29
12
二、常见周期信号的频谱密度
2. 正弦型信号
sin 0t
1 (e j0t 2j
- e-j0t ) F - jπ[d (
- 0 ) - d (
0 )]
sin 0t 1
2020/2/29
(t)]
2π
n-
1d
T
(
-
n0
)
0
d (
n-
-
n0 )
dT (t)
单位冲激串
(1)
及其频谱函数
F[dT (t)] (0 )
2020/2/29 - T 0 T
t
-0 0 0
16
4.3、功率谱密度的性质
● 利用已知的基本公式和Fourier变换的性质等
dT
(t)
d
n-
(t
-
nT
)
1 T
e
n-
jn0t
F[d T
(t)]
2π
n-
1d
T
(
-
连续时间系统的频谱分析教材(PPT47张)

( f t F j ) m m
抽样脉冲
p t P j
n
p ( t ) ( t ) ( t nT ) ( n ) ) T s s s s ( S
( t ) f ( t ) ( t ) f ( nT ) ( t nT ) 还保留原信 时域抽样过程: f s T s s
c
c
O
1 e H j 0
j t 0
1 c j H c 0 c 即 c t 0
● c 为截止频率,称为理想低通滤波器的通频带,简 称 频带 在 0 ~ ● 的低频段内,传输信号无失真 ( 只有时移t0) 。 c
1 1 1 j c j ( t t ) t t 0 0 c 1 e d e c c 2 π 2 π j t t 0
1 1 1j t t j t t c 0 c 0 e e 2 π t t j 0
X
第
一.引言
( t ) y ( t ) y ( t ) 连续系统的时域分析法: y zi zs
线性叠加求 h ( t ) y ( t )f( t ) h ( t ) zs
3 页
ˆ yzs (t)的求解 : 信号的分解 ( t ) 的线性组合 求 h ( t )
理论基础:线性和时不变性 信号的频域分析法:(与时域分析区别?)
●线性系统的失真——幅度,相位变化,不产生新的频
率成分; ●非线性系统产生非线性失真——产生新的频率成分。 对系统的不同用途有不同的要求: ●无失真传输;●利用失真波形变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F[sgn(t)] lim F[sgn(t)e- t ] 0
2
j
2020/9/14
8
一、常见非周期信号的频谱
5. 符号函数信号
-1 t 0 sgn(t) 0 t 0
1 t 0
F( j)
( )
π/2
0
0
-π/2
符号函数的幅度频谱和相位频谱
2020/9/14
9
一、常见非周期信号的频谱
f (t) e -at u(t),a 0,
() - arctan( ) a
单边指数信号及其幅度频谱与相位频谱
f (t)
F(j)( )ຫໍສະໝຸດ 11/aπ/2
t 0 2020/9/14
0
0
-π/2
3
一、常见非周期信号的频谱
2. 双边指数信号 e-a|t|
F(j) 20 f (t) costdt 20 e-at costdt
2
]
0
0 0
-
2 d 2 arctan( ) 2π
2 2
-
2020/9/14
6
一、常见非周期信号的频谱
4. 直流信号f (t)
直流信号及其频谱 1
F ( j)
(2π)
0
t
0
对照冲激、直流时频曲线可看出:
时域持续越宽的信号,其频域的频谱越窄;
时域持续越窄的信号,其频域的频谱越宽。
2020/9/14
1. 虚指数信号 e j0t (- t )
F ( j)
(2π)
由-1 e-jt dt 2πd ()
0 0
虚指数信号频谱密度
得F[e j0t ] - e-j(-0 )t dt 2πd ( - 0 )
同理:
F[e-j0t ] - e-j(0 )t dt 2πd ( 0 )
2020/9/14
F( j) - f (t)e-jt dt 0 e-at e-jt dt
e -(a j)t
1
- (a j) 0 a j
➢ 幅度频谱为
F ( j) 1 a2 2
➢ 相位频谱为
() - arctan( ) a
2020/9/14
2
一、常见非周期信号的频谱
1. 单边指数信号
F ( j) 1 a2 2
11
二、常见周期信号的频谱密度
2. 正弦型信号
cos0t
1 (e j0t 2
e-j0t ) F π[d (
- 0 ) d (
0 )]
cos 0t
1
F( j)
(π)
(π)
t -0
0
0
余弦信号及其频谱函数
2020/9/14
12
二、常见周期信号的频谱密度
2. 正弦型信号
sin 0t
1 (e j0t 2j
7
一、常见非周期信号的频谱
5. 符号函数信号
符号函数定义为
-1 t 0 sgn(t) 0 t 0
1 t 0
F[sgn(t)e-
t
]
0
-
(-1)et
e- jt
dt
0
e-t e- jt dt
- e( - j)t 0
- e -( j)t - 1
1
- j
j - j j
t -
t 0
dT (t)
单位冲激串
(1)
及其频谱函数
F[dT (t)] (0 )
2020/9/14 - T 0 T
t
-0 0 0
16
4.3、功率谱密度的性质
● 利用已知的基本公式和Fourier变换的性质等
RX ( )
GX ()
2020/9/14
17
傅立叶变换的基本性质
1. 线性特性 2. 共轭对称特性 3. 对称互易特性 4. 展缩特性 5. 时移特性 6. 频移特性
F[ fT (t)] F( j) F[
Cn
e
jn0t
]
Cn
F[e jn0t
]
n-
n-
F[ fT (t)] 2π Cnd ( - n0 )
n-
2020/9/14
14
二、常见周期信号的频谱密度
4. 单位冲激串
dT (t) d (t - nT ) n-
因为dT (t)为周期信号,先将其展开为指数形式
(1)
1
t 0
0
单位冲激信号及其频谱
2020/9/14
5
一、常见非周期信号的频谱
4. 直流信号f(t)=1,-<t<
直流信号不满足绝对可积条件,可采用极限的
方法求出其傅里叶变换。
F[1] lim F[1 e-| t| ]
0
lim[ 2 ] 0 2 2
2πd ()
lim [
0
2 2
7. 时域卷积特性 8. 频域卷积特性 9. 时域微分特性 10. 积分特性 11. 频域微分特性
2020/9/14
18
2
傅立叶变换的基本性质
● 线性性质 ● 位移性质
[a f1(t) f2 (t)] a [ f1(t)] [ f2(t)]
[ f (t t0 )] e jt0 [ f (t)]
傅里叶级数:
dT
(t)
d
n-
(t
-
nT
)
1 T
e
n-
jn0t
F[d T
(t)]
2π
n-
1d
T
(
-
n0
)
0
d
n-
(
-
n0
)
2020/9/14
15
二、常见周期信号的频谱密度
4. 单位冲激串
dT (t) d (t - nT ) n-
F[d T
(t)]
2π
n-
1d
T
(
-
n0
)
0
d (
n-
-
n0 )
- e-j0t ) F - jπ[d (
- 0 ) - d (
0 )]
sin 0t 1
2020/9/14
F ( j )
(π)
t
-0 0
(π)
0
正弦信号及其频谱函数
( ) π/2
0
-π/2
13
二、常见周期信号的频谱密度
3. 一般周期信号
fT (t)
Cn
e
jn0t
n-
(0
2π ) T
两边同取傅里叶变换
2e-at ( sin t - a cos t) 2a
a2 2
0 a2 2
➢ 幅度频谱为 ➢ 相位频谱为
F( j) 2a a2 2
() 0
2020/9/14
4
一、常见非周期信号的频谱
3. 单位冲激信号d(t)
F[d
(t)]
-
f (t)e-jt dt
-
d
(t)e
-
jt
dt
1
d (t)
F ( j)
常见连续时间信号的频谱
2020/9/14
常见非周期信号的频谱(频谱密度)
单边指数信号
双边指数信号e-a|t|
单位冲激信号d(t)
直流信号
符号函数信号
单位阶跃信号u(t) 常见周期信号的频谱密度
这些都应当是 已知的基本公式
虚指数信号
正弦型信号
单位冲激串 1
一、常见非周期信号的频谱
1. 单边指数信号
f (t) e -at u(t),a 0,
6. 单位阶跃信号 u(t)
u(t) 1 {u(t) u(-t)} 1 {u(t) - u(-t)} 1 1 sgn(t)
2
2
22
F[u(t)] πd () 1 j
u(t) 1
t 0
F( j)
(π)
0
( )
π/2
0 -π/2
2020/9/14
阶跃信号及其频谱
10
二、常见周期信号的频谱密度