第三章傅里叶变换汇总
第三章――傅里叶变换周期信号的傅里叶级数分析

第三章 傅里叶变换3.1周期信号的傅里叶级数分析(一) 三角函数形式的傅里叶级数满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若()f t 的周期为1T ,角频率112T πω=,频率111f T =,傅里叶级数展开表达式为()()()0111cos sin n n n f t a a n t b n t ωω∞==++⎡⎤⎣⎦∑各谐波成分的幅度值按下式计算()0101t T t a f t dt T +=⎰()()0112cos t T n t a f t n t dt T ω+=⎰()()01012sin t T n t b f t n t dt T ω+=⎰其中1,2,n =⋅⋅⋅狄利赫里条件:(1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00t T t f t dt +⎰等于有限值。
(二) 指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即()()11jn tnn f t F n eωω∞=-∞=∑其中()011011t T jn tn t F f t e dt T ω+-=⎰ 其中n 为从-∞到+∞的整数。
(三) 函数的对称性与傅里叶系数的关系(1) 偶函数由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则()()01112sin 0t T n t b f t n t dt T ω+==⎰所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(2) 奇函数由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则()0100110t T t a f t dt T +==⎰()()010112cos 0t T n t a f t n t dt T ω+==⎰ 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3) 奇谐函数(()12T f t f t ⎛⎫=-+ ⎪⎝⎭)半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。
信号与系统第三章:傅里叶变换

bn
n1
sin(n1t)
其中
an
,
bn
称为傅里叶系数,
1
2
T
。
16
傅里叶系数如何求得
Ci
t2 t1
f
(t
)
i
(t
)dt
t2
t1
i
2
(
t
)dt
1 Ki
t2 t1
f
(t
)
i
(t
)dt
式中: Ki
t2
t1
i
2
(t
)dt
an
2 T
T
2 T
f (t) cos(n1t)dt
2
a0 2
,
1 T
0 T
2
(1)
cos(n1t
)dt
2 T
T
2 0
cos(n1t
)dt
23
0
T
1
n1
2 T
sin(n1t
)
T 2
2 T
1
n1
sin(n1t
)
2 0
1
2
T
an
0
n 0,1, 2,3,L
24
bn
2 T
T
2 T
f (t) sin(n1t)dt
2
2 T
0 T
2
(1)
sin(n1t
)dt
2 T
T
2 0
26
T
T
0
T/ 2
t
0
T/ 2
t
(a)基波
(b)基波+三次谐波
0
T/ 2
Tt
第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n
x( n)e jnw
X (z)
n
x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n
x ( n) z n
n
x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T
时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t
时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )
T T
X (e jT )e jnT d
取样定理
n
x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8
第3章 连续信号的频谱——傅里叶变换

• 直到19世纪末,制造出电容器。20世纪初,谐振电路、滤波
器、正弦振荡器等一系列问题的解决为正弦函数与傅里叶分 析的在通信系统中的应用开辟了广阔的前景。 • 从此,在通信与控制系统的理论研究和实际应用之中,采用 频率域(频域)的分析方法比经典的时间域(时域)方法有 许多突出的优点。 • 当今,傅里叶分析方法已成为信号分析与系统设计不可缺少 的重要工具。 • 20世纪70年代,出现的各种二值正交函数(沃尔什函数), 它对通信、数字信号处理等技术领域的研究提供了多种途径 和手段。使人们认识到傅里叶分析不是信息科学与技术领域 中唯一的变换域方法。
nw1 nw1
0
w
nw1
w1 0 w1
nw1
w
正、负频率相应项成对合并,才是实际频谱函数。
4.周期信号的功率特性
—时域和频域能量守恒定理
周期信号的平均功率P:在一个周期内求平方再求积分。
1 t0 T1 2 f (t )dt P f (t ) t T1 0 1 1 2 2 2 2 2 a0 ( an bn ) c0 cn 2 n 1 2 n 1
其傅里叶级数三角展开式中 仅含基波和奇次谐波
例子
例如:奇谐函数
f (t )
E 2
T1 2
f (t )
E 2
T 1 2
0
E 2
T1 2
t
0
E 2
T1 2
t
sin( w1t )
E 2
f (t )
E 2
T1 2 T 1 2 T1 2
f (t )
0
E 2
t
0
E 2
T1 2
傅里叶变换知识点总结

傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。
一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。
它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。
2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。
(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。
(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。
二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。
对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。
2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。
(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。
(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。
3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。
三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。
2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。
第三章 傅里叶变换

P=a
2 0
1 2
n 1
an2 bn2
c02
1 2
cn2
n 1
n
Fn
2
;
3、一个特别的性质: e jn e jn
3.1.3 函数的对称性与傅里叶系数的关系
1、波形对称分类:(1)、整周期对称,例如偶函数和奇函数,其可决定级数中只可能含有余弦项或正弦项;(2)半 周期对称,例如奇谐函数,其可决定级数中只可能含有偶次项或奇次项。 2、对称条件: (1)、偶函数:若信号波形相对于纵轴是对称的,即满足 f(t)=f(-t),此时 f(t)是偶函数,偶函数的 Fn 为实数。在偶函 数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。 (2)奇函数:若波形相对于纵坐标是反对称的,即满足 f(t)=-f(-t),此时 f(t)是奇函数,奇函数的 Fn 为虚数。在奇函数 的傅里叶级数中不会含有余弦项,只可能含有正弦项。虽然在奇函数上加以直流成分,它不再是奇函数,但在它的 级数中仍然不会含有余弦项。 (3)寄谐函数:若波形沿时间轴平移半个周期并相对于该轴上下翻转,此时波形并不发生变化,即满足:
n2 1 2
) cos n1t
基波和偶次谐波频率分量。谐波幅度以 1 规律收敛。 n2
其中1
=
2 T1
;其频谱只包含直流、
3.2.5 周期全波余弦信号
1、周期全波余弦信号的傅里叶级数为:
f
(t)
2E
4E 3
cos(1t)
4E 15
cos(21t)
4E 35
cos(31t)
2E
4E
1n 1
第三章 傅里叶变换
傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的;
信号与系统第3章 傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2
得
2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1
信号与系统复习资料第3章离散傅立叶变换(DFT)

1 2
1 e 12
j 2 ( k 11)
1 e 12
B
Ak
6, 6,
1k 21 k 6 101
…11…22…rr…
10 0
11 0
B 0, 0其 0它 的…k… x(n) Xc(oks)6 n 6 0 ……
0 0
6 6, k 112r 6X~(k) 6, k 1112r
NT
T0
1 f0
T0 2 f0
N
1
fs
时域离散化==>频域周期化
时域周期化==>频域离散化
N NΩ0
NT0 fs s T f0 0
-7-
§3.3 离散傅里叶级数DFS
( Discrete Fourier Series )
连续周期信号:
~xa(t) ~xa(t kT0) 基频:0 2/T0
x2 m … 5 4 3 2 1 0 5 4 3 2 1 0 … 10
x2 1m … 0 5 4 3 2 1 0 5 4 3 2 1 … 8 x2 2m … 1 0 5 4 3 2 1 0 5 4 3 2 … 6 x2 3m … 2 1 0 5 4 3 2 1 0 5 4 3 … 10
n 0
n 0
x ( n ) I D F S [ X ( k ) ] N 1 N k 0 1 X ( k ) e j2 N n k N 1 N k 0 1 X ( k ) W N n k
其中:
WN
j 2
e N
-9-
X k 与 z 变 换 的 关 系 :
x (n ) x (n )R N (n )
x(n) x(nrN)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P f 2 (t) 1 t0 T1 f 2 (t)dt
a02
12T1n1t0(an2
bn2 )
c02
1 2
n1
cn2
Fn 2
帕塞瓦尔定理
n
任意周期信号f(t)的平均功率P等于其傅里叶级数展开
式中各谐波分量有效值的平方和
三、函数的对称性与傅里叶系数的关系 1. 函数的对称性
要将信号f(t)展开为傅里叶级数,如果f(t) 是实函数,且它波形满足某种对称性,则在其 傅里叶级数中有些项为0,留下的各项系数的 表示式也比较简单。
nw1
Fn
c0
1
2
c1 1
2 c2
w1 0 w1
幅度谱与相位谱合并
n
nw1
0
nw1
w
Fn
c0
1
2
c1 1
2 c2
nw1
w1 0 w1
nw1
w
nw1
w
正、负频率相应项成对合并,才是实际频谱函数。
4. 周期信号的功率特性 —时域和频域能量守恒定理
周期信号的平均功率P: 在一个周期内求平方再求积分。
t在一个周期内,n=0,1,...
由积分可知
T
2 T
cosn1t
sinm1
t
0
2
T 2 T 2
cosn1t
cosm1t
T , 2 0,
mn mn
T 2 T 2
sinn1t
sinm1t
T , 2 0,
mn mn
3、傅里叶级数展开的充分条件
傅里叶级数存在的充分条件: 周期信号f(t)须满足“狄利克雷”(Dirichlet)条件,即
基波、谐波概念
通常把频率为:f1源自T12 1频率为:
2 2 f1 2T1 2 1
频率为:
3
f1
3T1
3
2 1
称为基波。 称为二次谐波。 称为三次谐波。
可见,直流分量的大小以及基波与各次谐波的 幅度、相位取决于周期信号的波形。
说明:三角函数集是一组完备函数集。
cosn1t , sinn1t 是一个完备的正交函数集
波形对称性有两类: (1)对整周期对称。即偶函数和奇函数。 (2)对半周期对称。即奇谐函数、偶谐函数。
2. 傅里叶级数的系数求解
1)偶函数信号:an
4 T1
T1
2 0
f (t) cos(n1t)dt
f (t) f (t) bn 0
cn an ,
Fn
Fn
an 2
n 0
2)奇函数信号: a0 0,an 0
其傅里叶级数表达式为:
f
(t)
E
s in( w1t )
1 2
s in(2w1t )
1 3
s in(3w1t )
(3)奇谐函数信号(半波对称函数)
奇谐函数信号:若波形沿时间轴平移半个周期
并相对于该轴上下反转,此时波形并不发生变
化,即满足:
f (t) f (t T1 ) 2
a 0 0
n为偶,an bn 0
n为奇,an
4 T1
T1
2 0
f (t) cos(n1t)dt
bn
4 T1
T1
2 0
f (t) sin(n1t)dt
例子 奇谐函数
f (t) f (t)
E
E 2
4E
2
cos( 1t
)
1 9
cos(
31t
)
1 25
cos( 51t
)
讨论:离散性、收敛性、谐波性
3、 频谱的初步知识——三角波频谱
f ( t ) c0 cn cosn1t n
n1
单边频谱图:cn ~ n1 信号的幅度谱
cn
n ~ n1 信号的相位谱
c0
c1 c2
其中各频谱分量幅度称为
an jbn
Fn
Fn
e jn
1 2 (an
jbn )
其中 Fn
1 2
a2 n
b2 n
1 2 cn
n n (三角函数形式)
例如:周期三角波信号
f (t)
E
T1 0
T1
t
2
2
偶函数其傅里叶级数三角展开式中仅含直流项和 余弦项,指数展开式中 F(n1) 为实函数。 其傅里叶级数表达式为:
f(t
)
c3
“谱线”;连各谱线顶点的
0 w1 3w1
nw1
n
曲线称为“包络线”
w
周期信号的主要特点:
离散性、谐波性、收敛性
0
w1 3w1
nw1
w
3. 指数形式表示的信号频谱--复数频谱
Fn一般是复函数,所以称这种频谱为复数频谱。
双边频谱图:Fn ~ n1 复函数幅度谱, n ~ n1 复函数相位谱
具有离散性、谐波性、收敛性 (负频率的结果仅是数学处理)
f (t) -f (t)
bn
4 T1
T1
2 0
f (t) sin(n1t)dt
c0
a0
0,
cn
bn ,
Fn
Fn
1 2 j bn
n 90o
例如:周期锯齿波信号是一奇函数
f (t)
E 2
T1 2
T1 0
2 E
2
其傅里叶级数三角展开式中
仅含正弦项,
其傅里叶级数指数展开式中
t
F (n1)为纯虚函数。
1 T1
t0 T1 f (t)dt 1
t0
T1
T1 f (t)dt
0
其中余弦分量幅度:an
2 T1
t0 T1 t0
f
(t) cos(n1t)dt
正弦分量幅度:bn
2 T1
t0 T1 t0
f
(t) sin(n1t)dt
n 1, 2,...
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
一周期内仅有限个间断点; 一周期内仅有限个极值;
一周期内绝对可积,tt00 T1 f (t) dt
通常所遇到的周期性信号都能满足此条件,因此, 以后除非特殊需要,一般不再考虑这一条件。
二、指数形式的傅里叶级数
1、指数形式的傅里叶级数的形式
设f(t)为任意周期信号(周期
T1 , 角频率 1
2
T1
)
则其可展开为指数形式的傅里叶级数
e f (t)
F (n1) jn1t
n
2 指数形式的傅里叶级数中各个量之间的关系
e 复函数:F(n1) 记 Fn
其中
n ~
1 T1
t0 T1 f (t)
t0
jn1tdt
直流分量:F0 c0 a0
e 当n 0时,Fn Fn
jn 1 2
T1 2
2 傅里叶级数的另一种三角函数形式 f(t)展开为常用形式
f (t) c0 cn cos(n1t n ) 或 n1
f (t) d0 dn sin(n1t n ) n1
c0 d0 a0
其中cn dn
a2 b2
n
n
n
arctg
bn an
,
n
arctg
an bn
说明:基波、谐波概念
第三章 傅里叶变换
第二节 周期信号的傅里叶级数分析
一、三角函数形式的傅里叶级数 1、一种三角函数形式的傅里叶级数
设f(t)为任意周期信号(周期
T1 , 角频率 1
2
T1
)
则其可展开为三角函数形式的傅里叶级数
f (t) a0 an cos(n1t) bn sin(n1t) n1
直流分量:a0