第3章 傅里叶变换

合集下载

第三章傅里叶变换的性质.ppt

第三章傅里叶变换的性质.ppt


0
f (t)奇函数:X ()

f (t)sin tdt 2

f (t)sin tdt

0
X () 0
R() 0
可见,R()=R(- )为偶函数; X()= -X(- )为奇函数; 若 f (t)是实偶函数,F(j )=R() 必为实偶函数。 若 f (t)是实奇函数,F(j )=jX() 必为虚奇函数。

1 T

(t

T
)
F( j)
T
根据时域微分特性:
( j)2 F ( j) 1 e jT 2 1 e jT ,
0 2
T
TT
T

F(
j )

2
2T
(1
cosT )

4
2T
sin
2 (T
2
)

TSa2 (T
2
)
第三章第1讲

12
频域微分和积分特性
公式:
( jt)n f (t) F (n) ( j) f (0) (t) 1 f (t) F (1) ( j)
表明信号过延程时都了是t0在秒频并谱不搬会移改的变基其础频上谱完的成幅的度。,但是 使其相位变化了 - t0
频移特性: f (t)e j0 t F[ j( 0 )]
表明信号 f (t)乘以 e j0 t,等效于其频谱 F(j)沿频率右移 0
因为: cos 0 t

1 2
(e
j0 t

e
j0 t
)
sin
0t

1 2j
(e
j0 t

数字信号第三章 离散傅里叶变换

数字信号第三章  离散傅里叶变换

第三章离散傅里叶变换DFT: Discrete Fourier Transform第三章学习目标z理解傅里叶变换的几种形式z掌握离散傅里叶变换(DFT)及性质,圆周移位、共轭对称性,掌握圆周卷积、线性卷积及两者之间的关系z掌握频域抽样理论z掌握DFT的应用引言DFT要解决两个问题:一是频谱的离散化;二是算法的快速计算(FFT)。

这两个问题都是为了使计算机能够实时处理信号。

Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换可以得出一般的规律:一个域的离散对应另一个域的周期延拓;一个域的连续必定对应另一个域的非周期。

−jwndw e jwn 时域离散、非周期频域连续、周期z 时域周期化→频域离散化z 时域离散化→频域周期化离散连续周期性非周期性引言Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换离散时间、离散频率—周期序列的傅里叶级数由DTFT到DFS离散时间、离散频率的傅立叶级数(DFS)由上述分析可知,对DTFT,要想在频域上离散化,那么在时域上必须作周期延拓。

对长度为M的有限长序列x(n),以N为周期延拓(N≥M)。

注意:周期序列的离散傅里叶级数(DFS)只对有限长序列作周期延拓或周期序列成立。

……四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期(T0)非周期和离散(Ω=2π/T)离散(T)和非周期周期(Ωs=2π/T)和连续离散(T)和周期(T0)周期(Ωs=2π/T)和离散(Ω=2π/T)在进行DFS 分析时,时域、频域序列都是无限长的周期序列周期序列实际上只有有限个序列值有意义长度为N 的有限长序列可以看成周期为N 的周期序列的一个周期(主值序列)借助DFS 变换对,取时域、频域的主值序列可以得到一个新的变换—DFT ,即有限长序列的离散傅里叶变换3.1 离散傅里叶变换(DFT )的定义及物理意义——有限长序列的离散频域表示x(n)的N 点DFT 是¾x(n)的z 变换在单位圆上的N 点等间隔抽样;¾x(n)的DTFT 在区间[0,2π)上的N 点等间隔抽样。

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n

x( n)e jnw
X (z)
n


x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n


x ( n) z n
n


x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T

时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t

时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )



T T
X (e jT )e jnT d
取样定理
n

x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8

信号与系统3.7.8傅里叶变换的基本性质

信号与系统3.7.8傅里叶变换的基本性质
2.若f(t)是虚函数 令f(t)=jg(t),则:
R()= g(t)sin (t)dt -
X ()= g(t) cos (t)dt -
在这种情况下,R()为奇函数,X()为偶函数,即满足: R()=-R(-) X()=X(-)
而 F() 仍是偶函数,()是奇函数。
第3章 傅里叶变换
此外,无论f(t)为实函数或复函数,都具有以下性质
所以
[F(t)]=2 f(-)
若f(t)是偶函数,式(3 50)变成
[F(t)]=2 f()
(3 50) (3 51)
第3章 傅里叶变换
第3章 傅里叶变换
(二) 线性(叠加性)
若 [fi (t)]=Fi () (i=1,2,...,n),则
n
n
[ aifi (t)]= aiFi ()
i=1
f(at)e dt
令x=at
当a 0
[f(at)]= 1
f(x)e
j x a
dx=
1
F(
)
a
aa
第3章 傅里叶变换
当a 0
[f(at)]= 1

f(x)e
j
x a
dx
a +
=- 1
f(x)e
j
x
a dx=- 1
F(
)
a
aa
综合上述两种情况,便可得到尺度变换特性表达式为
[f(at)]= 1 F( )


在这种情况下,显然
R
X
()= -
()=-
f(t) cos (t)dt
f(t) sin (t)dt

(3-54)
第3章 傅里叶变换

第3章离散时间傅里叶变换

第3章离散时间傅里叶变换

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。

与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。

本章将介绍离散时间系统的频域分析方法。

3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。

若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。

[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。

即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0


t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n

jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2

T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)

第3章 连续信号的频谱——傅里叶变换


• 直到19世纪末,制造出电容器。20世纪初,谐振电路、滤波
器、正弦振荡器等一系列问题的解决为正弦函数与傅里叶分 析的在通信系统中的应用开辟了广阔的前景。 • 从此,在通信与控制系统的理论研究和实际应用之中,采用 频率域(频域)的分析方法比经典的时间域(时域)方法有 许多突出的优点。 • 当今,傅里叶分析方法已成为信号分析与系统设计不可缺少 的重要工具。 • 20世纪70年代,出现的各种二值正交函数(沃尔什函数), 它对通信、数字信号处理等技术领域的研究提供了多种途径 和手段。使人们认识到傅里叶分析不是信息科学与技术领域 中唯一的变换域方法。
nw1 nw1

0
w
nw1
w1 0 w1
nw1
w
正、负频率相应项成对合并,才是实际频谱函数。
4.周期信号的功率特性
—时域和频域能量守恒定理
周期信号的平均功率P:在一个周期内求平方再求积分。
1 t0 T1 2 f (t )dt P f (t ) t T1 0 1 1 2 2 2 2 2 a0 ( an bn ) c0 cn 2 n 1 2 n 1
其傅里叶级数三角展开式中 仅含基波和奇次谐波
例子
例如:奇谐函数
f (t )
E 2
T1 2
f (t )
E 2
T 1 2
0
E 2
T1 2
t
0
E 2
T1 2
t
sin( w1t )
E 2
f (t )
E 2
T1 2 T 1 2 T1 2
f (t )
0
E 2
t

0
E 2
T1 2

033第三章 傅里叶变换


T 0
f
2(t)d t
a02
1 2 n1
an2
bn2
a02
1 2
cn2
n1
Fn
n
2
这是帕塞瓦尔定理在傅里叶级数情况下的具体体现; 表明:
周期信号平均功率=直流、基波及各次谐波分量 有效值的平方和;
也就是说,时域和频域的能量是守恒的。 Fn 2 ~ 绘成的线状图形,表示 各次谐波的平均功率 随频率分布的情况,称为功率谱系数。
第三章 傅里叶变换
3.1 引言
X
频域分析
第 2

频域分析将时间变量变换成频率变量,揭示了信 号内在的频率特性以及信号时间特性与其频率特性之 间的密切关系,从而导出了信号的频谱、带宽以及滤 波、调制和频分复用等重要概念。
从本章开始由时域转入变换域分析,首先讨论傅里 叶变换。傅里叶变换是在傅里叶级数正交函数展开的基 础上发展而产生的,这方面的问题也称为傅里叶分析 (频域分析)。将信号进行正交分解,即分解为三角函 数或复指数函数的组合。
第第 2222
页页
偶函数 奇函数 奇谐函数 偶谐函数
注:指交流分量
X
第第
1.偶函数
2233
页页
信号波形相对于纵轴是对称的
f (t) f (t)
f (t) E
bn 0
4
an T
T
2 0
f (t)cosn1t d t
0
F
n
F (n1 )
1 2
an
jbn
1 2
an
T
O
n 0
T
t
傅里叶级数中不含正弦项,只含直流项和余弦项。
n
Fn1

信号课件第三章傅里叶变换

• 从本章起,我们由时域分析进入频域分析,在频域分析中, 首先讨论周期信号的傅里叶级数,然后讨论非周期信号的 傅里叶变换。傅里叶变换是在傅里叶级数的基础上发展而 产生的,这方面的问题统称为傅里叶分析。
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1

第三章 傅里叶变换


P=a
2 0
1 2
n 1
an2 bn2
c02
1 2
cn2
n 1
n
Fn
2

3、一个特别的性质: e jn e jn
3.1.3 函数的对称性与傅里叶系数的关系
1、波形对称分类:(1)、整周期对称,例如偶函数和奇函数,其可决定级数中只可能含有余弦项或正弦项;(2)半 周期对称,例如奇谐函数,其可决定级数中只可能含有偶次项或奇次项。 2、对称条件: (1)、偶函数:若信号波形相对于纵轴是对称的,即满足 f(t)=f(-t),此时 f(t)是偶函数,偶函数的 Fn 为实数。在偶函 数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。 (2)奇函数:若波形相对于纵坐标是反对称的,即满足 f(t)=-f(-t),此时 f(t)是奇函数,奇函数的 Fn 为虚数。在奇函数 的傅里叶级数中不会含有余弦项,只可能含有正弦项。虽然在奇函数上加以直流成分,它不再是奇函数,但在它的 级数中仍然不会含有余弦项。 (3)寄谐函数:若波形沿时间轴平移半个周期并相对于该轴上下翻转,此时波形并不发生变化,即满足:
n2 1 2
) cos n1t
基波和偶次谐波频率分量。谐波幅度以 1 规律收敛。 n2
其中1
=
2 T1
;其频谱只包含直流、
3.2.5 周期全波余弦信号
1、周期全波余弦信号的傅里叶级数为:
f
(t)
2E
4E 3
cos(1t)
4E 15
cos(21t)
4E 35
cos(31t)
2E
4E
1n 1
第三章 傅里叶变换
傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
[ f (at t0)]
1 a
j t0
F( )e a a
F
[ f (t0 at)]
1 a
F
(
)e
j
t0 a
a
七、 微分和积分特性 1、时域微分特性
若 F() F [ f (t)]
则 F [df (t)] jF(),
dt
F
[ d n f (t)] ( j)n F()
dt n
例如:由于 F[ (t)] 1 所以 F[ ' (t)] j ; F[ (n) (t)] ( j)n
E f (t)
F ()
E
/ 2 / 2
t
f (2t) E
/ 4 / 4 t
4 2 2 4
1
F( ) 22
E / 2
8
4
4
8
f (t)
E
0
t
2
2
f ( t 2)
E
0
t
F () E
4 2
2 4
F()
2E
2 2
尺度变换的仿真波形及频谱
综合时移特性和尺度变换特性,可以证明以下两式:
f (t)
eat 1
e at
t
f1(t) f (t)sgn( t)
sgn(t) 1
1
t
1 f1(t) eat
t
eat
1
F( j) 2
() 2
2
0 0
F( j)
( ) 2
2
3.6 冲激函数和阶跃函数的傅里叶变换 一、冲激函数
1/ f1(t)
0
/ 2 / 2 t
1
F1
(
若 f(t) 为实偶函数, 则 F( j) R() R()
对称性为: F [R(t)] 2f ()
例如:
f (t) (t) (1)
F(jω)=R(ω)=1
1
0
t
0
ω
R(t)=1 1
2πf(ω) (2π)
0
t
0
ω
又如:
E f (t)
/ 2 / 2 t
R(t)
E
4 2 2 4
t
F( j) R() E
三、矩形脉冲信号
E f (t)
0
t
2
t
2
F ( j) E Sa( )
2
E f (t)
/2 /2 t
F( j) E
4
2
2
4
F( j) E
4
2
2
4
( )
4 2
2 4
F ( j) E
4 2 2 4
四、符号函数
1 t 0 sgn(t) 1 t 0
时移的仿真波形及频谱图
五、频移特性(调制定理)
若 F() F [ f (t)]
则 F [ f (t) ej 0t ] F 0
g(t)
s(t)
c(t)
调幅的一般模型
g (t ) c(t ) s (t )
调制信号 载波信号 已调制信号
s(t) g(t)c(t)
F
[
f
(t) cos0t]
1 F(
() 是奇函数。
2. 若f(t)是t的实偶函数,则 F ( j ) 必为 的实偶函数。
若f(t)是 t 的实奇函数,则 F ( j )必为 的虚奇函数。
例如:f (t) e t (实偶)
f
(t
)
et
et
t 0(实奇) t0
F
(
j
)
2 2
2(实偶)
F
(
j
)
2
2 j 2
(虚奇)
三、对称性
若F [ f (t)] F( j), 则 F [F(t)] 2 f ()
二、奇偶虚实性
设 F( j) F( j) e j() R() jX ()
其中
F( j) R2 () X 2 (), () arctan X () R( )
若 F [ f (t)] F( j)
则有两种特定关系:
1. 若f(t)是实函数,或虚函数 [f(t)= j g(t)],则 F ( j) 是偶函数,
3.5 典型非周期信号的傅里叶变换
一、单边指数信号
f (t) 1
eat t 0
f (t)
t
0 t 0
F ( j) 1 a2 2
() arctan( )
a
1/ a F( j)
二、双边指数信号
f (t) ea t
F ( j) 2a a2 2
( )
/2
/ 2
f (t) 1
t
2 / a F ( j)
f (t) E
E f (t)
t
单边矩形脉冲信号波形
/2 /2 t
对称矩形脉冲信号波形
F
f
(t)
E
Sa
(
)
j
e2
2
F() E
2 2 4 ()
/ 2 幅度谱保持不变,相位谱产生附加相移 / 2
f (t t0 ) e jt0 F ()
表明信号延时了t0 秒并不会改变其频 谱的幅度,但是使其相位变化了 - t0
2
0 )
F (
0 )
F
[
f
(t ) sin
0t]
j 2
F (
0 )
F (
0 )
例:求矩形调幅信号的频谱函数,已知f(t)=G(t) cosω0t,其中
G(t)为矩形脉冲,脉幅为E, 脉宽为τ。
f (t)
F ()
E
E
2
t
0
2
2
0
0
2
F
()
1 2
G(
0 )
G(
0 )
E
2
{Sa[(
0
)
2
]
Sa[(
j)
Sa( 2
)
0
4 2 2 4
(t) (1)
t
F( j) 1 1
二、冲激函数的傅里叶逆变换
1 f1(t) 2
t
f 2 (t ) 1
t
F1( j) ()
(1)
F2( j) 2 ()
(2 )
1 f1(t)
/ 2 / 2 t
F1
(
j
)
Sa(
2
)
4 2 2 4
f (t) 1
2、时域积分特性
若 F() F [ f (t)]
t
F( j) 2 () (2 )
三、冲激偶函数
F [ (n) (t)] ( j )n
四、阶跃信号
F( j)
F( j) ( ) 1 j
( )
( ) 2
2
3.7 傅里叶变换的基本性质
一、线性(叠加性)
若 F [ f1(t)] F1( j), F [ f2 (t)] F2( j), 则F [a1 f1(t) a2 f2 (t)] a1F1( j) a2F2 ( j)
0
)
2
]}
f (t)
E
0
2
2
2
t
F()
1 2
F
(
o)
F
(
o)
f (t) G (t) cos0t
0.5
0 70 rad / s
矩形调幅信号的仿真波形及频谱图
六、尺度变换特性
若 F() F [ f (t)]
则 F [ f (at)] 1 F( )
aa
信号在时域中压缩等效在频域中扩展;信号在时域中扩展等效在频域中压缩。
4 2 2 4
2f ( )
2E
/ 2 / 2
四、时移特性
若 F() F [ f (t)]

F
[ f (t t )] F() e j t0 0
同理 F [ f (t t )] F() e j t0 0
F() e e j() j t0
例:求下图所示的单边矩形脉冲信号的频谱函数
相关文档
最新文档