植物生理测定方法

合集下载

植物生理生化指标测定

植物生理生化指标测定

小黑豆相关生理指标测定1.表型变化:鲜重、株高、主根长和叶面积鲜重:取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测6个重复。

株高:取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。

主根长:取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。

叶面积:取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长,测叶片最窄处长度作为叶的宽,叶片长和宽的乘积即为叶表面积。

每个测6个重复。

2.总蛋白、可溶性糖、丙二醛(MDA)和H2O2含量测定样品处理:取0.5g样品(叶片要去除叶脉、根要先用清水清洗干净),速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入1.5ml的Tris-HCl(pH7.4)抽提,将抽提液转移到2ml的EP管中,于4℃,12000rpm离心15min,取上清,保存在-20℃下,上清液可用于总蛋白、丙二醛(MDA)、可溶性糖和H2O2含量测定。

总蛋白测定(Bradford法):样品反应体系(800ul H2O+200ul Bradford+5ul 样品),空白对照为(800ul H2O+200ul Bradford)。

测定后带入标准曲线Y=32.549X-0.224(Y代表蛋白含量,X代表OD595),计算得出蛋白含量。

可溶性糖测定:样品反应体系(1ml蒽酮+180ul ddH2O+20ul样品提取液);空白对照(1ml蒽酮+180ul ddH2O),测定OD625后带入标准曲线:Y=0.0345X+0.0204(Y代表OD625,X代表可溶性糖含量(ug))蒽酮配方:称取100mg蒽酮溶于100ml稀硫酸(76ml浓硫酸+30mlH2O).注意:浓硫酸加入水中时,一点一点递加,小心溅出受伤。

丙二醛(MDA)测定:在酸性和高温条件下,丙二醛可与硫代巴比妥(TBA)反应生成红棕色的3,5,5-三甲基恶唑2,4-二酮,在532nm处有最大吸收波长,但该反应受可溶性糖的极大干扰,糖与TBA的反应产物在532nm处也有吸收,但其最大吸收波长在450nm处。

植物生理学实验测试

植物生理学实验测试

植物生理学实验测试植物生理学是研究植物生长和发育等生理过程的科学学科,通过实验测试可以揭示植物对外界环境因素的响应和适应机制。

本文将介绍几种常见的植物生理学实验测试方法,包括植物生长实验、叶绿素测定实验和逆境胁迫实验等。

一、植物生长实验植物生长实验是研究植物对不同环境条件下的生长反应的一种常见方法。

可以通过改变光照、温度、水分等环境因素来观察植物生长的变化。

在实验中,选取相同种子并进行处理,如将一组种子暴露在高温环境下,另一组放置在低温环境中,然后记录植物的生长情况,并进行数据统计和分析。

通过这种实验方法可以了解植物对温度的适应性以及不同温度对植物生长的影响。

二、叶绿素测定实验叶绿素是植物中起着关键作用的色素,其含量可以反映植物光合作用的强弱。

叶绿素测定实验可以通过测量植物叶片中叶绿素的含量来评估光合作用的效率。

实验中,首先需要采集新鲜叶片样品,并将其研磨得到绿色叶汁,然后通过光度计等仪器测定叶绿素的吸光度值,并根据标准曲线计算叶绿素的含量。

通过叶绿素测定实验可以评估植物对不同环境因素(如光照强度、养分浓度)的响应和适应能力。

三、逆境胁迫实验逆境胁迫实验是模拟植物在环境恶劣条件下的生理反应,如盐胁迫、干旱胁迫、冷热胁迫等。

通过逆境胁迫实验,可以研究植物在逆境条件下的生理适应和耐受机制。

实验中,可以使用不同浓度的盐水浇灌植物或让植物在干旱条件下生长,然后观察植物的生长情况、生理指标的变化,并与正常生长的植物进行比较分析。

逆境胁迫实验可以揭示植物对逆境的敏感性和胁迫响应机制,为育种和改良耐逆植物品种提供理论依据。

总结:植物生理学实验测试是研究植物生理过程的重要手段,通过不同的实验方法可以揭示植物对环境因素的响应和适应机制。

植物生长实验、叶绿素测定实验和逆境胁迫实验是常见的植物生理学实验方法,分别用于研究植物生长、光合作用和逆境胁迫的情况。

通过这些实验测试的结果,可以进一步了解植物的适应性和耐受能力,为培育适应不同环境的优良植物品种提供理论基础。

最新植物生理指标测定方法

最新植物生理指标测定方法

实验一植物叶绿素含量的测定(分光光度法)(张宪政,1992)一、原理根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。

根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。

当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。

各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。

如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。

这就是吸光度的加和性。

今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b及类胡萝卜素在该波长下的吸光系数即可求出其浓度。

在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。

高等植物中叶绿素有两种:叶绿素a 和b,两者均易溶于乙醇、乙醚、丙酮和氯仿。

叶绿素a和叶绿素b的比值反映植物对光能利用效率的大小,比值高则大,则反之。

二、材料、仪器设备及试剂试剂:1)95%乙醇(或80%丙酮)三、实验步骤称取剪碎的新鲜样品0.2~0.3g,加乙醇10ml,提取直至无绿色为止。

把叶绿体色素提取液倒入光径1cm的比色杯内,以95%乙醇为空白,在波长663nm和645nm下测定吸光度。

四、实验结果按计算丙酮法(Arnon法)【可以用于丙酮乙醇混合法和80%丙酮提取法的计算】叶绿素a的含量(mg/g)=(12.71⨯OD663 – 2.59⨯OD645)V/1000*W叶绿素b的含量(mg/g)=(22.88OD645 – 4.67OD663) V/1000*W 叶绿素a、b的总含量(mg/g)=(8.04⨯OD663 +20.29⨯OD645) V/1000*W 按Inskeep公式叶绿素a的含量(mg/g)=(12.63⨯OD663 – 2.52⨯OD645)V/1000*W叶绿素b的含量(mg/g)=(20.47OD645 – 4.73OD663) V/1000*W叶绿素a、b的总含量(mg/g)=(7.90⨯OD663 + 17.95⨯OD645) V/1000*W注:1、叶绿素a和叶绿素b的比值反映植物对光能利用率【1】比如阳生植物叶绿素a和叶绿素b的比值较大【2】阴生植物叶绿素a和叶绿素b的比值较小2、丙酮-------熔点:-94℃;沸点:56.48℃;是一种无色透明液体,有特殊的辛辣气味易溶于水和甲醇、乙醇、乙醚、氯仿、吡啶等有机溶剂.下一步实验方法比较【1】95%乙醇直接提取(√)【2】95%乙醇加热提取(冯瑞云,1985)【3】无水酒精和80%丙酮等体积混合提取实验二、不良环境对植物细胞膜的伤害((张宪政,1992))一、原理植物组织在受到各种不利的环境条件(如干旱、低温、高温、盐渍和大气污染)危害时,细胞膜的结构和功能首先受到伤害,细胞膜透性增大。

植物生理生化指标测定

植物生理生化指标测定

植物生理生化指标测定植物生理生化指标测定是研究植物生长发育和适应环境的重要手段之一、通过测定植物的生理生化指标,可以了解植物的代谢活动、光合作用强度、水分状况、营养状况等,从而为植物生长调控、抗逆性研究提供依据。

下面将从光合作用测定、水分状况测定和营养状况测定三个方面对植物生理生化指标测定进行详细介绍。

光合作用是植物生长发育的重要过程之一,也是植物蓄积养分和能量的主要途径。

常用的光合作用测定指标有净光合速率、光饱和点、光补偿点和光抑制。

净光合速率是指单位时间内单位叶面积净光合产物的量,可以通过测定二氧化碳吸收量和氧气释放量来计算。

光饱和点是指植物的净光合速率达到最大值时的光强度,可以通过测定不同光强下的净光合速率来得出。

光补偿点是指净光合速率和呼吸速率相等的光强度,可以通过测定不同光强下的净光合速率和呼吸速率来确定。

光抑制是指过高或过低的光强度对植物光合作用的影响,可以通过测定光强对净光合速率的影响来评价。

水分状况是植物生理生化指标测定的重要方面之一,也是植物生长发育和适应环境的关键因素之一、常用的水分状况测定指标有相对含水量、蒸腾速率和水分利用效率。

相对含水量是指植物组织中的相对含水量与干重的比值,可以通过称量植物组织的湿重和干重来计算。

蒸腾速率是指单位时间内单位叶面积水分蒸腾的量,可以通过测定植物的蒸腾量和叶面积来计算。

水分利用效率是指植物单位干物质产量所需要的水分量,可以通过测定植物的干物质产量和水分消耗量来计算。

营养状况是植物生理生化指标测定的另一个重要方面,也是植物生长发育和代谢活动的基础。

常用的营养状况测定指标有叶绿素含量、叶绿素荧光参数和土壤养分含量。

叶绿素含量是评价植物叶绿素合成和叶绿素降解的指标之一,可以通过植物叶片中叶绿素的提取和测定来得出。

叶绿素荧光参数是评价光能利用效率和光能转化效率的重要指标之一,可以通过叶绿素荧光仪来测定。

土壤养分含量是评价土壤中不同营养元素含量的指标之一,可以通过土壤样品的提取和测定来得出。

植物生理指标测定

植物生理指标测定

植物生理指标测定1.叶绿素含量测定叶绿素是植物进行光合作用的关键分子,它的含量可以反映植物的光合能力和叶片的健康状况。

叶绿素含量的测定可以通过光谱分析或色度法进行。

其中,光谱分析通过测量叶片吸收和反射的可见光波段来计算叶绿素含量;色度法则是通过提取叶片中的叶绿素,然后用乙醇或乙酸乙酯进行溶解,最后通过比色法来测定其含量。

2.蒸腾速率测定蒸腾是植物通过叶片气孔释放水分的过程,蒸腾速率可以反映植物水分的利用和调节能力。

蒸腾速率的测定方法有多种,常用的有质量法和热法。

质量法是通过称量植物在不同时间段内的重量变化来计算蒸腾速率;热法则是利用蒸腾过程中产生的热量来测定蒸腾速率。

3.气孔导度测定气孔是植物调节气体交换的关键结构,气孔导度可以反映植物对环境中各种因素的响应和适应能力。

气孔导度的测定可以通过气体交换技术进行,常用的方法有蒸腾流速法和扩散阻力法。

蒸腾流速法通过测定气孔腔中水蒸气和二氧化碳的浓度来计算气孔导度;扩散阻力法则是通过测定气孔腔中水蒸气的扩散阻力来计算气孔导度。

4.抗氧化酶活性测定氧化应激是植物面临的常见环境胁迫,而抗氧化酶是植物对抗氧化应激的主要防御系统。

抗氧化酶活性的测定可以通过比色法、荧光法和电化学法等进行。

比色法是基于酶催化反应产生的物质的颜色变化来测定酶活性;荧光法是通过检测酶催化反应产生的荧光信号来测定酶活性;电化学法则是通过测量酶催化反应中释放或吸收的电荷来测定酶活性。

这些测定方法可以用于研究植物对不同环境因子的响应和适应能力,也可以用于评估植物的生长和发育状态。

通过测定植物生理指标,研究人员可以更好地了解植物的生理机制和适应策略,为植物的种植和管理提供科学依据。

植物生理指标测定方法

植物生理指标测定方法

植物生理指标测定方法植物生理指标是指用来衡量植物生理状况的具体参数或指标,在植物生理研究中起到了非常重要的作用。

植物生理指标测定方法主要包括以下几个方面:光合作用指标、呼吸作用指标、蒸腾作用指标、叶绿素指标、产量指标和抗逆性指标等。

1.光合作用指标的测定方法:(1)净光合速率的测定方法:通过光合速率仪测定植物叶片在光照条件下的净光合速率;(2)光饱和点和CO2抗饱和点的测定方法:通过对光合速率与光照强度或CO2浓度的关系进行测定,确定光饱和点和CO2抗饱和点;(3)光合色素含量的测定方法:通过分光光度计或高效液相色谱法测定叶片中的叶绿素a、叶绿素b和类胡萝卜素等光合色素的含量;(4)光合机构有效光能利用率的测定方法:通过光合色素荧光分析仪测定叶片的光能利用效率。

2.呼吸作用指标的测定方法:(1)总呼吸速率的测定方法:通过呼吸速率仪或气体分析仪测定植物组织在不同温度条件下的总呼吸速率;(2)细胞内呼吸速率的测定方法:通过氧和二氧化碳分压差法或氧电极法测定细胞内的呼吸速率。

3.蒸腾作用指标的测定方法:(1)蒸腾速率的测定方法:通过蒸腾速率仪测定植物叶片在不同光照和湿度条件下的蒸腾速率;(2)水分利用效率的测定方法:通过测量蒸腾速率和光合速率的比值来反映植物对水分的利用效率。

4.叶绿素指标的测定方法:(1)叶绿素含量的测定方法:通过叶绿素荧光分析仪或高效液相色谱法测定叶片中叶绿素a、叶绿素b和类胡萝卜素的含量;(2)叶绿素荧光动力学特性的测定方法:通过荧光指数、叶绿素荧光参数和叶绿素荧光成像等技术来评估叶绿素在光抑制和光保护状态下的变化。

5.产量指标的测定方法:(1)单株产量的测定方法:通过对植株生物量、籽粒数或实际产量的测定来计算出单株产量;(2)单穗产量的测定方法:通过对穗长、穗粒数和粒重的测定来计算出单穗产量;(3)单粒产量的测定方法:通过对单穗粒数和粒重的测定来计算出单粒产量。

6.抗逆性指标的测定方法:(1)抗氧化酶活性的测定方法:通过测定植物组织中抗氧化酶活性,如超氧化物歧化酶、过氧化氢酶和抗坏血酸过氧化物酶等的活性来反映植物的抗氧化能力;(2)渗透调节物质含量的测定方法:通过测定植物组织中渗透调节物质(如脯氨酸、脯氨酸激酶等)的含量来评估植物的胁迫适应能力;(3)膜脂过氧化程度的测定方法:通过测定植物组织中膜脂过氧化程度的指标,如丙二醛和过氧化氢含量来评估植物膜的稳定性。

植物生理学的重要实验技术

植物生理学的重要实验技术

植物生理学的重要实验技术植物生理学是研究植物内部各种生理过程的科学,通过实验技术的应用,可以深入研究植物的生理特性和调控机制。

本文将介绍几种重要的植物生理学实验技术,包括光合作用测定、光周期实验、蒸腾作用研究和植物生长素的测定。

一、光合作用测定光合作用是植物通过光能将二氧化碳和水转化为有机物质和氧气的过程。

光合作用的测定可以通过净光合速率的测定来进行。

测定方法可以使用荧光法或者气体交流法。

荧光法是通过测定叶片上的荧光信号的强度来计算净光合速率,而气体交流法是通过测定进出叶气体的浓度变化来计算净光合速率。

这些方法需要使用一些仪器设备,如荧光测定仪或气体交流测定系统。

二、光周期实验光周期是植物在一定时间内接受光照和黑暗的周期性变化。

光周期实验主要用于研究植物的花期控制、休眠期控制等生理过程。

常用的方法是通过控制植物所接受的光照时间和黑暗时间的比例来模拟不同的光周期条件。

可以使用光周期系列灯来实现对光周期的控制。

在实验过程中,可以观察植株的生长状况、花期的调控以及激素含量的变化等指标。

三、蒸腾作用研究蒸腾作用是植物体内水分的散失过程,是植物体内水分运输和植物生长发育的关键过程之一。

蒸腾作用研究常用的技术是测定植物叶片表面的水蒸气压,并结合气孔开闭情况来研究蒸腾作用的影响因素。

测定水蒸气压时通常使用水分压差传感器或者电子秤等设备,观察气孔开闭可以通过显微镜或者扫描电子显微镜等工具进行。

四、植物生长素的测定植物生长素是一类植物内源激素,调控着植物体内的生长和发育过程。

研究植物生长素的测定可以使用生物测定法、免疫测定法和色谱法等。

生物测定法使用生物体来测定生长素的活性,如使用阿片酸促进小麦胚芽的生长来测定生长素含量。

免疫测定法则是利用抗体和抗原之间的特异性结合来测定生长素含量。

色谱法是利用气相色谱或者液相色谱来分离和测定植物生长素的含量,通常需要先对样品进行提取和纯化。

结论植物生理学的实验技术是理解植物各种生理过程和调控机制的关键。

(整理)植物生理指标测定方法

(整理)植物生理指标测定方法
A532—在532nm波长下测得的吸光度值
A600—在600nm波长下测得的吸光度值
﹡—1.55×105为摩尔比吸收系数
C糖、CMDA分别是反应混合液中可溶性糖、MDA的浓度。
1.按下式计算提取液中MDA浓度
反应液体积(ml)
CMDA×—————————
1000
提取液中MDA浓度(μmol·ml-1)= ———————————————
四、实验步骤
1、脯氨酸标准曲线的制作
1.1取6支试管,编号,按下表配制每管含量为0~12μg的脯氨酸标准液。加入表中试剂后,置于沸水浴中加热30min。取出冷却。以去离子水溶液为空白对照,在520mm波长处测定吸光度(A)值。
试剂
管号
0
1
2
3
4
5
10μg·ml-1脯氨酸标准液(ml)
蒸馏水(ml)
冰醋酸(ml)
【3】无水酒精和80%丙酮等体积混合提取
实验二、
一、原理
植物组织在受到各种不利的环境条件(如干旱、低温、高温、盐渍和大气污染)危害时,细胞膜的结构和功能首先受到伤害,细胞膜透性增大。若将受伤害的组织浸入无离子水中,其外渗液中电解质的含量比正常组织外渗液中含量增加,组织受伤害越严重,电解质含量增加越多。用电导仪测定外渗液电导率的变化,可反映出质膜受伤害的程度。在电解质外渗透的同时,细胞内可溶性有机物也随之渗出,引起外渗液可溶性糖、氨基酸、核苷酸等含量增加,氨基酸和核苷酸对紫外光有吸收,对紫外分光光度计测定受伤害组织外渗液消光值,同样可反映出质膜受伤害的程度。用电导仪法和紫外法测定结果有很好的一致性。
二、原理
磺基水杨酸对脯氨酸有特定反应,当用磺基水杨酸提取植物样品时,脯氨酸便游离于磺基水杨酸溶液中。然后用酸性茚三酮加热处理后,茚三酮与脯氨酸反应,生成稳定的红色化合物,再用甲苯处理,则色素全部转移至甲苯中,色素的深浅即表示脯氨酸含量的高低。在520nm波长下测定吸光度,即可从标准曲线上查出脯氨酸的含量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 叶圆片放氧活性的测定原理:同光合速率一样,叶片光合放氧速率是反应光合能力的一项重要指标,其大小本质上取决于PSII活性的大小。

称取2~3 cm2 叶片约0.2g,用打孔器2-3 mm2的小圆片后放入含有200mmol Trincine-NaOH,100 mmol NaHCO3,pH7.0 的缓冲液中,并用注射器抽真空1min 左右,使缓冲液充分渗入到叶肉细胞里,最后将叶圆片连同缓冲液转移至极谱氧电极(Hansatech,英国)的反应杯里测定放氧活性,测定在20℃及800μmol.m-2.s-1光强下进行,每个样品测定3个重复。

2 核酮糖-1,5-二磷酸羧化酶(RuBPCase)活性测定原理:Rubiscase是光合作用中最重要的关键酶,它既催化RuBP羧化反应,又催化RuBP加氧反应,对植物的光合作用具有重要的调控作用。

参照李合生等[57]的方法,称取0.5g叶片加入匀浆液6ml(100mmol/L Tris-HCl 缓冲液pH7.8,10 mmol/L MgCl2,1.0 mmol/L EDTA,20 mmol/L 2-巯基乙醇,2%聚乙烯吡咯烷酮)冰浴研磨匀浆,14000g、4℃离心20min,上清液作酶液活性分析。

反应液总体积为200µL,内含反应介质100mmol/L Tris- HCI 缓冲液(pH7.8)、0.4mmol/L EDTA、12 mmol/L MgCl2)93.3µL、50 mmol/L ATP、50mmol/L 磷酸肌酸,200mmol/L NaHCO3各13.3µL,160 u/ml 磷酸肌酸激酶,160 u/ml 磷酸甘油酸激酶,160 u/ml 磷酸甘油醛脱氢酶各6.7µL,5mM/L NADH,蒸馏水各13.3µL,RuBPCase提取液6.7µL 30℃恒温水浴10 min, 最后加入9 mmol/L RuBP 6.7µL反应开始,用Theymo1500型酶标仪96孔板测定340 nm下光吸收的变化。

以ΔA340·min-1下降0.01为l U,每个样品测定3个重复。

3 磷酸烯醇式丙酮酸(PEPCase)活性测定原理:PEPCase通过催化CO2和HCO3-之间的快速结合,促进CO2在细胞中扩散并提供羧化底物[。

参照郑炳松[58]的方法,称取0.5g左右叶片加入匀浆液6ml(0.1mol/L Tris-H2SO4,10 mmol/L MgCl2,1.0 mmol/L EDTA ,7 mmol/L 2-巯基乙醇,1%聚乙烯吡咯烷酮,5%甘油pH8.2)冰浴研磨成匀浆,15000g下冷冻离心20min,上清液作酶液活性分析。

反应液总体积为200µL,内含反应介质(0.1mol/L Tris-H2SO4 pH9.2)66.7µL、10 mmol/L MgSO4、10mmol/L NaHCO3各6.7µL,1 mg/mL NADH,50 u/ml 苹果酸脱氢酶各20µL ,蒸馏水,PEPCase提取液各33.3µL,28℃恒温水浴10 min, 最后加40mmol/L PEP 13.3μl反应开始,用Theymo 酶标仪1500型96孔板测定340 nm下光吸收的变化。

以ΔA340·min-1下降0.01为l U。

每个样品测定3个重复。

4 类囊体膜的制备选用新鲜的植物叶片,4℃冰箱中放置过夜使其消耗一部分淀粉,在预冷的匀浆液(含0.4mol/L 蔗糖,20m mol /L Tris-Hcl,15m mol /L NaCl,2 m mol /L EDTA- Na2 pH 7.8)中快速匀浆,8层纱布过滤,4℃,2000g下离心10min,沉淀为叶绿体,用低渗涨破液(含20mmol/L Tris-Hcl,15mmol/L NaCl,5 mmol/LMgCl2 pH 7.8)悬浮沉淀,匀浆后4℃,500g低速离心去除未破碎的叶绿体和其他大的残渣,上清液在4℃,5000g离心10min得到初提的类囊体膜,涨破液洗涤去除淀粉得到纯化的类囊体膜,保存液(含0.4mmol/L蔗糖,20mmol/L Tris-Hcl,35mM/L NaCl pH 7.0)悬浮保存在-80℃冰箱备用。

5 类囊体膜PSI、PSII电子传递活性测定用Clark—氧电极参照Leong 和Anderson的方法[59]并略做修改。

PSⅡ电子传递速率(H2O→DCBQ)反应液组成为:蔗糖400mmol/L,DCBQ0.2mmol/L,Ferricya 1mmol/L,Tricine-NaOH(pH 6.5) 50 mmol/L;PSⅠ光合电子传递速率(DCPIP/AsA→MV) 反应液组成为:Sucrose 400mmol/L,MgCl2 5mmol/L,NaCl 10mmol/L,DCPIP 200μmol/L,sodium azide 1mmol/L,MV 0.5mmol/L,DCMU 10umol/L,sodium ascorbate 1mmol/L,Tricine-NaOH (pH 7.5) 50 mmol/L。

测定温度为20℃,光强为600μmol photons m-2s-1,叶绿素浓度为20μg/mL,每个样品测定3-5个重复。

6 类囊体膜室温吸收光谱的测定和Gaussian解析用日本岛津UV一3100型分光光度计测定样品在360——720nm处OD值,每隔0.5nm测定1次,叶绿素浓度为l0μg/mL。

吸收光谱用Origin6.1进行Gaussian 解析,解析的具体方法和各个组分的定义参考French[60],Brown[61]以及Ginkel[62]。

7 SDS-PAGE电泳参照Laemmli方法。

(1)凝胶配制:15%分离胶(pH8.8,3.75 mM/mL Tris-HCl,15%Arc-Bis(15:0.4),60mM/mL尿素);5.4%浓缩胶(pH6.8,3.125 mM/mL Tris-HCl,5.4%Arc-Bis(2.16:0.058)),聚合时分离胶和浓缩胶各加10%过硫酸铵30μl/10ml,TEMED 10μl/10ml。

(2)样品处理:取等体积和等叶绿素含量的样品增溶液进行增溶,样品增溶液含4% SDS,10% β-巯基乙醇,0.002% 溴酚蓝,1mM/mL Tris-HCl, 5%甘油。

混合后沸水浴温育3min,10000g下离心5分钟。

(3)上样和电泳:每电泳槽加2μg叶绿素含量的样品。

电极缓冲液含0.1%SDS, 50mM Tris, 384mM 甘氨酸, pH 8.3。

采用Bio-Rad Mini-protein II 型电泳槽0.75mm凝胶板,恒压条件下,浓缩胶中60V, 分离胶中110V 电泳约150min,直到溴酚蓝接近凝胶板下沿停止电泳。

第一泳道上样4μl 低分子量标准蛋白(上海宝生物)(99kD, 66kD, 45kD, 30kD, 20kD, 14.4kD)。

(4)固定,染色和脱色:凝胶板在固定液(50%乙醇,10%乙酸)中固定4h, 在染色液(1.16%考马斯亮蓝R-250, 25%乙醇,8%乙酸)中染色4h,在脱色液中(25%乙醇,8%乙酸)脱色至背景很浅, 照相保存。

8 细胞色素氧化酶活性测定参照Terry M等[63]方法。

(1)凝胶配制:15%分离胶(pH8.8,3.75 mmol/mL Tris-HCl,15%Arc-Bis(15:0.4));5.4%浓缩胶(pH6.8,3.125 mmol/mL Tris-HCl,5.4%Arc-Bis(2.16:0.058)),聚合时分离胶和浓缩胶各加10%过硫酸铵30μl/10ml,TEMED 10μl/10ml。

(2)样品处理:取等体积和等叶绿素含量的样品增溶液进行增溶,样品增溶液含2% LDS,10% β-巯基乙醇,1mM/mL Tris-HCl, 5%甘油。

冰浴混合后增溶10min,4℃,15000g下离心5分钟。

(3)上样和电泳:每电泳槽加10μg叶绿素含量的样品。

电极缓冲液含0.1%SDS, 50mM/L Tris, 384mM/L 甘氨酸, pH 8.3。

采用Bio-Rad Mini-protein II 型电泳槽0.75mm凝胶板,恒流条件下,3mA/板,0-4℃避光条件下电泳约11h,直到样品接近凝胶板下沿停止电泳。

(4)固定、染色:凝胶板在固定液(50%甲醇,0.5mg/mlTMBZ,1M/L醋酸钠—醋酸,pH4.7 )中固定30min, 加入0.5% H2O2,立即照相保存。

9 植物组织中游离氨基酸总量的测定氨基酸是组成蛋白质的基本单位,也是蛋白质的分解产物。

植物根系吸收、同化的氮素主要以氨基酸和酰胺的形式进行运输。

所以测定植物组织中不同时期、不同部位游离氨基酸的含量对于研究根系生理、氮素代谢有一定意义。

试剂:(1)水合茚三酮试剂:正丙醇0.6g再结晶的茚三酮→15ml正丙醇→30ml正丁醇+60ml乙二醇→9ml pH 5.4乙酸-乙酸钠缓冲液。

(棕色瓶,4℃有效期10d)(2)乙酸乙酸钠缓冲液(pH5.4):称取乙酸钠54.4g→100ml蒸馏水→加热至沸腾,使体积蒸发至60ml左右→冷却→转入100ml容量瓶→加30ml冰醋酸→稀释至100ml。

(3)标准氨基酸:称取80℃下烘干的亮氨酸46.8mg,溶于10%异丙醇中,用10%异丙醇定容至100ml,取此液5ml,用蒸馏水稀释至50ml,即为5ug/ml 氨基氮之标准液。

(4)0.1%抗坏血酸:称取50mg抗坏血酸,溶于50ml蒸馏水中,即随配随用。

(5)10%乙酸。

实验步骤:(一)样品制备:取新鲜样品0.5g→5ml 10%乙酸(研磨)→用蒸馏水稀释至100ml→过滤在三角瓶中。

(二)制作标准曲线试剂管号1 2 3 4 5 6标准氨基酸/ml 0 0.2 0.4 0.6 0.8 1.0无氨蒸馏水/ml 2.0 1.8 1.6 1.4 1.2 1.0水合茚三酮/ml 3 3 3 3 3 3抗坏血酸/ml 0.1 0.1 0.1 0.1 0.1 0.1每管含氮量/ug 0 1 2 3 4 5加完试剂后混匀,封口,置沸水中加热15min,取出后用冷水迅速冷却并不时摇动,是加热形成的红色被空气逐渐氧化而退去,进而呈现蓝紫色时,用60%乙醇定容至20ml,570nm测吸光度。

(三)样品测定吸取样品滤液1.0ml,放入20ml干燥试管中,加无氨蒸馏水1.0ml,其他步骤与制作标准曲线相同。

根据样品吸光度在标准曲线上查得含氮量。

相关文档
最新文档