最优化计算方法课后习题答案----高等教育出版社。施光燕

合集下载

最优化方法及其应用课后答案

最优化方法及其应用课后答案

1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。

(2) 约束最优点,并求出其最优值。

(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。

4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。

2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。

数学建模B题:人员安排问题

数学建模B题:人员安排问题

数学建模B 题:人员安排问题问题综述:该问题主要是为了求解在客户的要求下公司每天收益的最大化,属于优化问题;我们在对这个问题建模时,主要是基于客户的两个要求来建立的: (1)客户对员工的人数要求; (这个要求是本来题目有的) (2)客户对工期的要求; (这个要求是我们进一步假设的)对于第一个要求我们建立了基本模型,而对于第二个要求,我们在第一个要求的基础上,进一步改进了基本模型,从而建立了某个项目先完工的模型。

具体的解题思路如下图所示:一.模型基本假设:1.假设客户对项目的工期没有限制,项目的工期由公司决定,且四个项目同时开工,同时完工,中间也不停工。

2. 假设所有人员总能在岗位上工作,不考虑由于生病或是其他意外事件而造成人员的缺席。

3.假设四个项目同时需要的最多人数不超过现有公司工作人员的人数,即使超过,也只分配公司现有的工作人员。

4.假设C 、D 两个项目的管理费由公司支付;5.假设所有工作人员都安排完毕,即每个人都有工作。

6.假设同等级别的工作人员的技术水平是相同的,即他们可以接受任意等同的任务。

二.符号说明:i :用i =1,2,3,4分别表示高级工程师,工程师,助理工程师和技术员。

j :用j =1,2,3,4分别表示项目A,B,C 和D 。

ij X :公司分配第i 级别工作人员到第j 个项目上的人数。

例如23X 表示公司分配工程师到项目C 上的人数。

ij a :第i 级别工作人员分配到第j 个项目上的收费。

ij b : 第i 级别工作人员分配到第j 个项目上时公司的开支(包括工资和管理费)。

ij A : 表示到项目j 工作的第i 级别工作人员为公司贡献的纯利润收入。

j : 表示第j 个项目的总工时(即项目j 的总工作量)。

j T : 表示第j 个项目客户所要求的工期(即项目j 所需要的完工时间)。

j M : 表示客户要求第j 个项目一天所必须完成的工作量。

j m : 表示公司分配给第j 个项目的所有工作人员一天能够完成的工作量。

数学建模B题:人员安排问题

数学建模B题:人员安排问题

数学建模B 题:人员安排问题问题综述:该问题主要是为了求解在客户的要求下公司每天收益的最大化,属于优化问题;我们在对这个问题建模时,主要是基于客户的两个要求来建立的: (1)客户对员工的人数要求; (这个要求是本来题目有的) (2)客户对工期的要求; (这个要求是我们进一步假设的)对于第一个要求我们建立了基本模型,而对于第二个要求,我们在第一个要求的基础上,进一步改进了基本模型,从而建立了某个项目先完工的模型。

具体的解题思路如下图所示:一.模型基本假设:1.假设客户对项目的工期没有限制,项目的工期由公司决定,且四个项目同时开工,同时完工,中间也不停工。

2. 假设所有人员总能在岗位上工作,不考虑由于生病或是其他意外事件而造成人员的缺席。

3.假设四个项目同时需要的最多人数不超过现有公司工作人员的人数,即使超过,也只分配公司现有的工作人员。

4.假设C 、D 两个项目的管理费由公司支付;5.假设所有工作人员都安排完毕,即每个人都有工作。

6.假设同等级别的工作人员的技术水平是相同的,即他们可以接受任意等同的任务。

二.符号说明:i :用i =1,2,3,4分别表示高级工程师,工程师,助理工程师和技术员。

j :用j =1,2,3,4分别表示项目A,B,C 和D 。

ij X :公司分配第i 级别工作人员到第j 个项目上的人数。

例如23X 表示公司分配工程师到项目C 上的人数。

ij a :第i 级别工作人员分配到第j 个项目上的收费。

ij b : 第i 级别工作人员分配到第j 个项目上时公司的开支(包括工资和管理费)。

ij A : 表示到项目j 工作的第i 级别工作人员为公司贡献的纯利润收入。

j : 表示第j 个项目的总工时(即项目j 的总工作量)。

j T : 表示第j 个项目客户所要求的工期(即项目j 所需要的完工时间)。

Max :公司一天的直接收益 只考虑客户对员工的人数要求 基本模型 进一步考虑客户对工期的要求 某个项目先完工的模型改进j M : 表示客户要求第j 个项目一天所必须完成的工作量。

最优化方法练习题答案

最优化方法练习题答案

练习题一1建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。

2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。

min f(x)答:针对一般优化模型s.t g i (x )臭0,i =1,2,…m ,讨论解的可行域D ,若存在一点h j x =0, j =1;, pX D ,对于-X • D 均有f (X ) < f (X)则称X 为优化模型最优解,最优解存在;迭 代算法的收敛性是指迭代所得到的序列X ⑴,X ⑵,…,X (K)…,满足f (X (K °)乞f (X (K)),|x (5 _x (k)||则迭代法收敛;收敛的停止准则有X(k)||c s —— < sx ()练习题二1某公司看中了例2.1中厂家所拥有的3种资源R i 、R 2、和R 3,欲出价收购(可 能用于生产附加值更高的产品)。

如果你是该公司的决策者,对这 3种资源的收购报价 是多少?(该问题称为例2.1的对偶问题)。

对3种资源报价y ,, y 2, y 3作为本问题的决策变量。

问题的目标很清楚一一“收购价最小”。

资源的报价至少应该高于原生产产品的利润,这样原厂家才可能因此有如下线性规划问题: min w = 170比• 100y 2 • 150y 35y , 2y 2 y 3 -10 s.t <2y 1 +3y 2 +5y 3 =1871, 丫2,丫3 -0*2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单 纯形法)。

答:略。

f x (k 1)x (k)f x (k 1)-f x (k)f x (k)\ f x (k):::;等等解:确定决策变量 确定目标函数 确定约束条件3、用单纯形法求解下列线性规划问题:min z = X [ - x 2 x 3 +x 2 _2x 3 兰2/ 八 2x ^ +x 2 +x 3 兰3(1)s.t. 12 3 .; -x 1 + x 3 兰 4X i , X 2,X 3 — 0解:(1)引入松弛变量X 4, X 5, X 6 min z =捲-x 2 x 3 0* x 4 0* x 5 0* x 6乂 +x 2 -2x 3 +x 4=22捲 +x 2 +x 3+x5 =3st <123—x1 +x3+x6=4x1,x2, x3,x4,x5,x6 30(2) min z = 4 - X 2X 3% - 2X 2 + X 3=2x 2 — 2x 3 + x 4=2s.t.234x2 X3X 5 = 5X i -0 (i =1,2/ ,5)因检验数q>o,表明已求得最优解:X、(0,8/3,1/3,0,0,11/3),去除添加的松弛变量,原问题的最优解为:X* =(0,8/3,1/3)。

最优化计算方法课后习题答案----高等教育出社。施光燕

最优化计算方法课后习题答案----高等教育出社。施光燕

习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。

解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。

最优化习题答案及复习资料

最优化习题答案及复习资料

6
,12
T
)
17 17
g
=(
6
,12
T
)
2 17 17
β g d = −
(d ) d 1
T
A
2
(1) T
(1)
A
(1)
=
1 298
− 90
d g β d (2) = −
+
2
1
(1)
=

289 210 289
α 线性搜索得步长:
= 1.7
2
x x α d (3) = (2) +
2 (2) = 11
x(1) = (1,1,1)T
.验证
d x x d (1) =(1,0,-1)是 f(x)在点 (1) 处的一个下降方向,并计算 min f( (1) +t (1) )
t>0
证明:
∇f (x) =
(2
x1,3x
2 2
+
2
x3−1,4
x
3+
2
x
2−1)T
∇f (x1) = (2,4,5)T
2
d
∇f
(
x
=
x2

(x2 − x1) f ′(x2) −
f f
′( x2) ′( x1)
或者
x
=
x1

(x2 − x1) f ′(x2) −
f f
′( x1) ′( x1)
证明:1)设ϕ(x) = a x2 + bx + c ( a ≠ 0 )
则 ϕ ′(x) = 2ax + b
ϕ ′(x1) = 2a x1 + b = f ′(x1)

最优化计算方法

最优化计算方法
5
ymax=subs(y,x,xmax)
Newton 法
求方程F(x)=0的根.
牛顿法: x(n)=x(n-1)-F(x(n-1))/F’(x(n-1))
F = dydx; F1 = diff(F,x); format long N = 10; % number of iterations x0 = 19 % initial guess fprintf(' iteration xvalue\n\n'); for i=1:N x1=x0-subs(F,x,x0)/subs(F1,x,x0); fprintf('%5.0f %1.16f\n', i, x1); x0 = x1; end display('Hence, the critical point (solution of F=0) is (approx)'), x1
xmax figure, ezcontourf(z,[0.1 10 0.1 10]) hold on plot3(xmax(1),xmax(2),zmax, 'mo', 'LineWidth',2,... 'MarkerEdgeColor','k', 'MarkerFaceColor',[.49 1 .63],... 'MarkerSize',12); title('Countour plot and optimal value');
a=0; b=6; c=0; d=6; N=1000; x0 = a+(b-a)*rand(1); y0 = c+(d-c)*rand(1); zmin = subs(z,[x,y],[x0,y0]); fprintf(' Iteration xmin ymin zmin value\n\n'); for n=1:N xnew=a+(b-a)*rand(1); ynew=c+(d-c)*rand(1); znew=subs(z,[x,y],[xnew,ynew]); if znew<zmin xmin=xnew; ymin=ynew; zmin=znew; fprintf('%4.0f %1.6f %1.6f %1.6f\n', n, xmin, ymin, zmin); end end

最优化计算方法

最优化计算方法
ezplot(y,[0,20]);
grid on
A
3
ezplot(y,[0,20])
(130-2 x) exp(1/40 x)-9/20 x 140 139 138 137 136 135 134 133 132 131 130
0
2
4
6
ห้องสมุดไป่ตู้
8
10 12 14 16 18 20
x
A
4
ezplot(y,[0,40])
18 18.5 19 19.5 20 20.5 21 21.5 22 x
A
6
ezplot(y,[19,20]); grid on
(130-2 x) exp(1/40 x)-9/20 x
139.395 139.394 139.393 139.392 139.391 139.39 139.389 139.388 139.387 139.386 139.385
A
8
Newton 法
?求方程F(x)=0的根. ?牛顿法: x(n)=x(n-1)-F(x(n-1))/F'(x(n-1))
A
9
F = dydx;
F1 = diff(F,x);
format long
N = 10; % number of iterations
x0 = 19 % initial guess
xvalues = [xvalues; xmaxc];
end xvalues = xvalues(2:end);
A
12
(130-2 x) exp(1/40 x)-9/20 x 140
135
130
125
120
0
5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。

解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。

习题四包括题目: P95页 3;4;8;9(1);12选做;13选做 3题解如下3.考虑问题21),(2)(min 21x x x f sx x -=∈,其中{}{}.10,1),(1),(2121222121≤≤≤≤+=x x x x x x x x S T T I(1)画出此问题的可行域和等值线的图形;(2)利用几何图形求出此问题的最优解及最优值;(3)分别对点,)1,0(,)0,0(,)1,1(,)0,1(4321TTTTx x x x -==-==指出哪些约束是紧约束和松约束。

解:(1)如图所示,此问题的可行域是以O 点为圆心,1为半径的圆的上半部分;等值线是平行于直线x 2=2x 1的一系列平行线,范围在如图所示的两条虚线内。

(2)要求f 的最小值,即求出这一系列平行线中与x 2轴相交,所得截点纵坐标的最大值。

显然当直线在虚线1的位置,能取得极值。

如图求出切点⎪⎭⎫ ⎝⎛-51,52P ,此点即为最优解Tx )51,52(-=*,解得最优值5-=*f(3)对于区间集S 可以简化为g 1:012221≥--x xg 2:02≥-x对于点Tx )0,1(1=,g 1和g 2均为该点处的紧约束; 对于点Tx )1,1(2-=,g 1和g 2均为该点处的松约束;对于点Tx )0,0(3=,g 1为该点的松约束,g 2为该点的紧约束; 对于点Tx )1,0(4-=,g 1为该点的紧约束,g 2为该点的松约束。

4题解如下4.试写出下列问题的K-T 条件,并利用所得到的表达式求出它们的最优解: (1)()();12min 2221-+-x x. 012221≥--x x (2)()();12min 2221-+-x x. 092221≥--x x(1)解:非线性规划的K-T 条件如下:022********=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--x x x x λ (1)0)1(2221=--x x λ (2)0≥λ (3)再加上约束条件 012221≥--x x (4) 为求出满足(1)~(4)式的解,分情况考虑:①若(4)式等号不成立,即012221>--x x ,那么由(2)式得0=λ,将0=λ代入(1)式解得21=x ,12=x ,所得值不满足012221>--x x 的条件,故舍去。

②若(4)式等号成立,由(1)式可以解得121+=λx ,112+=λx ,代入(4)式有: 1111222=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+λλ 解得5151--+-=或λ 因为0≥λ,所以51+-=λ,那么521=x ,512=x ,满足以上所有条件。

综上所述,所求非线性规划有唯一的K-T 点为:Tx )51,52(=*(2)解:非线性规划的K-T 条件如下:022********=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--x x x x λ (1)0)9(2221=--x x λ (2)0≥λ (3)再加上约束条件092221≥--x x (4) 为求出满足(1)~(4)式的解,分情况考虑:①若(4)式等号不成立,即092221>--x x ,那么由(2)式得0=λ,将0=λ代入(1)式解得21=x ,12=x ,所得值满足以上所有约束。

②若(4)式等号成立,由(1)式可以解得121+=λx ,112+=λx ,代入(4)式有: 9111222=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+λλ 解得351±-=λ 因为0≥λ,所以所得λ值均舍去,该情况不成立。

综上所述,所求非线性规划有唯一的K-T 点为:T x )1,2(=*8题解如下 8 考虑问题Min x12+x1x2+2x22-6x1-2x2-12x3 . X1+x2+x3=2 (1) -x1+2x2≤3 (2) X1,x2,x3≥0 (3)求出点(1,1,0)处的一个下降可行方向.解:首先检查在点(1,1,0)处哪些约束为有效约束。

检查易知(1),X3≥0为有效约束。

设所求可行方向d=(d1,d2,d3)T 。

根据可行方向d 的定义,应存在a>0,使对?t ∈(0,a )能有X+td=(1+td1,1+td2,0+td3)T 也能满足所有有效约束:(1+td1)+(1+td2)+(0+td3)=2 td3≥0 经整理即为d1+d2+d3=0 d3≥0满足上述不等式组的d=(d1,d2,d3)T 均为可行方向。

现只求一个可行方向,所以任取d3=1,求解d1+d2=-d3得d1+d2=-1,可任取d1=1,d2=-2得一可行方向d=(1,-2,1)T考虑下降性由题可知:将目标函数化为f(x)=1/2XTQX+bTX+C从而▽f=QX+b即▽f(1,1,0)=(-3,3,-12)因为▽f(1,1,0)Td=-21<0表明d=(1,-2,1)T为原问题在x=(1,1,0)T处的一个下降可行方向9题解如下9 用lemke算法解下列问题:(1)min 2x12+2x22-2x1x2-4x1-6x2. X1+x2≤2X1+5x2≤5X1,x2≥0解:,,,于是,,,与本题相应的线性互补问题为:W-MZ=qW≥0,Z≥0WTZ=0写成表格为由上表可看出仅w4,z4这一对变量全部不是基变量,因此从它们之中选一个进基,由于第一次碰到这一对变量,故选z4进基.在所选列中,有 Min {8/5,11/9,2/6,6/4}=2/6故选相应的第3行第8列元素作主元,再进行旋转,得由于W0仍在基变量中,故继续运算.由于这时仅有W3,Z3这一对变量全不在基中,故仍在它们之中选一变量进基,由于是第一次从这一对变量选取,故也选Z3进基,再由Min {38/6/4,8/8,28/6/2}=8/8再继续,得优解:y1=-208/93,x1=35/31,x2=24/31,u2=32/31,y2=v2=v2=u1=0,即x*=(35/31,24/31)T12题解如下12.(1)外点法min =)(f x 2221x x + . 11≥x解: 定义惩罚函数 F( )(){}[]2122211,0max ,--++=x x x x σσ=2221x x + 当 11≥x()2122211-++x x x σ 当11<x用解析法求解 min F(σ,x ),有=∂∂1x F12x 当11≥x()11221x x σ+- 当11<x222x x F=∂∂ 令01=∂∂x F ,02=∂∂x F得到 =*σx ()21,x x T⎪⎭⎫ ⎝⎛+=0,1σσT 易见,当+∞→σ时,()0,1=→**x x σT*x 恰为所求费线性规划的最优解。

相关文档
最新文档