2016年高考数学文试题分类汇编:数列
近五年(2017-2021)高考数学真题分类汇编07 数列

①求数列{bn}的通项公式;
②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当k≤m时,都有 成立,求m的最大值.
53.(2019·北京(文))设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.
A.1盏B.3盏
C.5盏D.9盏
二、填空题
22.(2020·海南)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
23.(2020·浙江)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列 就是二阶等差数列,数列 的前3项和是________.
A.2a4=a2+a6B.2b4=b2+b6C. D.
7.(2020·全国(文))设 是等比数列,且 , ,则 ()
A.12B.24C.30D.32
8.(2020·全国(文))记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则 =()
A.2n–1B.2–21–nC.2–2n–1D.21–n–1
近五年(2017-2021)高考数学真题分类汇编
七、数列
一、单选题
1.(2021·全国(文))记 为等比数列 的前n项和.若 , ,则 ()
A.7B.8C.9D.10
2.(2021·浙江)已知 ,函数 .若 成等比数列,则平面上点 的轨迹是()
A.直线和圆B.直线和别解答,则按第一个解答计分.
43.(2021·全国(理))记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;
2016年高考文科数学陕西卷试题与答案

2016年普通高等学校招生全国统一考试【陕西省】文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3},B={x|x 2<9},则A ∩B=( ) A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}2.设复数z 满足z+i=3-i,则z =( ) A.-1+2iB.1-2iC.3+2iD.3-2i3.函数y=Asin(ωx+φ)的部分图象如图所示,则( )A.y=2sin (2x -π6) B.y=2sin (2x -π3) C.y=2sin (x +π6)D.y=2sin (x +π3)4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB.323π C.8π D.4π5.设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=( )A.12B.1 C.32D.26.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-43B.-34C.√3D.27.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.3109.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.3410.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=xB.y=lg xC.y=2xD.y=√x11.函数f(x)=cos 2x+6cos (π2-x)的最大值为( ) A.4B.5C.6D.712.已知函数f(x)(x ∈R)满足f(x)=f(2-x),若函数y=|x 2-2x-3|与y=f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1mx i =( )A.0B.mC.2mD.4m第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.已知向量a=(m,4),b=(3,-2),且a ∥b,则m= .14.若x,y 满足约束条件{x -y +1≥0,x +y -3≥0,x -3≤0,则z=x-2y 的最小值为 .15.△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A=45,cos C=513,a=1,则b= . 16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.18.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010 (Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度平均保费的估计值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D'EF的位置.(Ⅰ)证明:AC⊥HD';(Ⅱ)若AB=5,AC=6,AE=54,OD'=2√2,求五棱锥D'-ABCFE的体积.20.(本小题满分12分)已知函数f(x)=(x+1)ln x-a(x-1).(Ⅰ)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程; (Ⅱ)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.21.(本小题满分12分)已知A是椭圆E:x24+y23=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,证明:√3<k<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD 中,E,G 分别在边DA,DC 上(不与端点重合),且DE=DG,过D 点作DF ⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F 四点共圆;(Ⅱ)若AB=1,E 为DA 的中点,求四边形BCGF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是{x =tcosα,y =tsinα(t 为参数),l 与C 交于A,B 两点,|AB|=√10,求l 的斜率.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x -12|+|x +12|,M 为不等式f(x)<2的解集. (Ⅰ)求M;(Ⅱ)证明:当a,b ∈M 时,|a+b|<|1+ab|.2016年普通高等学校招生全国统一考试文科数学答案第Ⅰ卷一. 选择题(1)【答案】D (2)【答案】C (3) 【答案】A (4) 【答案】A (5)【答案】D(6) 【答案】A(7) 【答案】C(8) 【答案】B(9)【答案】C(10) 【答案】D (11)【答案】B(12) 【答案】B二.填空题(13)【答案】6-(14)【答案】5-(15)【答案】2113(16)【答案】1和3三、解答题(17)(本小题满分12分) 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的性质求1a ,d ,从而求得n a ;(Ⅱ)根据已知条件求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等茶数列的性质,数列的求和. 【结束】(18)(本小题满分12分) 【答案】(Ⅰ)由6050200+求P(A)的估计值;(Ⅱ)由3030200+求P(B)的估计值;(III )根据平均值得计算公式求解. 【解析】 试题分析:试题解析:(Ⅰ)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=, 故P(A)的估计值为0.55.(Ⅱ)事件B 发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3200+=, 故P(B)的估计值为0.3. (Ⅲ)由题所求分布列为:调查200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.3020.10 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=,因此,续保人本年度平均保费估计值为1.1925a. 考点:样本的频率、平均值的计算. 【结束】(19)(本小题满分12分) 【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)证明.'⊥OD OH 再证'⊥OD 平面.ABC 最后呢五棱锥体积.试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD . (II )由//EF AC 得1.4==OH AE DO AD 由5,6==AB AC 得 4.===DO BO所以1, 3.'===OH D H DH于是2222219,''+=+==OD OH D H 故.'⊥OD OH'ABCEF D -由(I )知'⊥AC HD ,又,'⊥=AC BD BD HD H ,所以⊥AC 平面,'BHD 于是.'⊥AC OD 又由,'⊥=OD OH AC OH O ,所以,'⊥OD 平面.ABC又由=EF DH AC DO 得9.2=EF 五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S所以五棱锥体积169342=⨯⨯=V 考点:空间中的线面关系判断,几何体的体积. 【结束】(20)(本小题满分12分)【答案】(Ⅰ)220.x y +-=;(Ⅱ)(],2.-∞. 【解析】试题分析:(Ⅰ)先求定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解. 试题解析:(I )()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;'ABCEF D -(ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a ,由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x .综上,a 的取值范围是(],2.-∞ 考点:导数的几何意义,函数的单调性. 【结束】(21)(本小题满分12分)【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k . 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故1||2|AM x =+=.由题设,直线AN 的方程为1(2)y x k=-+,故同理可得||AN =.由2||||AM AN =得2223443kk k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在2)2k <<. 考点:椭圆的性质,直线与椭圆的位置关系. 【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲 【答案】(Ⅰ)详见解析;(Ⅱ)12. 【解析】试题分析:(Ⅰ)证,DGF CBF ∆~∆再证,,,B C G F 四点共圆;(Ⅱ)证明,Rt BCG Rt BFG ∆~∆四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍.试题解析:(I )因为DF EC ⊥,所以,DEF CDF ∆~∆则有,,DF DE DGGDF DEF FCB CF CD CB∠=∠=∠== 所以,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠ 由此0180,CGF CBF ∠+∠=所以,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB , 由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ 因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=考点:三角形相似、全等,四点共圆 【结束】(23)(本小题满分10分)选修4—4:坐标系与参数方程【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±. 【解析】试题分析:(I )利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(II )先将直线l 的参数方程化为普通方程,再利用弦长公式可得l 的斜率.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 83αα==±,所以l . 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式. 【结束】(24)(本小题满分10分)选修4—5:不等式选讲【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析. 【解析】试题分析:(I )先去掉绝对值,再分12x <-,1122x -≤≤和12x >三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明. 【结束】一、选择题1.D 由已知得B={x|-3<x<3},∵A={1,2,3},∴A ∩B={1,2},故选D.2.C z=3-2i,所以z =3+2i,故选C.3.A 由题图可知A=2,T 2=π3-(-π6)=π2,则T=π,所以ω=2,则y=2sin(2x+φ),因为题图经过点(π3,2),所以2sin (2×π3+φ)=2,所以2π3+φ=2kπ+π2,k ∈Z,即φ=2kπ-π6,k ∈Z,当k=0时,φ=-π6,所以y=2sin (2x -π6),故选A.4.A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=√3a,即R=√3,所以球的表面积S=4πR 2=12π.故选A. 5.D 由题意得点P 的坐标为(1,2).把点P 的坐标代入y=kx (k>0)得k=1×2=2,故选D.6.A 由圆的方程可知圆心为(1,4).由点到直线的距离公式可得√a 2+1=1,解得a=-43,故选A.7.C 由三视图知圆锥的高为2√3,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C. 8.B 行人在红灯亮起的25秒内到达该路口,即满足至少需要等待15秒才出现绿灯,根据几何概型的概率公式知所求事件的概率P=2540=58,故选B.9.C 执行程序框图,输入a 为2时,s=0×2+2=2,k=1,此时k>2不成立;再输入a 为2时,s=2×2+2=6,k=2,此时k>2不成立;再输入a 为5,s=6×2+5=17,k=3,此时k>2成立,结束循环,输出s 为17,故选C. 10.D 函数y=10lg x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lgx 的值域为R,排除B,故选D.11.B f(x)=1-2sin 2x+6sin x=-2(sinx -32)2+112,当sin x=1时, f(x)取得最大值5,故选B.12.B 由题意可知f(x)的图象关于直线x=1对称,而y=|x -2x-3|=|(x-1)-4|的图象也关于直线x=1对称,所以两个图象的交点关于直线x=1对称,且每对关于直线x=1对称的交点的横坐标之和为2,所以∑i=1mx i =m,故选B.二、填空题 13.答案 -6解析 因为a ∥b,所以m 3=4-2,解得m=-6.14.答案 -5解析 由约束条件画出可行域,如图中阴影部分所示(包括边界).当直线x-2y-z=0过点B(3,4)时,z 取得最小值,z min =3-2×4=-5.15.答案2113解析 由cos C=513,0<C<π,得sin C=1213. 由cos A=45,0<A<π,得sin A=35. 所以sin B=sin[π-(A+C)]=sin(A+C) =sin Acos C+sin Ccos A=6365,根据正弦定理得b=asinB sinA=2113.16.答案 1和3解析 丙的卡片上的数字之和不是5,则丙有两种情况:①丙的卡片上的数字为1和2,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和3,满足题意;②丙的卡片上的数字为1和3,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和2,这时甲与乙的卡片上有相同的数字2,与已知矛盾,故情况②不符合,所以甲的卡片上的数字为1和3.祝福语祝你考试成功!。
数列说题16年全国卷15题只是分享

?
a1a2 ?
an ? a1 ?a1q ?a1q2 ?
a1q n?1
?
a1nq1? 2??
?
(
n?1)域? 。8n
(
1
)
n(
n?1) 2
2
? ? ? 2 ?2 ? 2 ? 2 3 n
? n (n?1) 2
? 1n2 ? 7n 22
?
1 2
???(
n
?
7 2
)
2
?
49 4
? ??
? 当n ? 3或n ? 4时,a1a2 ?
04
变式拓展
变式拓展
基本量法
性质
变式1:设等比数列?an?满足a1 - a5 ? -15,a2 ? a4 ? 10, 求an的通
.
变式2:设正项等比数列?an?满足a1 ?a5 ? 16,a2 ? a4 ? 10, 求an的通
.
变式3:设等比数列?an?满足a1 ? a3 ? 10, a2 ? a4 ? 5, 求a1 ? a2 ? ? ? an的
.
变式4:设等差数列?an?满足a1 ? a3 ? 10, a2 ? a4 ? 5, 求a1 ? a2 ? ? ? an的
.
变式5:设正项等比数列?an?满足a5a6 ? a4a7 ? 18, 求 log3 a1 ? log3 a2 ? ? ? log3 a10的 .
变式拓展
(2013江苏14)在正项等比数列?a n ?中,a5
能力
推理论证能力 考查 运算求解能力
必修五 P48等差数列前n项和 例4 P53等比数列课后题1
来源 出处
等比数列通项公式 知识 等差数列求和公式 考查 指数幂的运算
2016年高考数学理试题分类汇编:数列(含解析)

2016年高考数学理试题分类汇编数列一、选择题1、(2016年上海高考)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B【解析】试题分析:由题意得:11112,(0|q |1)11n q a a q q -<<<--对一切正整数恒成立,当10a >时12n q >不恒成立,舍去;当10a <时21122n q q <⇒<,因此选B. 考点:1.数列的极限;2.等比数列的求和.2、(2016年全国I 高考)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算3、(2016年全国III 高考)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个(C )14个(D )12个【答案】C 【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:0[1 1 1 1[1 0 1 1 10 11 01 00 1 1111 01 00 11 01 00 1 110 11 01 00 11 0考点:计数原理的应用.4、(2016年浙江高考)如图,点列{A n},{B n}分别在某锐角的两边上,且1122,,n n n n n nA A A A A A n++++=≠∈*N,1122,,n n n n n nB B B B B B n++++=≠∈*N,(P Q P Q≠表示点与不重合).若1n n n n n n nd A B S A B B+=,为△的面积,则A.{}nS是等差数列 B.2{}nS是等差数列C.{}nd是等差数列 D.2{}nd是等差数列【答案】A【解析】nS表示点nA到对面直线的距离(设为nh)乘以1n nB B+长度一半,即112n n n nS h B B+=,由题目中条件可知1n nB B+的长度为定值,那么我们需要知道nh的关系式,过1A作垂直得到初始距离1h,那么1,nA A和两个垂足构成了等腰梯形,那么11tann n nh h A Aθ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan)2n n n nS h A A B Bθ+=+⋅,111111(tan)2n n n nS h A A B Bθ+++=+⋅,作差后:1111(tan)2n n n n n nS S A A B Bθ+++-=⋅,都为定值,所以1n nS S+-为定值.故选A.二、填空题1、(2016年北京高考)已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______.. 【答案】6 【解析】试题分析:∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-, ∴616156615(2)6S a d =+=⨯+⨯-=,故填:6. 考点:等差数列基本性质.2、(2016年上海高考)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4【解析】试题分析:要满足数列中的条件,涉及最多的项的数列可以为2,1,1,0,0,0,-⋅⋅⋅,所以最多由4个不同的数组成. 考点:数列的项与和.3、(2016年全国I 高考)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则12...n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由于{}n a 是等比数列,设11n n a a q -=,其中1a 是首项,q 是公比.∴2131132411101055a a a a q a a a q a q ⎧+=+=⎧⎪⇔⎨⎨+=+=⎪⎩⎩,解得:1812a q =⎧⎪⎨=⎪⎩. 故412n n a -⎛⎫= ⎪⎝⎭,∴()()()()21174932 (472)22412111...222n n n n n a a a ⎡⎤⎛⎫-+-++----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫⋅⋅⋅=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭当3n =或4时,21749224n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦取到最小值6-,此时2174922412n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫ ⎪⎝⎭取到最大值62.所以12...n a a a ⋅⋅⋅的最大值为64. 考点:等比数列及其应用4、(2016年浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .【答案】1 121三、解答题1、(2016年北京高考) 设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合. (1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1. 从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G.考点:数列、对新定义的理解.2、(2016年山东高考)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n.【解析】(Ⅰ)因为数列{}n a 的前n 项和n n S n 832+=,所以111=a ,当2≥n 时,56)1(8)1(383221+=----+=-=-n n n n n S S a n n n ,又56+=n a n 对1=n 也成立,所以56+=n a n .又因为{}n b 是等差数列,设公差为d ,则d b b b a n n n n +=+=+21. 当1=n 时,d b -=1121;当2=n 时,d b -=1722, 解得3=d ,所以数列{}n b 的通项公式为132+=-=n da b n n . (Ⅱ)由1112)33()33()66()2()1(+++⋅+=++=++=n nn n n n n n n n n b a c , 于是14322)33(2122926+⋅+++⋅+⋅+⋅=n n n T , 两边同乘以2,得21432)33(2)3(29262++⋅++⋅++⋅+⋅=n n n n n T ,两式相减,得214322)33(23232326++⋅+-⋅++⋅+⋅+⋅=-n n n n T2222)33(21)21(2323+⋅+---⋅+⋅=n n n222232)33()21(2312++⋅=⋅++-⋅+-=n n n n n n T .考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;错位相减法3、(2016年上海高考)若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析. 【解析】试题分析:(1)根据已知条件,得到678332a a a a ++=++,结合67821a a a ++=求解. (2)根据{}n b 的公差为20,{}n c 的公比为13,写出通项公式,从而可得520193n n n n a b c n -=+=-+. 通过计算1582a a ==,248a =,63043a =,26a a ≠,即知{}n a 不具有性质P . (3)从充分性、必要性两方面加以证明,其中必要性用反证法证明. 试题解析:(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =. (2){}n b 的公差为20,{}n c 的公比为13, 所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193n n n n a b c n -=+=-+. 1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P . (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N ,使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠. 设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”. 考点:1.等差数列、等比数列的通项公式;2.充要条件的证明;3.反证法.4、(2016年四川高考)已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(I )若2322,,2a a a + 成等差数列,求a n 的通项公式;(ii)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析.试题解析:(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q +q -=,由已知,0q >,故 =2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率 22(1)11n n n e a q -=+=+ . 由2513q q =+=解得43q =. 因为2(1)2(1)1+k k q q -->,所以2(1)1*1+k k q q k -->?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-, 故1231433n nn e e e --++鬃?>. 考点:数列的通项公式、双曲线的离心率、等比数列的求和公式.5、(2016年天津高考)已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等比中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【解析】⑴22112112n n n n n n n n C b b a a a a d a +++++=-=-=⋅21212()2n n n n C C d a a d +++-=-=为定值. ∴{}n C 为等差数列⑵2213211(1)nk n k n k T b C C C -==-=++⋅⋅⋅+∑21(1)42n n nC d -=+⋅212(1)nC d n n =+-(*) 由已知22212123122122()4C b b a a a a d a d a d d =-=-=⋅=+= 将214C d =代入(*)式得22(1)n T d n n =+ ∴2111112(1)nnk k kT d k k ===+∑∑212d <,得证 考点:等差数列、等比中项、分组求和、裂项相消求和6、(2016年全国II 高考)n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵ 记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,; 当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.考点:等差数列的的性质,前n 项和公式,对数的运算.7、(2016年全国III 高考)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ. 【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 【解析】考点:1、数列通项n a 与前n 项和为n S 关系;2、等比数列的定义与通项及前n 项和为n S .8、(2016年浙江高考)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ; (II )若32n n a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N . 【试题分析】(I )先利用三角形不等式得1112n n a a +-≤,变形为111222n n n n na a ++-≤,再用累加法可得1122n n a a -<,进而可证()1122n n a a -≥-;(II )由(I )可得11222n m n m n a a --<,进而可得3224m n n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.(II )任取n *∈N ,由(I )知,对于任意m n >, 1121112122222222n m n n n n m m n m n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m n n n m a a -⎛⎫<+⋅ ⎪⎝⎭ 11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 3224m n ⎛⎫=+⋅ ⎪⎝⎭. 从而对于任意m n >,均有。
2016年高考数学真题全国卷试题汇编文科

2016年全国卷文科汇编一 集合与逻辑 复数【2016全国一文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(B )(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}【2016全国一文2】 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A ) (A )−3(B )−2(C )2(D )3【2016全国二文1】已知集合,则(D )(A ) (B ) (C ) (D )【2016全国二文2】设复数z 满足,则=(C ) (A )(B )(C )(D )【2016全国二文16】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_________1和3_______.【2016全国三文1】设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(C )(A ){48},(B ){026},, (C ){02610},,,(D ){0246810},,,,,【2016全国三文2】若43i z =+,则||zz =(D ) (A )1 (B )1- (C )43+i 55 (D )43i55-二 平面向量【2016全国一文13】设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = 23-. 【2016全国二文13】 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =__6-_________.【2016全国三文3】已知向量BA →=(12,BC →=,12),则∠ABC =(A )(A )30°(B )45°(C )60°(D )120°{123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},i 3i z +=-z 12i -+12i -32i +32i -三 三角函数解三角形【2016全国一文4】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=(D ) (ABC )2(D )3【2016全国一文6】将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(D )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)【2016全国一文12】(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(C )(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦【2016全国一文14】已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= 43- .【2016全国二文3】函数的部分图像如图所示,则(A )(A )(B )(C )(D )【2016全国二文11】 函数的最大值为(B ) (A )4 (B )5 (C )6 (D )7【2016全国二文15】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若,,a =1,则b =___2113_________. =sin()y A x ωϕ+2sin(2)6y x π=-2sin(2)3y x π=-2sin(2+)6y x π=2sin(2+)3y x π=π()cos 26cos()2f x x x =+-4cos 5A =5cos 13C=【2016全国三文6】若tanθ=13,则cos2θ=(D )(A )45-(B )15-(C )15(D )45【2016全国三文9】在ABC 中,B=1,,sin 43BC BC A π=边上的高等于则 (D)(A)310(B)(C)(D)【2016全国三文14】 函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移__3π____个单位长度得到.四 数列【2016全国一文17】(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,. (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和.【2016全国二文17】(本小题满分12分) 等差数列{}中, (I )求{}的通项公式; (II)设=[],求数列{}的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【2016全国三文17】(本小题满分12分)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式.n a 34574,6a a a a +=+=n a n b n a n b五 立体几何【2016全国一文7】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是(A )(A )17π (B )18π (C )20π (D )28π 【2016全国一文11】平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a 平面ABCD =m , a 平面11ABB A =n ,则m 、n 所成角的正弦值为 ( A )(A)2 (B)2(C)3 (D)13【2016全国二文4】体积为8的正方体的顶点都在同一球面上,则该球面的表面积为(A ) (A )(B )(C )(D ) 【2016全国二文7】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(C )(A )20π (B )24π (C )28π (D )32π【2016全国三文10】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(B ) (A)18+(B)54+ (C )90 (D )81【2016全国三文11】在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(B )12π323π8π4π(A )4π(B )9π2(C )6π(D )32π3【2016全国一文18】(本小题满分12分)如图,已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G . (I )证明:G 是AB 的中点;(II )在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【2016全国二文19】(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将沿EF 折到的位置.(I )证明:; (II)若求五棱锥体积.【2016全国三文19】(本小题满分12分)如图,四棱锥P-ABCD 中,PA⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点.(I )证明MN ∥平面PAB;(II )求四面体N-BCM 的体积.六 概率统计【2016全国一文3】 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个DEF 'D EF 'AC HD ⊥55,6,,'4AB AC AE OD ===='ABCEF D -PABD CGE花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(C )(A )13(B )12(C )23(D )56【2016全国二文8】 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(B ) (A )(B )(C )(D ) 【2016全国三文4】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
十年真题(2010-近年)高考数学真题分类汇编专题07数列理(含解析)(最新整理)

故选:C.
4.【2017 年新课标 1 理科 12】几位大学生响应国家的创业号召,开发了一款应用软件.为
激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码"的活动.这款软件的激活
码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中
第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件
9a5.
∴a100=a5+95d=98, 故选:C.
6.【2013 年新课标 1 理科 07】设等差数列{an}的前 n 项和为 Sn,若 Sm﹣1=﹣2,Sm=0,Sm+1=
3,则 m=(
)
A.3
B.4
C.5
D.6
【解答】解:am=Sm﹣Sm﹣1=2,am+1=Sm+1﹣Sm=3,
所以公差 d=am+1﹣am=1,
故选:D.
9.【2019 年新课标 1 理科 14】记 Sn 为等比数列{an}的前 n 项和.若 a1 ,a42=a6,则 S5 =. 【解答】解:在等比数列中,由 a42=a6,得 q6a12=q5a1>0, 即 q>0,q=3,
则 S5
,
故答案为:
10.【2018 年新课标 1 理科 14】记 Sn 为数列{an}的前 n 项和.若 Sn=2an+1,则 S6
m(a1+am)=0, (m+1)(a1+am+1)=3,
可得 a1=﹣am,﹣2am+am+1+am+1
0,
解得 m=5.
故选:C.
7.【2013 年新课标 1 理科 12】设△AnBn∁ n 的三边长分别为 an,bn,cn,△AnBn∁ n 的面积为 Sn,
十年(2014-2023)高考数学真题分项汇编文科专题5 数列小题(文科)(解析版)
n 项和
Sn,公差
d≠0, a1 d
1 .记
b1=S2,
bn+1=Sn+2–S2n, n N ,下列等式不可能成立的是
( )
A.2a4=a2+a6
B.2b4=b2+b6
C. a42 a2a8
D. b42 b2b8
【答案】D
解析:对于 A,因为数列an 为等差数列,所以根据等差数列的下标和性质,由 4 4 2 6 可得,
由 an
a1
n
1 d
0
可得 n
1
a1 d
,取
N0
1
a1 d
1 ,则当 n
N0
时, an
0,
所以,“an 是递增数列” “存在正整数 N0 ,当 n N0 时, an 0 ”;
若存在正整数 N0 ,当 n N0 时, an 0 ,取 k N 且 k N0 , ak 0 ,
假设 d
0 ,令 an
Sn =
1 2
An An+1 ×tan q Bn Bn+1 ,都为定值,所以 Sn+1 - Sn 为定值.故选 A.
3.(2022 高考北京卷·第 15 题)己知数列an 各项均为正数,其前 n 项和 Sn 满足 an Sn 9(n 1, 2,) .给
出下列四个结论:
①an 的第 2 项小于 3; ②an 为等比数列;
2a4 a2 a6 ,A 正确;
对于 B,由题意可知, bn1 S2n2 S2n a2n1 a2n2 , b1 S2 a1 a2 ,
∴ b2 a3 a4 , b4 a7 a8 , b6 a11 a12 , b8 a15 a16 .
∴ 2b4 2 a7 a8 , b2 b6 a3 a4 a11 a12 .
2016年全国高考数学试题分类汇编5数列(理)
1.已知等差数列{}n a 前9项的和为27,108a =,则100a =( ) A .100 B .99 C .98 D .972.公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)A .2018年B .2019年C .2020年D .2021年3.设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 4.无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得2n S S<(*n N ∈)恒成立的是( ) A .10a >, 0.60.7q << B .10a <, 0.70.6q -<<- C .10a >,0.70.8q <<D .10a <,0.80.7q -<<-5.“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个6.点列{}n A ,{}n B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,n N *∈,112||||n n n n B B B B +++=,2n n B B +≠,n N *∈.(P Q ≠表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +∆的面积,则( )A .{}n S 是等差数列B .{}2n S 是等差数列C .{}n d 是等差数列D .{}2n d 是等差数列7.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______.8.已知{}n a 是等差数列,{}n S 是其前n 项和,若2123a a +=-,5=10S ,则9a 的值是 . 9.数列{}n a 的前n 项和为n S ,若24S =,121n n a S +=+,n N *∈,则1a = ,5S = .10.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 11.数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意的n N *∈,{2,3}n S ∈,则k 的最大值为 .4 三、解答题:12.(2016年高考新课标Ⅱ卷)n S 为等差数列{}n a 的前n 项和,且1=1a ,728S =.记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(1)求111101b b b ,,;(2)求数列{}n b 的前1 000项和.13.(2016年高考新课标Ⅲ卷)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠. (1)证明{}n a 是等比数列,并求其通项公式; (2)若53132S = ,求λ.14.(2016年高考山东卷)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+(1)求数列{}n b 的通项公式;(2)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .15.(2016年高考四川理)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0q >,*n N ∈.(1)若22a ,3a ,22a +成等差数列,求{}n a 的通项公式;(2)设双曲线2221ny x a -=的离心率为n e ,且253e =,证明:121433n n n n e e e --++⋅⋅⋅+>16.(2016年高考天津理)已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的n N *∈,n b 是n a 和1n a +的等差中项.(1)设221n n n c b b +=-,*n N ∈,求证:{}n c 是等差数列;(2)设 1a d =,()2211nnn n k T b ==-∑,*n N ∈,求证:2111.2nk kT d =<∑17.(2016年高考浙江卷理)数列{}n a 满足112n n a a +-≤,*n N ∈. (1)证明:()1122n n a a -≥-,*n N ∈;(2)若32nn a ⎛⎫≤ ⎪⎝⎭,*n N ∈,证明:2n a ≤,*n N ∈.答案:一、选择题:C B C ;B C A二、填空题:6、20.、1与121、64、4 三、解答题:12.答:(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 13.答:(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 14.答:(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T . 15.答:(Ⅰ)1=n n a q -;(Ⅱ)详见解析. 16.答:(Ⅰ)详见解析(Ⅱ)详见解析 17.答:(I )证明见解析;(II )证明见解析.。
数列的通项公式及数列求和大题综合(学生卷)十年(2015-2024)高考真题数学分项汇编(全国通用)
专题20数列的通项公式及数列求和大题综合考点十年考情(2015-2024)命题趋势考点1等差数列的通项公式及前n项和(10年5考)2023·全国乙卷、2023·全国新Ⅰ卷、2021·全国新Ⅱ卷、2019·全国卷、2018·全国卷、2016·全国卷1.掌握数列的有关概念和表示方法,能利用与的关系以及递推关系求数列的通项公式,理解数列是一种特殊的函数,能利用数列的周期性、单调性解决简单的问题该内容是新高考卷的必考内容,常考查利用与关系求通项或项及通项公式构造的相关应用,需综合复习2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,能在具体的问题情境中识别数列的等差关系并能用等差数列的有关知识解决相应的问题,熟练掌握等差数列通项公式与前n项和的性质,该内容是新高考卷的必考内容,一般给出数列为等差数列,或通过构造为等差数列,求通项公式及前n项和,需综合复习3.掌握等比数列的通项公式与前n项和公式,能在具体的问题情境中识别数列的等比关系并能用等比数列的有关知识解决相应的问题,考点2等比数列的通项公式及前n项和(10年4考)2020·全国卷、2019·全国卷2018·全国卷、2017·全国卷考点3等差等比综合(10年6考)2022·全国新Ⅱ卷、2020·全国卷、2019·北京卷2017·北京卷、2017·全国卷、2016·北京卷2015·天津卷考点4数列通项公式的构造(10年9考)2024·全国甲卷、2024·全国甲卷、2023·全国甲卷2022·全国甲卷、2022·全国新Ⅰ卷、2021·天津卷2021·浙江卷、2021·全国乙卷、2021·全国卷2020·全国卷、2019·全国卷、2018·全国卷2016·山东卷、2016·天津卷、2016·天津卷2016·全国卷、2016·全国卷、2016·全国卷2015·重庆卷、2015·全国卷考点5数列求和(10年10考)2024·天津卷、2024·全国甲卷、2024·全国甲卷2023·全国甲卷、2023·全国新Ⅱ卷、2022·天津卷2020·天津卷、2020·全国卷、2020·全国卷2019·天津卷、2019·天津卷、2018·天津卷2017·天津卷、2017·山东卷、2016·浙江卷2016·山东卷、2016·天津卷、2016·北京卷2015·浙江卷、2015·全国卷、2015·天津卷熟练掌握等比数列通项公式与前n 项和的性质,该内容是新高考卷的必考内容,一般给出数列为等比数列,或通过构造为等比数列,求通项公式及前n 项和。
2016年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )A. {1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则=a( )A. 3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( )A.13 B.12 C. 23D. 564. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知a =,2c =,2cos 3A =,则b =( )A.B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C. 23D. 346. 将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=-7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π 8. 若0a b >>,01c <<,则( )A. log log a b c c <B. log log c c a b <C. cca b <D. ab c c>9. 函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D10. 执行如图的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足 ( )A. 2y x =B. 3y x =C. 4y x =D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.C.D.1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A. []1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13. 设向量a 1(),x x =+,b (1,2)=,且a ⊥b ,则x = .14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||AB =则圆C的面积为 .16. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和. 18.(本小题满分12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若19n =,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2C y px =(0)p >于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求||||OH ON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点,C D 在⊙O 上,且,,,A B C D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.{3,5}A B=a-=,由已知,得213/ 13数学试卷 第10页(共39页)数学试卷 第11页(共39页) 数学试卷 第12页(共39页)平面ABB1D平面1n所成角等于所成角的正弦值为5/ 13数学试卷 第16页(共39页)数学试卷 第17页(共39页) 数学试卷 第18页(共39页)【解析】由题意,0a b x =+,3【提示】根据向量垂直的充要条件便可得出0a b =,进行向量数量积的坐标运算即可得出关于的值.【考点】向量的数量积,坐标运算7/ 13作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.7z77z数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)18.【答案】(Ⅰ)因为P在平面ABC内的正投影为D,所以AB PD⊥.9/ 13数学试卷第29页(共39页)数学试卷第30页(共39页)11 / 13))(1,)+∞时,(,ln(2)),1,+a -,1)(ln(2),)a -+∞时,单调递增,在1,ln((2))a -单调递减)在(,1)-∞ln 2a ,则f数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)同理可证,'OO CD ⊥,所以//AB CD .13/ 13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料 (灿若寒星 精心整理制作)2016年高考数学文试题分类汇编数列一、选择题1、(2016年浙江高考)如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N , *1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则( )A.{}n S 是等差数列B.{}2n S 是等差数列C.{}n d 是等差数列D.{}2n d 是等差数列【答案】A二、填空题学科网1、(2016年江苏省高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .【答案】20.2、(2016年上海高考)无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和.若对任意的*n ÎN ,{23}n S Î,则k 的最大值为 .【答案】4三、解答题1、(2016年北京高考)已知{a n }是等差数列,{b n }是等差数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (Ⅰ)求{a n }的通项公式;(Ⅱ)设c n = a n + b n ,求数列{c n }的前n 项和. 解:(I )等比数列{}n b 的公比32933b q b ===, 所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d . 因为111a b ==,14427a b ==, 所以11327d +=,即2d =.所以21n a n =-(1n =,2,3,⋅⋅⋅).(II )由(I )知,21n a n =-,13n n b -=. 因此1213n n n n c a b n -=+=-+.从而数列{}n c 的前n 项和()11321133n n S n -=++⋅⋅⋅+-+++⋅⋅⋅+()12113213n n n +--=+-学科网2312n n -=+.2、(2016年江苏省高考)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0TS=;若{}12,,k T t t t =…,,定义12+kT t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C DD S S S +≥.(1)由已知得1*13,n n a a n N -=∙∈.于是当{2,4}T =时,2411132730r S a a a a a =+=+=. 又30r S =,故13030a =,即11a =. 所以数列{}n a 的通项公式为1*3,n n a n N -=∈. (2)因为{1,2,,}T k ⊆,1*30,n n a n N -=>∈,所以1121133(31)32k kk r k S a a a -≤+++=+++=-<. 因此,1r k S a +<.(3)下面分三种情况证明. ①若D 是C 的子集,则2C C DC D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令U E CC D =,U F D C C =则E φ≠,F φ≠,EF φ=.于是C E C DS S S =+,D F CDS S S =+,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤. 又k l ≠,故1l k ≤-,从而11121131311332222l k l k E F l a S S a a a ------≤+++=+++=≤=≤, 故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.3、(2016年山东高考)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (I )求数列{}n b 的通项公式;(II )令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 【解析】(Ⅰ)由题意得⎩⎨⎧+=+=322211b b a b b a ,解得3,41==d b ,得到13+=n b n 。
(Ⅱ)由(Ⅰ)知112)1(3)33()66(=-⋅+=++=n nn n n n n c ,从而 ]2)1(242322[31432+++⋅⋅⋅+⨯+⨯+⨯=n n n T利用“错位相减法”即得223+⋅=n n n T试题解析:(Ⅰ)由题意当2≥n 时,561+=-=-n S S a n n n ,当1=n 时,1111==S a ;所以56+=n a n ;设数列的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b db 321721111,解之得3,41==d b ,所以13+=n b n 。
(Ⅱ)由(Ⅰ)知112)1(3)33()66(=-⋅+=++=n nn n n n n c ,又n n c c c c T +⋅⋅⋅+++=321,即]2)1(242322[31432+++⋅⋅⋅+⨯+⨯+⨯=n n n T,所以]2)1(242322[322543+++⋅⋅⋅+⨯+⨯+⨯=n n n T ,以上两式两边相减得222143223]2)1(12)12(44[3]2)1(22222[3++++⋅-=+---+=+-+⋅⋅⋅+++⨯=-n n n n n n n n n T 。
所以223+⋅=n n n T4、(2016年上海高考)对于无穷数列{n a }与{n b },记A ={x |x =a ,*N n ∈},B ={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B =,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由; (2)若n a =2n 且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式.解析:(1)因为4∉A ,4∉B ,所以4∉A B ,从而{}n a 与{}n b 不是无穷互补数列. (2)因为416a =,所以1616420b =+=.数列{}n b 的前16项的和为()()23412202222++⋅⋅⋅+-+++()512020221802+⨯--=. (3)设{}n a 的公差为d ,d *∈N ,则1611536a a d =+=. 由136151a d =-≥,得1d =或2.若1d =,则121a =,20n a n =+,与“{}n a 与{}n b 是无穷互补数列”矛盾; 若2d =,则16a =,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.综上,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.5、(2016年四川高考)已知数列{a n }的首项为1, S n 为数列{a n }的前n 项和,S n+1=S n +1,其中q ﹥0,n ∈N +(Ⅰ)若a 2,a 3,a 2+ a 3成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线x 2﹣у2a n2 =1的离心率为e n ,且e 2=2,求e 12+ e 22+…+e n 2,解析:(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2323+a a a a ,,成等差数列,可得32232=a a a a ++,所以32=2,a a ,故=2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率22(1)11n n n e a q -=+=+.由2212e q =+=解得3q =.所以,22222(1)12222(1)2(11)(1+)[1]1[1]11(31).2n n n n ne e e q q q n q q n q n --++鬃?=+++鬃?+-=+++鬃?=+-=+-6、(2016年天津高考)已知{}n a 是等比数列,前n 项和为()n S n N ∈*,且6123112,63S a a a -==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,b n n N ∈*是2log n a 和21log n a +的等差中项,求数列(){}21nn b -的前2n 项和.解析:(Ⅰ)解:设数列}{n a 的公比为q ,由已知有2111211qa q a a =-,解之可得1,2-==q q ,又由631)1(61=--=q q a S n 知1-≠q ,所以6321)21(61=--a ,解之得11=a ,所以12-=n n a . (Ⅱ)解:由题意得21)2log 2(log 21)log (log 21212122-=+=+=-+n a a b n n n n n ,即数列}{n b 是首项为21,公差为1的等差数列. 设数列})1{(2n n b -的前n 项和为n T ,则2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-7、(2016年全国I 卷高考)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(I )求{}n a 的通项公式; (II )求{}n b 的前n 项和.解:(I )由已知,1221121,1,,3a b b b b b +===得1221121,1,,3a b b b b b +===得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-. (II )由(I )和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313.122313nn n S --==-⨯-8、(2016年全国II 卷高考)等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==, 所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n =1,2,3时,2312,15n n b +≤<=;当n =4,5时,2323,25n n b +≤<=; 当n =6,7,8时,2334,35n n b +≤<=;当n =9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.9、(2016年全国III 卷高考)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式.10、(2016年浙江高考)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈. (I )求通项公式n a ;(II )求数列{2n a n --}的前n 项和. 解析:(1)由题意得:1221421a a a a +=⎧⎨=+⎩,则1213a a =⎧⎨=⎩,又当2n ≥时,由11(21)(21)2n n n n n a a S S a +--=+-+=, 得13n n a a +=,所以,数列{}n a 的通项公式为1*3,n n a n N -=∈. (2)设1|32|n n b n -=--,*n N ∈,122,1b b ==. 当3n ≥时,由于132n n ->+,故132,3n n b n n -=--≥.设数列{}n b 的前n 项和为n T ,则122,3T T ==.当3n ≥时,229(13)(7)(2)351131322n n n n n n n T --+---+=+-=-, 所以,2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩.。