八年级数学第20届“希望杯”第1试试题

合集下载

八年级数学希望杯第1-22届试题汇总(含答案与提示)

八年级数学希望杯第1-22届试题汇总(含答案与提示)

希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

希望杯试题及答案初二

希望杯试题及答案初二

希望杯试题及答案初二希望杯数学竞赛是一项面向中学生的数学竞赛活动,旨在激发学生学习数学的兴趣,培养学生的数学思维能力。

以下是一份初二希望杯试题及答案的样例,供参考。

一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 2/3答案:B2. 如果一个等腰三角形的底边长为6,腰长为5,那么它的周长是多少?A. 16B. 17C. 18D. 19答案:C3. 一个数的平方根是它本身,这个数是?A. 0C. -1D. 以上都是答案:A4. 一个数的相反数是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A5. 一个数的绝对值是它本身,这个数是?A. 正数B. 负数C. 0D. 非负数答案:D6. 一个数的倒数是它本身,这个数是?A. 1B. -1C. 0D. 以上都不是答案:A和B7. 一个数的立方是它本身,这个数是?B. 1C. -1D. 以上都是答案:D8. 一个数的平方是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A和B9. 一个数的绝对值是它的相反数,这个数是?A. 正数B. 负数C. 0D. 非负数答案:B和C10. 一个数的平方根是它的相反数,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A和C二、填空题(每题3分,共30分)1. 一个数的平方是25,这个数是______。

答案:±52. 一个数的立方是-8,这个数是______。

答案:-23. 一个数的绝对值是5,这个数是______。

答案:±54. 一个数的倒数是1/3,这个数是______。

答案:35. 一个数的相反数是-3,这个数是______。

答案:36. 一个数的平方根是3,这个数是______。

答案:97. 一个数的立方根是2,这个数是______。

答案:88. 一个数的平方是-4,这个数是______。

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案一、选择题(每题2分,共20分)1. 已知x+y=5,x-y=1,求2x+3y的值。

A. 12B. 11C. 10D. 92. 一个数的平方等于该数本身,这个数可能是:A. 1B. -1C. 1或-1D. 03. 如果一个三角形的两边长分别是5和12,第三边长x满足三角形的三边关系,那么x的取值范围是:A. 7 < x < 17B. 2 < x < 14C. 5 < x < 13D. 12 < x < 154. 一个圆的半径为3,求圆的面积。

A. 28.26B. 9C. 18D. 365. 若a^2 + b^2 = 13,且a + b = 5,求ab的值。

A. 6B. 2C. 12D. 无法确定6. 一个等差数列的前三项分别为2,5,8,求第10项的值。

A. 27B. 29C. 21D. 227. 一个长方体的长、宽、高分别是2,3,4,求其体积。

A. 24B. 12C. 36D. 488. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 09. 一个直角三角形的两条直角边分别是3和4,求斜边的长度。

A. 5B. 6C. 7D. 810. 若a、b、c是三角形的三边,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是________。

12. 一个数的立方等于-27,这个数是________。

13. 一个数的平方根是4,这个数是________。

14. 一个数的倒数是2,这个数是________。

15. 一个圆的直径是10,这个圆的周长是________。

16. 若a、b互为倒数,则ab=________。

17. 一个数的平方是25,这个数是________。

18. 一个数的绝对值是3,这个数可能是________。

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。

解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。

代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。

答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。

求△ABC的面积。

解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。

底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。

答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。

解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。

将所有项移到一边得:3x² - 12x + 11 = 0。

对方程进行因式分解得:(x - 1)(3x - 11) = 0。

由此可得x = 1 或 x = 11/3。

答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。

已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。

解:由题意可推出ABCD为平行四边形,而AE = CD。

根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。

答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。

解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。

2009年第20届全国希望杯数学邀请赛数学初二第1试试卷

2009年第20届全国希望杯数学邀请赛数学初二第1试试卷

第二十届“希望杯”全国数学邀请赛(2009年)初二第一试一、选择题(每小题4分,共40分)1.在一次视力检查中,初二(1)班的50人中只有8人的视力达标.用扇形图表示视力检查结果,则表示视力达标的扇形的圆心角是()A.64.8ºB.57.6ºC.48ºD.16º2.如图,已知点B在反比例函数y=kx的图象上.从点B分别作x轴和y轴的垂线,垂足分别为A、C.若△ABC的面积是4,则反比例函数的解析式是()A.y=-8x B.y=8x C.y=-4x D.y=4x3.如果a+2ab+b=2,且b是有理数,那么()A.a是整数B.a是有理数C.a是无理数D.a可能是有理数,也可能是无理数4.复印纸的型号有A0、A1、A2、A3、A4等,它们有如下的关系:将上一个型号(例如A3)的复印纸在长的方向对折后得到两张下一型号(A4)的复印纸,且各种型号的复印纸的长与宽的比相等,那么这些型号的复印纸的长与宽的比约为()A.1.141∶1 B.1∶1 C.1∶0.618 D.1.732∶15.The number of integer solutions for the syetem of inequalities⎩⎨⎧x-2a≥0,3-2x>-1about x is just 6,then the range of value for real number a is ()A.-2.5<a≤-2 B.-2.5≤a≤-2 C.-5<a≤-4 D.-5≤a≤-4(integer solutions 整数解syetem of inequalities 不等式组the range of value 取值范围)6.若分式|x|-23x-2的值是负数,则x的取值范围是()A.23<x<2 B.x>23或x<-2C.-2<x<2且x≠23D.23<x<2或x<-27.在100到1000的整数中(含100和1000),既不是完全平方数,也不是完全立方数的有()A.890个B.884个C.874个D.864个8.如图,在正方形ABCD中,E是CD边的中点,点F在BC上,∠EAF=∠DAE,则下列结论中正确的是()A.∠EAF=∠F AB B.BC=3FCC.AF=AE+FC D.AF=BC+FC9.计算:33)7411()7411(-++,结果等于()A.58 B.387C.247D.32710.已知在代数式a+bx+cx2中,a、b、c都是整数,当x=3时,该式的值是2008;当x=7时,该式的值是2009,这样的代数式有()A CBD A .0个 B .1个 C .10个 D .无穷多个二、A 组填空题(每小题4分,共40分)11.某地区有20000户居民,从中随机抽取200户,调查是否已安装电话,结果如右表所示,则该地区已安装电话的户数大约是 .12.若14x +5-21x 2=-2,则6x 2-4x +5= .13.不等式x -1>2 x 的最大整数解是 .14.已知m 是整数,以4m +5、2m -1、20-m 这三个数作为同一个三角形三边的长,则这样的三角形有个.15.当x 依次取1,2,3, (2009)1 2, 1 3, 1 4,…, 1 2009时,代数式 x 21+x 2的值的和等于 .16.由直线y =x +2、y =-x +2和x 轴围成的三角形与圆心在点(1,1)、半径为1的圆构成的图形覆盖的面积等于 . 17.在Rt △ABC 中,∠C =90º,斜边AB 边上的高为h ,则两直角边的和a +b 与斜边及其高的和c +h 的大小关系是a +b c +h (填“>”、“=”、“<”). 18.The figure on the right is composed of square ABCD and triangle BCE ,where ∠BEC is right angle .Supposethe length of CE is a ,and the length of BE is b ,then the distance between point A and line CE equals to .(be composed of 由…组成 right angle 直角 length 长度 distance 距离)19.如图,在△ABC 中,AB >BC ,BD 平分∠ABC ,若BD 将△ABC 的周长分为4∶3的两部分,则△ABD与△BCD 的面积比等于 .20.如果将n 个棋子放入10个盒子内,可以找到一种放法,使每个盒子内都有棋子,且这10个盒子内的棋子数都不同;若将(n +1)个棋子放入11个盒子内,却找不到一种放法,能使每个盒子内都有棋子,并且这11个盒子内的棋子数都不同,那么整数n 的最大值等于 ,最小值等于 .三、B 组填空题(每小题8分,共40分)21.如果自然数a 与b (a >b )的和、差、积、商相加得27,那么a = ,b = . 22.若 a b +c = b c +a = ca +b ,则2a +2b +c a +b -3c= 或 .23.若关于x 的方程 1 x -1- a2-x = 2(a +1) x 2-3x +2无解,则a = 或 或 .24.对于正整数k ,记直线y =-k k +1x + 1k +1与坐标轴所围成的直角三角形的面积为S k ,则S k = ,S 1+S 2+S 3+S 4= .25.将 1 2, 1 3, 1 4,…, 1100这99个分数化成小数,则其中的有限小数有 个,纯循环小数有 个(纯循环小数是指从小数点后第一位开始循环的小数).【部分详解】1、解:扇形的圆心角=8÷50×360°=57.6°.故选B.2、解:由题意得:三角形的面积等于1/ 2 |k|,∴|k|=8,又∵反比例函数图象在四象限.∴k<0,∴k=-8,∴反比例函数的解析式是y=-8/ x .故选A.3、4、5、这六个整数解为1,0,-1,-2,-3,-4-5<2a<=-4,故选A6、7、解:在100到1000中(包括100和1000),完全平方的有100、121、144、169、196、225、256、289、324、361、400、441、484、529、576、625、676 729、784、841、900、961,共22个,完全立方的有125、216、343、512、729、1000,共6个,729既是完全平方数,又是立方数,∴既不是完全平方数,也不是完全立方数个数为901-22-6+1=874.故选C.8、9、10、解:根据题意,得a+3b+9c=2008,①a+7b+49c=2009,②,由②-①,得4b+40c=1,③∵a、b、c都是整数,∴③的左边是4的倍数,与右边不等,所以,这样的代数式不存在;故选A.11、解:安装的频率=95/ 200 ,∴该地区已安装电话的户数大约=20000×95 /200 =9500.故答案为:9500.12、13、14、解:根据三角形两边之和大于第三边,可得(4m+5)+(2m-1)>20-m,7m>16①;(4m+5)+(20-m)>2m-1,m>-26②;(2m-1)+(20-m)>4m+5,3m<14③.整理16/7 <m<14/ 3 .∵m取整数∴m=3或4.故这样的三角形有2个.故答案为:2.15、16、17、18、19、20、解:①对于n值为最大的情况,从已知n值最小为出发点,在增加一个盒子之后若出现使得各个盒子中的棋子数不相同,则应该有1、2、3、4、5、6、7、8、9、10、11.而1+2+3+4+5+6+7+8+9+10+11=66,如果n=65,n+1=66,就能够找到11个不重复且不为0的方法了,所以最大值是64个②对于n值最小的情况,必有一盒子中放有1棋子,而其它的也都各不相同,为使总棋子数最小则其它应依次为2、3、4、5、6、7、8、9、10,共有55 颗,若再添一颗棋子则找不到各个不同的方法,所以n值最小为55.故答案为:64、55.21、22、23、24、25、解:分母中只含有质因数2的数是:2,4,8,16,32,64;分母中只含有质因数5的数是:5,25;分母中只含有质因数2和5的数是:10,20,40,50,80,100;一共有:6+2+6=14(个);答:能化成有限小数的分数有14个.故答案为:14.1/2,1/4,1/5,1/8,1/10.1/16.1/20,1/25,1/32,1/40,1/50,1/64,1/80,1/100分母分解的质因数中不含2或5,则该分数为纯循环小数100以内的质数为25个,去掉2和5还有13个还有9,21,33,39,49,51,57,63,69,77,87,91,93,99共14个所以共有39个。

初二组希望杯试题及答案

初二组希望杯试题及答案

初二组希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长是直径的π倍B. 圆的周长是半径的2π倍C. 圆的周长是直径的2倍D. 圆的周长是半径的π倍答案:B2. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 以下哪个方程的解是x=2?A. x+2=4B. x-2=0C. 2x=4D. x^2=4答案:C4. 一个三角形的两边长分别为3和4,第三边长x满足的条件是?A. 1<x<7B. 1<x<7且x≠3.5C. 7<x<11D. 以上都不对答案:B5. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A7. 一个数的相反数是-3,这个数是?A. 3C. 0D. 以上都不对答案:A8. 以下哪个选项是正确的?A. 2x+3=7的解是x=2B. 3x-5=10的解是x=5C. 4x+6=18的解是x=3D. 以上都不对答案:C9. 一个等腰三角形的底边长为5,两腰长为6,那么这个三角形的周长是?A. 17B. 18D. 20答案:A10. 以下哪个选项是正确的?A. 一个数的立方根是它本身B. 一个数的平方根是它本身C. 一个数的立方根和平方根是同一个数D. 以上都不对答案:A二、填空题(每题4分,共40分)11. 一个圆的半径是3,那么它的面积是________。

答案:9π12. 一个数的平方是16,那么这个数是________。

答案:±413. 一个三角形的两边长分别为4和5,第三边长x满足的条件是________。

答案:1<x<914. 一个数的绝对值是4,这个数可能是________。

答案:4或-415. 一个等腰三角形的底边长为6,两腰长为8,那么这个三角形的周长是________。

第一届“枫叶新希望杯”全国数学大赛八年级试题(初赛)

第一届“枫叶新希望杯”全国数学大赛八年级试题(初赛)

第一届“枫叶新希望杯”全国数学大赛八年级试题(初赛)一、填空题1521a a +有意义,则a 的取值范围是2.若x y 、为实数,且y 34x y +=3a ,小数部分为b ,则334a b a b+=++- 4.ABC V 的三边长为a b c 、、,且满足等式222a b c ab bc ac ++=++,则ABC V 的形状是三角形.5.已知1abc =,则111111ab a bc b ac c ++=++++++ 6.如图,在ABC V 中,50,,BAC BE BD CF CD ∠=︒==,则EDF ∠=7.若关于m 的方程255m b +-=恰有两个不同的解,则b 的取值范围为8.凸n 边形内角与外角和的总和为1440︒,则n 等于;这个凸n 边形有条对角线. 9.有四个数每次任选3个,算出它们的平均数,再加上剩下的一个数,用这样的方法计算了4次,分别得到46403226、、、,原来四个数分别是、、、.101m =-,则m =二、解答题11.已知:如图,把矩形ABCD 对折,设折痕为MN ,再把B 点叠在折痕线上,得到Rt ABE △,沿着EB 线折叠,所得到的EAF △是什么三角形?请说明理由.12.如图所示,在矩形ABCD 中,126AB cm BC cm =,=,点P 沿AB 边从点A 开始向点B 以2/cm s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1/cm s 的速度移动,如果点P Q ,同时出发,用t s 表示移动的时间(06t ≤≤).(1)当t 为何值时,QAP ∆为等腰三角形?(2)求四边形QAPC 的面积,并探索一个与计算结果有关的结论.13.某校初二年级有甲、乙、丙三个班,甲班比乙班多4名女同学,乙班比丙班多1名女同学.期中考试后,学校重新分班,按要求甲班一部分同学被分到乙班,乙班一部分同学被分到丙班,丙班一部分同学被分到甲班,分完后发现三个班女同学的人数恰好相等.已知丙班被分到甲班的同学中有2名女同学.甲、乙两班分别有多少名女同学被分到其他班? 14.张老师家的电话号码是八位数,这个数的前四位数字相同,后面五位数字是连续的自然数,这八个数字之和恰好等于号码的最后二位数.请你根据上述条件写出张老师家的电话号码.15.将正偶数按下表排成五列.根据上面排列规律,2004应在第几行第几列?说明理由.。

希望杯初二试题及答案

希望杯初二试题及答案

希望杯初二试题及答案一、选择题(每题3分,共30分)1. 已知a、b、c是三角形的三边,下列哪个条件不能保证a、b、c构成三角形?A. a + b > cB. a + c > bC. b + c > aD. a = b = c答案:D2. 下列哪个数是无理数?A. 2B. πC. 0.33333...D. √4答案:B3. 如果x和y互为相反数,那么x + y的值是多少?A. 0B. 1C. -1D. 2答案:A4. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:C5. 下列哪个选项是正确的不等式?A. 5 > 3B. 2 < 2C. 0 ≤ 0D. -3 ≥ 0答案:C6. 一个正数的倒数是它本身,这个正数是多少?A. 1B. 2C. 0.5D. 0答案:A7. 一个等腰三角形的底角是45度,那么顶角是多少度?A. 45度C. 135度D. 180度答案:B8. 下列哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 + 4x + 4 = (x + 2)^2C. x^2 - 9 = (x - 3)^2D. x^2 + 2x + 1 = (x + 1)^2答案:D9. 一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 20πC. 30π答案:B10. 下列哪个选项是正确的比例关系?A. 3:4 = 6:8B. 2:3 = 4:6C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题3分,共30分)11. 如果一个数的立方是-8,那么这个数是______。

答案:-212. 一个数的绝对值是5,那么这个数可以是______或______。

答案:5 或 -513. 一个等差数列的首项是3,公差是2,那么第5项是______。

答案:1114. 一个等比数列的首项是2,公比是3,那么第3项是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B F C E D A B C O y x 山东省滨州市无棣县埕口中学八年级数学第20届“希望杯”第1试
试题
一、选择题(每小题4分,共40分)
1.在一次视力检查中,初二(1)班的50人中只有8人的视力达标.用扇形图表示视力检查结果,则表示视力达标的扇形的圆心角是( )
A .64.8º
B .57.6º
C .48º
D .16º
2.如图,已知点B 在反比例函数y = k x 的图象上.从点B 分别作x 轴和y 轴的垂线,垂足分别为A 、C .若△ABC 的面积是4,则反比例函数的解析式是( ) A .y =- 8 x B .y = 8 x C .y =- 4 x D .y = 4 x
3.如果a + 2 ab +b = 2 ,且b 是有理数,那么( )
A .a 是整数
B .a 是有理数
C .a 是无理数
D .a 可能是有理数,也可能是无理数
4.复印纸的型号有A0、A1、A2、A3、A4等,它们有如下的关系:将上一个型号(例如A3)的复印纸在长的方向对折后得到两张下一型号(A4)的复印纸,且各种型号的复印纸的长与宽的比相等,那么这些型号的复印纸的长与宽的比约为( )
A .1.141∶1
B .1∶1
C .1∶0.618
D .1.732∶1
5.The number of integer solutions for the syetem of inequalities ⎩⎨⎧x -2a ≥0,
3-2x >-1 about
x is just 6,then the range of value for real number a is ( )
A .-2.5<a ≤-2
B .-2.5≤a ≤-2
C .-5<a ≤-4
D .-5≤a ≤-4 (integer solutions 整数解 syetem of inequalities 不等式组 the range of value 取值范围)
6.若分式|x |-23x -2
的值是负数,则x 的取值范围是( ) A . 2 3<x <2 B .x > 2 3
或x <-2 C .-2<x <2且x ≠
2 3 D . 2 3<x <2或x <-2 7.在100到1000的整数中(含100和1000),既不是完全平方数,也不是完全立方数的有( )
A .890个
B .884个
C .874个
D .864个
8.如图,在正方形ABCD 中,E 是CD 边的中点,点F 在BC 上,
∠EAF =∠DAE ,则下列结论中正确的是( )
A .∠EAF =∠FA
B B .B
C =3FC
C .AF =AE +FC
D .AF =BC +FC 9.计算:3
3)7411()7411(-++,结果等于( ) A .58 B .387 C .247 D .327
10.已知在代数式a +bx +cx 2中,a 、b 、c 都是整数,当x =3时,该式的值是2008;当x
=7时,该式的值是2009,这样的代数式有( )
A B E C D A C B D A .0个 B .1个 C .10个 D .无穷多个
二、A 组填空题(每小题4分,共40分)
11.某地区有20000户居民,从中随机抽取200户,调
查是否已安装电话,结果如右表所示,则该地区已
安装电话的户数大约是 .
12.若14x +5-21x 2=-2,则6x 2-4x +5= . 13.不等式x -1> 2 x 的最大整数解是 .
14.已知m 是整数,以4m +5、2m -1、20-m 这三个数作为同一个三角形三边的长,则这样
的三角形有 个.
15.当x 依次取1,2,3,…,2009, 1 2, 1 3, 1 4,…, 1 2009时,代数式 x 2 1+x
2的值的和等于 .
16.由直线y =x +2、y =-x +2和x 轴围成的三角形与圆心在点(1,1)、半径为1的圆构
成的图形覆盖的面积等于 .
17.在Rt △ABC 中,∠C =90º,斜边AB 边上的高为h ,则两直角边的和a +b 与斜边及其高
的和c +h 的大小关系是a +b c +h (填“>”、“=”、“<”).
18.The figure on the right is composed of square ABCD and triangle BCE ,where ∠
BEC is right angle .Suppose th e length of CE is a ,and the length of BE is b ,t hen the distance between point A and line CE equals to .
(be composed of 由…组成 right angle 直角 length 长度 distance 距离)
19.如图,在△ABC 中,AB >BC ,BD 平分∠ABC ,若BD 将△ABC 的周长分为4∶3的两部分,
则△ABD 与△BCD 的面积比等于 . 20.如果将n 个棋子放入
10个盒子内,可以找到一种放法,使每个盒子内都有棋子,且这10个盒子内的棋子数都不同;若将(n +1)个棋子放入11个盒子内,却找不到一种放法,能使每个盒子内都有棋子,并且这11个盒子内的棋子数都不同,那么整数n 的最大值等于 ,最小值等于 .
三、B 组填空题(每小题8分,共40分)
21.如果自然数a 与b (a >b )的和、差、积、商相加得27,那么a = ,b = .
22.若 a b +c = b c +a = c a +b ,则2a +2b +c a +b -3c
= 或 . 23.若关于x 的方程 1 x -1- a 2-x = 2(a +1) x 2-3x +2
无解,则a = 或 或 . 24.对于正整数k ,记直线y =-
k k +1x + 1 k +1与坐标轴所围成的直角三角形的面积为S k ,则S k = ,S 1+S 2+S 3+S 4= .
25.将 1 2, 1 3, 1 4,…, 1 100
这99个分数化成小数,则其中的有限小数有 个,纯循环小数有 个(纯循环小数是指从小数点后第一位开始循环的小数).
电话安装情况 动迁户 原住户 已安装 60 35 未安装 45 60。

相关文档
最新文档