排列组合概率

合集下载

排列组合概率与算法

排列组合概率与算法
2)系数问题:(1)二项式系数及其性质
3)整除与余数问题问题 4)近似问题
附:排列数组合数部分性质:
1
Anm
n
Am1 n 1
n m 1
Am1 n
A A 2 m2 n n2
Ann Amm
n! m!
Cnm
Amm
n, m N , n m
2 n 1! n 1 n! n n!n! n n! n 1!n!
2)知概率求概率问题:弄清复合事件的类型
事件和(互斥事件只是一个发生)、事件积 (相互独立事件同时发生)、n次独立实验中某 事件发生k次的概率
例、电报信号由“.”与“-”组成,设发报台传送 “.”与“-”之比为3:2,由于通讯系统存在干扰, 引起失真,传送“.”时失真的概率为0.2(传送 “.”而收到“-”),传送“-”时失真的概率为0.1. 若收报台收到信号“.”,求发报台确实发出“.” 的概率
N 0,1 u N u, 2
排列组合与排列数和组合数
复习排列、组合的定义及排列数和 组合数的计算
一、基本内容 1、计数原理:加法原理(分类)与乘法原理(分步) 使用原则:先分类后分步 应用示例 流量问题等\染色、花坛问题等等
2、排列与组合 1)排列与组合定义
2)排列数与组合数
公式:Anm=
Cnm=
注意问题:(1) 上下标的特点 (2)定义值 (3)排列 数与组合数性质;必胜429页例1、2
2、概率及其计算
1)等可能事件的概率计算方法
2)几何概型的计算方法
3)条件概率及其计算
4)连续型随机事件的概率的计算:积分
3、基本公式
1)古典概率
PA
m n
2)互斥事件的概率 PA B PA PB

五年级数学秘籍掌握正确的排列组合和概率计算技巧

五年级数学秘籍掌握正确的排列组合和概率计算技巧

五年级数学秘籍掌握正确的排列组合和概率计算技巧五年级数学秘籍:掌握正确的排列组合和概率计算技巧在数学学科中,排列组合和概率是关键的概念和技巧。

掌握这些技巧对于五年级的学生来说至关重要,不仅可以帮助他们解决一些实际生活中的问题,还可以在将来的数学学习中打下坚实的基础。

本文将为大家介绍正确的排列组合和概率计算技巧,希望能帮助五年级的学生在数学学习中取得更好的成绩。

一、排列组合的基本概念排列和组合是数学中的两个重要概念,它们在很多数学问题的解决中起着至关重要的作用。

排列是指从若干不同元素中按照一定的顺序选取若干元素进行排列,而组合是指从若干不同元素中无序地选取若干元素进行组合。

以一个经典问题为例:班级里有5个学生,要从中选取3个学生组成一个小组,问有多少种不同的组合方式?这个问题可以用组合的概念进行解决,即从5个学生中选取3个学生进行组合,即C(5, 3) = 10种不同的组合方式。

二、排列组合的计算方法在排列组合的计算中,有一些基本的计算方法和公式可以帮助我们快速准确地计算出结果。

1. 排列的计算公式:对于n个元素中选取k个元素进行排列,排列的计算公式为A(n, k) = n! / (n-k)!其中,n! 表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1。

回到之前的问题,从5个学生中选取3个学生进行排列,即A(5, 3) = 5! / (5-3)! = 5! / 2! = 60种不同的排列方式。

2. 组合的计算公式:对于n个元素中选取k个元素进行组合,组合的计算公式为C(n, k) = n! / (k! * (n-k)!)根据之前的问题,从5个学生中选取3个学生进行组合,即C(5, 3) = 5! / (3! * (5-3)!) = 10种不同的组合方式。

三、概率的基本概念概率是数学中的一个重要概念,它用来描述某个事件在重复试验中出现的可能性大小。

概率的计算是通过将某个事件发生的次数除以总的试验次数得到的。

高中数学排列组合及概率的基本公式、概念及应用

高中数学排列组合及概率的基本公式、概念及应用

高中数学排列组合及概率的基本公式、概念及应用1 分类计数原理(加法原理):12n N m m m L.分步计数原理(乘法原理):12n N m m m L.2 排列数公式:m nA =)1()1(m n n n =!!)(m nn .(n ,m ∈N *,且mn ).规定1!0.3 组合数公式:mn C=m n m mA A =m m n n n 21)1()1(=!!!)(m n m n (n ∈N *,m N ,且m n ).组合数的两个性质:(1)mn C=m n nC;(2) m n C+1m nC=mn C1.规定10nC.4 二项式定理nn nrrn r nn nn nnnnbC ba C baC ba C a Cb a222110)(;二项展开式的通项公式rrn r nrb a C T 1)210(n r ,,,.2012()()nnn f x ax b a a xa xa x L 的展开式的系数关系:012(1)na a a a f L;012(1)(1)nna a a a f L;0(0)a f 。

5 互斥事件A ,B 分别发生的概率的和:P(A +B)=P(A)+P(B).n 个互斥事件分别发生的概率的和:P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).6 独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B).n 个独立事件同时发生的概率:P(A 1·A 2·…·A n )=P(A 1)·P(A 2)·…·P(A n ).7 n 次独立重复试验中某事件恰好发生k 次的概率:()(1).kk n kn nP k C P P 8 数学期望:1122n nEx P x P x P LL数学期望的性质(1)()()E a b aE b . (2)若~(,)B n p ,则E np .(3)若服从几何分布,且1()(,)k P k g k p qp ,则1E p .9方差:2221122n nDx Ep x Ep x Ep LL标准差:=D .方差的性质:(1)2D a ba D ;(2)若~(,)B n p ,则(1)D np p .(3)若服从几何分布,且1()(,)k P k g k p qp ,则2q Dp.方差与期望的关系:22DE E.10正态分布密度函数:22261,,26xf x ex ,式中的实数μ,(>0)是参数,分别表示个体的平均数与标准差.对于2(,)N ,取值小于x 的概率:xF x .12201x x P x xP x x x P 11)(x f 在0x 处的导数(或变化率):0000()()()limlimx x xxf x x f x yf x yx x .瞬时速度:00()()()limlimttss tt s t s t t t .瞬时加速度:()()()limlimttvv tt v t av t tt.12函数)(x f y 在点0x 处的导数的几何意义:函数)(x f y在点0x 处的导数是曲线)(x f y在))(,(00x f x P 处的切线的斜率)(0x f ,相应的切线方程是))((000x x x f y y.13 几种常见函数的导数:(1)0C (C 为常数).(2) 1()()nn x nx nQ .(3) x x cos )(sin .(4) x x sin )(cos . (5) xx 1)(ln ;1(log )log a a x e x .(6) xxe e )(; a a a xxln )(.14 导数的运算法则:(1)'''()uv uv .(2)'''()uv u vuv .(3)'''2()(0)uu v uvv vv.15 判别)(0x f 是极大(小)值的方法:当函数)(x f 在点0x 处连续时,(1)如果在0x 附近的左侧0)(x f ,右侧0)(x f ,则)(0x f 是极大值;(2)如果在0x 附近的左侧0)(x f ,右侧0)(x f ,则)(0x f 是极小值.16 复数的相等:,a bi c di ac bd .(,,,a b c dR )17 复数za bi 的模(或绝对值)||z =||a bi =22ab .18 复平面上的两点间的距离公式:22122121||()()d z z x x y y (111z x y i ,222z x y i ).19实系数一元二次方程的解实系数一元二次方程20axbxc,①若240b ac ,则21,242bbacx a ;②若240b ac ,则122bx x a;③若240bac,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根22(4)(40)2b bac ixbac a.20解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.21解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?22排列数公式是:组合数公式是:排列数与组合数的关系是:m nm nCm P !组合数性质:m nC =m n nCm nC+1m nC=m n C1nr r nC=n21121r n r n r r r r r rCC CCC二项式定理:nn nrrn r nn nn nnnnbC baC b aC b a C a C b a 222110)(二项展开式的通项公式:rrn r nrb aC T 1)210(n r,,,概率统计23有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n 次实验中恰有k 次发生的概率,但要注意公式的使用条件。

排列组合概率题解题技巧

排列组合概率题解题技巧

排列组合概率题解题技巧排列组合概率题解题技巧有哪些?怎么样解决这类问题?下面是小编为大家整理的关于排列组合概率题解题技巧,希望对您有所帮助。

欢迎大家阅读参考学习!排列组合概率题解题技巧1.排列、组合、概率与错位公式2.排列组合概率解题思路——分类法3.例题1:繁琐的计算导致正确率变低4.例题2:通过选项思考暴力的可能性5.例题3:极为简单,一半做错的题6.例题4:分不同情况考虑安排方案7.例题5:分不同情况考虑安排方案8.例题6:理解排列组合题的关键一、排列、组合、概率与错位公式「数量关系」板块中的「排列、组合、概率」方面的题目每年必考、国考省考都会考,而此类题的难度一般较高,因此掌握它们的解题方法是非常有必要的。

总体来说,此类题目的公式非常简单,大致只有三个半,即排列公式、组合公式、概率公式和错位排列公式。

(1)排列公式A(总个数,选出排列的个数)特点是每个个体有「排列」的独特性,谁先选、谁后选会影响结果。

例如5个人选3个排队,5个项目选3个先后完成,两种情况的运算均为:A(5,3)=5×4×3=60种方式(2)组合公式C(总个数,选出组合的个数)特点是每个个体没有「排列」的独特性,谁先选、谁后选都不影响结果。

例如5个人选3个参加比赛,5个项目选3个于今年内完成(不要求完成顺序),则运算均为:C(5,3)=C(5,2)=5×4÷(1×2)=10种方式注意C(5,3)一般要转换为C(5,2),其原因是:C(5,3)=5×4×3÷(1×2×3)=5×4÷2,中间要约去3,因此可能会多花两三秒钟,故要尽量节约时间。

注:排列组合公式很好记忆,由于公考中考察的「排列组合概率」题的数值不会很大,因此在实际考试中,直接在纸上用笔列草稿即可:总数×(总数-1)×(总数-2)×……一直让相乘数字的个数达到「选出的个数」,即为排列公式;再从1开始乘,乘到「选出的个数」,用排列公式得出的结果除以该数即为「组合公式」。

高数2-排列组合概率论

高数2-排列组合概率论

例10 从5个男生3个女生中选出3个学生组 团参加合唱比赛,要求选出的学生中至多 有1个女生,有多少种不同的组团方式? 解:分两种情况考虑:一是没有1个女生; 二是恰有1个女生.
5 43 5 4 3 40 C C C C 3 2 1 2 1 1
3 5 0 3 2 5 1 3
概率论初步
• • • • 随机事件 事件的概率 条件概率、乘法公式、独立性 一维随机变量及其数字特征
• 确定性现象 • 随机现象
随机试验
在一定条件下必然发生某种结果的现象; 在一定条件下不能确定发生某种结果的现象.
• 随机试验
对随机现象进行观察或实验称为(随机)试验: ① 相同条件下可以重复进行; ② 每次试验的可能结果不止一个,并且能事 先明确试验的所有可能结果; ③ 每次试验在其最终结果揭晓之前,无法预 知会发生哪一个可能的结果.
历年试题——概率论初步之1110
随机事件A与B为互不相容事件,则 P(AB) = ( D ) A.P(A) + P(B) B.P(A)P(B) C.1 D.0 解:因为随机事件A与B为互不相容事件; 所以 P(A + B) = P(A) + P(B) 因为 P(A + B) = P(A) + P(B) P(A)P(B) 所以 P(AB) = 0
5 P5 5! 5 4 3 2 1 120
例5 数字1、2、3、4、5可以排成多少个不 同的3位偶数? 解:按先排个位,再排百位和十位的顺序 排列,根据乘法原理进行计算
P P 2 4 3 24
1 2 2 4
组合
从 n 个不同元素里,任取 m (1 m n )个元 素组成一组,叫做从 n 个不同元素里取出 m 个元素的一个组合.从 n 个不同元素取 出 m (1 m n )个元素的所有组合的个数, 叫做 n 个不同元素取出 m 个元素的组合数, m 记作 C n .

高中数学排列组合概率统计

高中数学排列组合概率统计

排列组合:1.排列及计算公式.排列及计算公式从n 个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列;从n 个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号用符号 p(n,m)表示. p(n,m)=n(n-1)(n-p(n,m)=n(n-1)(n-2)……(n 2)……(n 2)……(n-m+1)= n!/(n-m)!(-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式.组合及计算公式从n 个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合;从n 个不同元素中取出m(m m(m≤n)≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式.其他排列与组合公式从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这n 个元素的全排列数为个元素的全排列数为 n!/(n1!*n2!*...*nk!). k 类元素,每类的个数无限,从中取出m 个元素的组合数为c(m+k-1,m). 排列(Pnm(n 为下标,m 为上标))Pnm=n×(n-1)(n-m+1);Pnm=n !/(n-m )!(注:!是阶乘符号);Pnn (两个n 分别为上标和下标)分别为上标和下标) =n !;0!=1;Pn1(n 为下标1为上标)=n 组合(Cnm(n 为下标,m 为上标)) Cnm=Pnm/Pmm Cnm=Pnm/Pmm ;;Cnm=n Cnm=n!!/m /m!(!(!(n-m n-m n-m)!;)!;)!;Cnn Cnn Cnn(两个(两个n 分别为上标和下标)分别为上标和下标) =1 =1 =1 ;;Cn1Cn1((n 为下标1为上标)为上标)=n =n =n;;Cnm=Cnn-m排列定义 从n 个不同的元素中,取r 个不重复的元素,按次序排列,称为从n 个中取r 个的无重排列。

4排列组合(概率问题)

四.排列组合(概率问题)
• 特点: • (1)从千差万别的实际问题中抽象出几种特 定的数学模型,需要较强的抽象思维能力; • (2)限制条件有时比较隐晦,需要我们对问 题中的关键性词(特别是逻辑关联词和量词) 准确理解;有时候仅仅是一二个文字描述不 同,导致完全不同的结果。 • (3)计算方案是否正确,往往不可用直观方 法来检验,要求我们搞清概念、原理,并具 有较强的分析能力。
• G10-46.某单位订阅了30份学习材料发放给3个 部门,每个部门至少发放9份材料。问一共有多 少种不同的发放方法? ( ) • A. 7 B. 9 C.10 D.12 • 【解析】C。经典的排列组合题,使用“插空 法”。首先每个部门发8份材料(共计24份), 还剩6份,插入2个空格(头尾不能插入)。 2 C • 即 5 10。 • 插空法是排列组合的经典方法,需要熟记。 • 追问:10份材料发给3个部门,有多少种不同的 分发?(有的部门可以不发)
• G10-50.一公司销售部有4名区域销售经理, 每人负责的区域数相同,每个区域都正好有两 名销售经理负责,而任意两名销售经理负责的 区域只有1个相同。问这4名销售经理总共负责 多少个区域的业务?( ) • A.12 B.8 C.6 D.4
• 【解析】C。排列组合,可以看为从四人中任 意选择两人分配,即C2 4=6。
妨求其逆事件。

_
• 二、两个基本计数原理及应用 • (1)加法原理和分类计数法 每一类中的每一种方法都可以独立地完成 此任务;两类不同办法中的具体方法,互不相 同(即分类不重);完成此任务的任何一种方法, 都属于某一类(即分类不漏) • (2)乘法原理和分步计数法 任何一步的一种方法都不能完成此任务, 必须且只须连续完成这n步才能完成此任务;各 步计数相互独立;只要有一步中所采取的方法 不同,则对应的完成此事的方法也不同 • 错位排 0,1,2,9,44,265

高二数学排列组合概率PPT课件


轮船2
第1页/共64页
问题2 某人从甲地出发,经过乙地到达丙地,从甲 地到乙地有3条路可走,从乙地到丙地有2条路可走。那 么,从甲地到丙地共有多少种不同的走法?
B
a


A

C
b
显然,从甲地经过乙地到丙地的不同走法,正好是完成两个 步骤的方法种数的乘积,即3×2=6(种)
第2页/共64页
由问题1可得 分类计数原理: 若完成一件事有n类办法,在第一类办法中有k1种
N=3×2=6
第6页/共64页
单击鼠标继续
1.在读书活动中,指定不同的政治书3本、文艺书5本、 科技书7本,某同学任意选读其中1本,共有多少种不同 的选法?
2.某班有男三好学生5人,女三好学生4人,从中任选1 人去领奖,共有多少种不同的选法?从中任选男女三好 学生各1人去参加座谈会,共有多少种不同的选法?
第8页/共64页
扩展:快速调整魔方
问题1 北京、上海、广州3个民航站之间的直达航线, 需要准备多少种不同的飞机票?
这个问题,就是从3个民航站中,每次取出2个,按 照起点在前、终点在后的顺序排列,求一共有多少种不 同排法的问题。
起点站 北京 上海 广州
终点站
上海 广州
北京 广州
北京 上海
飞机票
北京→上海 北京→广州
N k1 k2 ... kn 种不同的方法。
第3页/共64页
例题解析
例1 书架上层放有5本不同的语文书,中层放有6本不 同的数学书,下层放有4本不同的外语书。求:
(1)从中任取1本,有多少种不同取法? (2)从中任取语文、数学和外语书各1本,有多少种 不同的取法?
解 (1)从书架上任取1本书,有三类办法:第一类办法是从上层取

排列组合条件概率_概述说明以及解释

排列组合条件概率概述说明以及解释1. 引言1.1 概述: 在概率论中,排列组合条件概率是一种重要的计算方法,它涉及到排列组合的基础知识和条件概率概念。

通过理解排列组合的概念和条件概率的计算方法,我们可以更好地分析事件之间的关系,并作出准确的推断和预测。

1.2 文章结构: 本文将首先介绍排列组合的基础知识,包括什么是排列组合、排列与组合的区别以及其应用领域。

接着将详细阐述条件概率的定义、计算方法和与独立性的关系。

然后将探讨排列组合在条件概率中的具体应用,并通过实例分析展示其计算过程和结果。

最后,文章将总结主要内容和结论,展望未来研究方向,并给出结束语。

1.3 目的: 本文旨在帮助读者深入了解排列组合条件概率的理论知识和实际运用,在学习、工作或研究中能够灵活运用这一方法进行问题求解和决策。

通过阅读本文,读者将能够掌握排列组合条件概率的相关概念、原理和应用技巧,提高数学分析和推理能力。

排列组合是组合数学中的一个重要概念,它涉及到对元素进行有序或无序的排列和选择。

在排列中,我们考虑元素的先后顺序,而在组合中则只考虑元素的选择而不考虑顺序。

例如,假设有三个数字1、2、3,在排列中可能会有123、132、213、231、312和321这六种不同的排列方式;而在组合中只有123这一种选择方式。

排列与组合之间的主要区别在于是否考虑元素的排列顺序。

在实际问题中,通常需要根据具体情况来确定使用排列还是组合。

排列通常用于涉及具体次序或位置信息的问题,如密码锁密码的可能性计算;而组合则更多用于涉及选取对象数量而不考虑次序的问题,比如从一组人员当中选出一个小组成员。

排列和组合都在各种领域得到广泛应用。

在计算机科学和信息技术领域,排列和组合用于数据压缩、加密算法等方面;在统计学和概率论领域,排列和组合是条件概率、事件独立性等问题的基础;在经济学和管理学领域,排列和组合可用于市场调查、产品分析等决策问题。

总之,了解排列与组合知识将有助于我们更好地解决各种实际问题,并为进一步探讨条件概率提供坚实基础。

高中数学公式大全排列组合与概率计算公式

高中数学公式大全排列组合与概率计算公式高中数学公式大全:排列组合与概率计算公式一、排列组合1. 排列公式排列是指从一个有限元素集合中选取若干元素按照一定的顺序进行排列的方法。

当从n个不同元素中选取r个元素进行排列时,排列数可以用以下公式表示:P(n, r) = n! / (n-r)!其中,P(n, r)表示从n个元素中选取r个元素进行排列的总数,n!表示n的阶乘。

2. 组合公式组合是指从一个有限元素集合中选取若干元素,不考虑元素的顺序进行组合的方法。

当从n个不同元素中选取r个元素进行组合时,组合数可以用以下公式表示:C(n, r) = n! / [r! * (n-r)!]其中,C(n, r)表示从n个元素中选取r个元素进行组合的总数。

二、概率计算1. 概率公式概率是指某个事件在所有可能事件中发生的可能性大小。

一般用P(A)表示事件A的概率。

当事件 A、B 互斥且独立时,可以使用以下概率公式:P(A ∪ B) = P(A) + P(B)其中,P(A ∪ B)表示事件 A 或事件 B 发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。

2. 条件概率公式条件概率是指在已知事件 B 发生的条件下,事件 A 发生的概率。

可以使用以下条件概率公式计算:P(A|B) = P(A ∩ B) / P(B)其中,P(A|B)表示在事件 B 发生的条件下,事件 A 发生的概率,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B)表示事件 B 发生的概率。

3. 乘法定理乘法定理是指在一系列独立事件中,它们同时发生的概率等于每个事件发生的概率的乘积。

可以使用以下乘法定理计算:P(A ∩ B) = P(A) * P(B)其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。

4. 加法定理加法定理是指当两个事件互斥时,它们其中一个事件发生的概率等于两个事件发生概率的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳书城培训中心学历部20年成人高考(三角函数)综合练习
拟题人: 谢合垣姓名:总分
一、耐心填一填:(每题2分,共20分)
1.A 3
8= (), C 3
8
= ()
2. 已知A2
n
=56,那么n =()。

3. 从10件产品中有两件次品, 任抽3件.至多有1件次品的抽法有()种。

4. 有3张参观劵,要在5人中确定3人去参观,不同方法有()种。

5. 从5件不同的礼物中选出3件分送3位同学,不同的方法种数是()种。

6. 某班委会由4男与3女组成,从中选出正副班长,至少有1名女生当选的概率是()
7. 根据以往甲、乙两人在比赛中较量的记录,甲胜的概率是0.6,那么乙取胜的概率是()
8.若事件A、B互相对立,则P(A B)= ( )
9.设事件A,B相互独立,且P(A)=0.2,P(B)=0.4,则P(A∪B)= ( )
10. 某市今年有9068名参加成考考试,从中抽出300名考生的成绩进行分析。

在这
个问题中,总体是();个体是();样本是();样本容量是()
二、细心断一断;(对的打√,错的打×,每题2分,共20分)
1. 某铁路沿线共有20个车站,需要准备380种不同的客车票。

()
2. 某铁路沿线共有20个车站,需要准备380种不同的票价。

()
3. 从8名男生和4名女生中选出4人去参加辩论比赛,如果男生中的甲
与女生中的乙必须包括在内, 共计有90种选法。

()
4. C98
100= C2
100
= A2
100
A2
2。

()
5. 从0,1,2,3,4五个数中任意取三个数,则这三个数中不含0的概率为0.4 。

()
6. 概率是随机事件发生的可能性大小的一种度量。

()
7. 甲、乙两射手在同样条件下击中目标的概率分别为0.6,0.7,
则“至少有一人击中目标的概率P=0.6+0.7=1.3”。

()
8. 设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=0.4,()
9. 在暗箱中有10枝铅笔,其中有8支正品和2支次品,从中不放回地任取2支,
恰好都取到正品的概率是0.8。

()
10. 已知一组数据为3,12,4,x,9,5,6,7,8的平均数为7,则x=7 。

()
三、精心选一选;(单项选择每题2分,共20分)
1. 若5人排成一行,则甲乙不相邻的排法有()
A,12种B,72种C,96种D,144种2. 从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各一台,则不同的取法共有()
A,144种B,84种C,70种D,35种3. 如果10件商品中有2件次品,任意抽出3件至少有一次品的不同抽法有()
A,C1
2*C2
9
B,C3
10
--C3
9
C,C1
2
*C2
8
+C2
2
* C 1
8
D,C1
2
*C2
9
--C1
2
* C2
8
4. 从1,2,3,4,5的5个数中任取2个,它们的和是偶数的概率是()
A 1 / 10
B 1 / 5
C 2 / 5
D 以上都不对
5. 甲、乙、丙三人随意排成一列拍照,甲恰好排在中间的概率()
A 2 / 9
B 1 / 3
C 4 / 9
D 以上都不对
6. 袋中有相同的3个黄球、2个白球和1个篮球,从中任摸1个恰为白球的概率是()A,1 / 2 B,1 / 3 C, 1 / 4 D, 1 / 8
7. 掷二枚骰子,则向上的数字之和为6的概率等于()
A. 1 / 6
B. 1 / 12
C. 5 / 18
D. 5 / 36
8. 先后抛出两枚硬币,一枚正面向上,另一枚反面(国徽面)向上的可能性为()A,1 / 2 B,1 / 3 C, 1 / 4 D, 1 / 8
9. 设100件产品中有次品4件,从中任取5件的不可能事件是()
A、5件都是正品
B、5件都是次品
C、至少有一件次品
D、至少有一件正品
10. 甲、乙两人各射靶5次,已知甲所中环数是8、7、9、7、9,乙所中的环数的平均数x =8,方差S2乙=0.4,那么,对甲、乙的射击成绩的正确判断是()
A 甲的射击成绩较稳定
B 乙的射击成绩较稳定
C 甲、乙的射击成绩同样稳定
D 甲、乙的射击成绩无法比较
四,用心算一算,(每4分,共40分)
1.平面内有八个点,任何三点都不在同一直线上,过每三个点作一个三角形,一共可作
多少个三角形?
2.已知10件产品中有3件是不合格产品,7件是合格产品,现从中任取4件;
(1)取出的恰好有1件是不合格品的取法有多少种?
(2)取出的至少有1件是不合格品的取法有多少种?
(3)取出的最多有1件是不合格品的取法有多少种?
(4)取出全部是合格的取法有多少种?
3,由1,2,3,4,5,6六个数字,1)能组成多少个没有重复数字的四位数?2)能组成多少个没有重复数字的四位偶数?3)能组成多少个可以重复数字的四位数?
4. 随意从放有4个红球和2个篮球的口袋中摸出1个球,再放回袋中搅匀后再摸出1个球,试求:两次摸到都为红球的概率。

5.已知:甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品元件,现从两个盒子内各取出2个元件,试求:取得的4个元件均为正品的概率;
6. 从4名男生和2名女生中任选3人参加演讲比赛.;(I) 求所选3人都是男生的概率;(II) 求所选3人中恰有1名女生的概率;(III) 求所选3人中至少有1名女生的概率.
7.在一次环保知识竞赛中,有6道选择题和2道判断题放在一起供抽取,每支代表队要抽3次,每次只抽一道题回答.,不放回的抽取试题,求只在第三次抽到判断题的概率;
8.在一段线路中并联着3个自动控制的常开开关,只要其中一个开关能够闭合,线路就能正常工作,假定在某段时间内,每个开关能够闭合的概率都是0.7,计算在这段时间内:(Ⅰ)开关J A,J B恰有一个闭合的概率;(Ⅱ)线路正常工作的概率
9. 某射击队有甲、乙两个射手,他们射击十次用下表给出。

其中X表示甲射击环数,Y表示乙射击环数,p表示击中环数的次数,试讨论派遣哪个射手参赛比较合理?
10. 要从甲、乙两名划艇运动员中选拔一名去参加比赛,为此对甲、乙两人在相同的条件下进行了6次测试,测得他们最大速度(m/s)的数据如下:
甲:27,38,30,37,35,31;乙:33,29,38,34,28,36.
试比较这两名划艇运动员谁更优秀.。

相关文档
最新文档