山东省2020届高三11月2020年普通高等学校招生全国统一考试模拟卷数学试题(含解析)

合集下载

山东省2020届高三高三高考模拟数学试题 Word版含解析

山东省2020届高三高三高考模拟数学试题 Word版含解析

山东省2020年高三高考模拟数学试题一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭ C. 10,1,2⎧⎫⎨⎬⎩⎭D.11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】 【分析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果. 【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆, 若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =,综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭. 故选D【点睛】本题主要考查由集合间的关系求参数的问题,熟记集合间的关系即可,属于基础题型.2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =-∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.点睛:本题主要考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,意在考查学生对基础知识掌握的熟练程度,属于简单题. 3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【答案】B 【解析】 【分析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项.【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln xx x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B【点睛】本题考查函数图象的辨析,关键是能够通过函数的奇偶性、特殊值的符号来进行排除.4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A. 甲付的税钱最多 B. 乙、丙两人付的税钱超过甲 C. 乙应出的税钱约为32 D. 丙付的税钱最少【答案】B 【解析】 【分析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。

2020年普通高等学校全国统一考试数学(模拟卷)(带答案解析)

2020年普通高等学校全国统一考试数学(模拟卷)(带答案解析)
3、试题开放性有所加强
数列第17题解答题中题干的条件让学生自由选择,很多题目不再拘泥于固定题型的固定解题思路,可以对一个问题从不同的思维角度进行一题多解,发散性较强,考查知识点的深度和广度都有所增加。
三、复习建议
重视基础是关键:本次模拟卷非常注重基础题的考查,比例达到了60%,中档题的比例增加,达到了30%,难题比例10%左右。整体难度介于全国高考文数和理数之间,符合新高考数学不分文理的要求。
又由 , ,且 ,得 .
因为 ,从而知 ,即
所以 .
又由于 ,
从而 .
故选:C.
【点睛】
本题考查棱锥体积的计算,考查线面垂直的证明,考查计算能力与推理能力,属于基础题.
6 . 已知点 为曲线 上的动点, 为圆 上的动点,则 的最小值是( )
A.3
B.4
C.
D.
【答案】A
【解析】
【分析】
设 ,并设点A到圆 的圆心C距离的平方为 ,利用导数求最值即可.
2020年普通高等学校招生全国统一考试(模拟卷)
数学试卷
一、整体分析:
本次山东模拟试卷考查全面,涵盖高中数学的重点内容,布局合理,难易得当,包含基础题,中档题,综合题及创新题,考查对基础知识、基本技能、基本运算的掌握。试题对高中数学课程的主干知识,如函数、导数、三角函数、数列、立体几何、解析几何、统计概率等内容,保持了较高比例的考查,其中在题型方面有较大的变化,增加了多选题,并且删除了选做题。
故选:A
【点睛】
本题考查两动点间距离的最值问题,考查利用导数求最值,考查转化思想与数形结合思想,属于中档题.
7 . 设命题 所有正方形都是平行四边形,则 为( )
A.所有正方形都不是平行四边形

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

A. 210
B. 120
C. 120
D. 210
4.B 【解析 】由二项 展开式, 知其通项 为 Tr1
C1r0
(
1 x
)10r
(
x)r
(1)r C1r0 x2r10
,令
2r 10 4 ,解得 r 7 .所以 x4 的系数为 (1)7 C170 120. 选 B.
5.已知三棱锥 S ABC 中, SAB ABC π , SB 4, SC 2 13, AB 2, BC 6 , 2
,得
x
2.
由 0 x 2 时, g(x) 0 , g(x) 单调递闰;
当 x 2 时, g(x) 0 , g(x) 单调递增.
从 而 g(x) 在 x 2 时 取 得 最 小 值 为 g(2) 16 , 从 而 点 A 到 圆 心 C 的 最 小 值 为
g(2) 16 4 ,所以| AB | 的最小值为 4 1 3. 选 A.
C. {(1,1), (2, 4)}
D.
x y 2
x 1
1.C【解析】
首先注意到集合 A 与集合 B 均为点集,联立 y
x2
,解得
y
1
,或
x 2
y
4
பைடு நூலகம்
,从而集合
A
B
{(1,1),
(2,
4)}
,选
C.
2.已知 a bi(a, b R) 是 1 i 的共轭复数,则 a b 1 i
A. 1
2
2
SA AC
.所以
SA
平面
ABC
.又由于
SABC
1 26 2
6
,从而

2020届山东省11月30号模拟考试数学试卷 含答案

2020届山东省11月30号模拟考试数学试卷 含答案

2020年普通高等学校招生考试全国统一考试(模拟卷)数 学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{(,)|2}A x y x y =+=,{}2(,)|B x y y x ==,则A B =A.{(1,1)}B.{(2,4)}−C.{(1,1),(2,4)}−D.∅2.已知(,)a bi a b +∈R 是11i i −+的共轭复数,则a b += A.1− B.12− C.12 D.1 3.设向量(1,1)=a ,(1,3)−b ,(2,1)=c ,且()λ−⊥a b c ,则λ=A.3B.2C.2−D.3− 4.101()x x −的展开式中4x 的系数是 A.210− B.120− C.120 D.2105.已知三棱锥S ABC −中,,4,2,62SAB ABC SB SC AB BC π∠=∠====, 则三棱锥S ABC −的体积是A.4 B.6 C. D.6.已知点A 为曲线4(0)y x x x=+>上的动点,B 为圆22(2)1x y −+=上的动点,则||AB 的最小值是 A.3B.4C.D.7.设命题P :所有正方形都是平行四边形。

则p ¬为A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形8.若1a b c >>>,且2ac b <,则 A.log log log a b c b c a >> B.log log log c b a b a c >>C.log log log b a c c b a >>D.log log log b c a a b c >>二、多项选择题:本题共4小题,每小题5分,共20分。

山东省2020年高考数学模拟考试题与答案

山东省2020年高考数学模拟考试题与答案

山东省2020年高考数学模拟考试试题及答案按珈密级苇项管理*启用前2020年普通高等学校招生全国统一考试(模拟卷)数学asw 项:1. 答卷前,考生务必将口己的姓名、考生号等填遞在答题卡和试卷指定位匿匕工回答选择题时,选岀每小题答案屁用铅抠把答题R上对应题冃的答案折号涂熾如磁动,用橡皮掠干净后,再选涂苴他答案标号*回答非选择题时,将答案写在答题卡上。

另在本试卷上无效,生考试结束存*将本试卷和答題卡…井交回。

—、单项选择题:本趣共$小舐每小題§分・共豹分。

在每小题给出的四个选琐中,只有一项是符合髒目要求的“1, 迎集合/訂(工』)ix+?=2}, 则*n七A. {(ij)}氐{(一签4)} C HM)J-2f4)}6 02. 已知◎牛bi⑷b左R)是上二的共扳复数・则a^b =1 +1A- -1 B.-丄C- ;D・ 12 23* Bt向fi4-(.1,1)t A = c»(2,!)> 且(■-几血)丄―则丄“A. 3 氐2 G -2-34. 幵式中『抽系数足xA.-210B. -12QC. 120D. 2105+已知三按锥$_仙C中,ZSAB = ZABC= y * 5^-4• SC = 1J\3. XB = 2,5C = 6, 则三棱锥S 亠ABC的体积是A. 4B. 6 G 4巧D+ M6. 己知点丄为曲纯y二工+毀工:>0)上前动点,月为圆2F +/=!上的动点’则皿鋼X的最小值是九3 B•斗G迈 D. 4^27, 设命題戸所有正方形都是平行叫边母*则「卩为d所宿疋方形罰不長平行四边形B-有的平行四边底不是正方舷C”有的iE方形不是平行四边形 D.不是正方形的四边彫不是平行四边形数学试题第1页:(共5贡)数学试題第2页(共5页〉数学试題第2页(共5页〉8. 若>1 且 MC F ・则4. log 」、1隅疋、teg 評 C. log f c> lo£fl 5> lo 空 a二、多項远择题*本题共4」卜駆•毎小题5^-共20分・存毎小额给岀的选项中、右 多项精合倾目蓉求,全部选对的得5分,部分选对的得3分,有选措的得0分“ 9. 下国为茱地桜2006年〜2018年地方財政预算内收入、城乡居民储齧年未余额折线2财政预篇内收入*城乡居民储蓄年朮余额肉呈増怅趋势 R.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C. 赃政预畀内收入年平均增长虽局于城乡居民储蔷年末余额年平均增机帚 D, 城乡居艮储蓄年末余鈿与财政预算内收入的差報逐年增大w.已知艰曲线<?过点Q 品且渐近钱为丿=±¥厂则下列结论正确的是A, C 的方程为■- / -I B ・0的离心翠为J5 C ・曲线经过C 的一于焦点 D.直线"逅厂1“与C 有两个公共点11正方陣」肌也GO 的梭长为1・E , F 、(?分别为5C, CC 「1?鸟的中点•则扎直线与直线曲垂直 B.直^Afi 与平面*防平行C 平面/EF 截正方体所得的載画面积为? D.点C?与点石到平而*EF 曲聊离相諄B- log"〉k 唱』a lug/ D, log/A 】0£ 占 > log/城乡尿民储雷叶朿 ♦余额C 百亿元】 亠地方财政预算内 收入f 百亿元)根据该折线I ]可Sb 该地区2006年-2018年\2.函数/(巧的定义域为K, fi7(^ + 1) f(x^2)都为奇函数,则A. 奇函数氐/V)为周期雷数C /(x + 3)为奇函数 D. /(I +4)X J®^I数三填空駆本题共4小题、每小题3分,共20分。

2020年2020届山东省高三高考模拟考试数学试卷及解析

2020年2020届山东省高三高考模拟考试数学试卷及解析

2020年2020届山东省高三高考模拟考试数学试卷★祝考试顺利★(解析版)一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( ) A. 11,2⎧⎫⎨⎬⎩⎭ B. 11,2⎧⎫-⎨⎬⎩⎭ C. 10,1,2⎧⎫⎨⎬⎩⎭ D. 11,0,2⎧⎫-⎨⎬⎩⎭ 【答案】D【解析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果.【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆,若B 为空集,则方程1ax =无解,解得0a =;若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =, 综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭. 故选D2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i i z -+--+===+-,1z i =- ∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.3.函数()()22ln x x f x x -=+的图象大致为( )A. B.C. D.【答案】B【解析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项.【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .本题正确选项:B4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( )A. 甲付的税钱最多B. 乙、丙两人付的税钱超过甲C. 乙应出的税钱约为32D. 丙付的税钱最少 【答案】B【解析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.。

2020届山东省高三普通高等学校招生全国统一考试模拟卷数学试题

2020届山东省高三普通高等学校招生全国统一考试模拟卷数学试题

2020届山东省高三普通高等学校招生全国统一考试模拟卷数学试题2020.2注意事项:1.答题前,考生在答题卡上务必将自己的姓名、准考证号涂写清楚.2.第Ⅰ卷,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.第Ⅰ卷(选择题 共60分)一、单项选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭C. 11,0,2⎧⎫-⎨⎬⎩⎭D. 10,1,2⎧⎫⎨⎬⎩⎭2.若1iz i =+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.已知函数()(22)ln ||x x f x x -=+的图象大致为4.《九章算术·衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是A.甲付的税钱最多B.乙、丙两人付的税钱超过甲C.乙应出的税钱约为32D.丙付的税钱最少 5. 若()2sin 75α︒+=,则()cos 302α︒-= A. 59- B. 49-C. 59D. 496.甲,乙,丙,丁四名学生,仅有一人阅读了语文老师推荐的一篇文章.当它们被问到谁阅读了该篇文章时,甲说:“丙或丁阅读了”;乙说:“丙阅读了”;丙说:“甲和丁都没有阅读”;丁说:“乙阅读了”.假设这四名学生中只有两人说的是对的,那么读了该篇文章的学生是A. 甲B. 乙C. 丙D. 丁 7.若a ,b ,c ,满足23a =,2log 5b =,32c =,则A. c a b <<B. b c a <<C. a b c <<D. c b a <<8.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,圆222x y b +=与双曲线在第一象限内的交点为M ,若12||3||MF MF =,则双曲线的离心率为A.3B.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下表是某电器销售公司2019年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是A. 该公司2019年度冰箱类电器营销亏损B. 该公司2019年度小家电类电器营业收入和净利润相同C. 该公司2019年度净利润主要由空调类电器销售提供D. 剔除冰箱类电器销售数据后,该公司2019年度空调类电器销售净利润占比将会降低10.已知函数sin ,4()cos ,4x x f x x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,则下列结论正确的是A. ()f x 不是周期函数B. ()f x 奇函数C. ()f x 的图象关于直线4x π=对称D. ()f x 在52x π=处取得最大值 11.设A,B 是抛物线2y x =上的两点,O 是坐标原点,下列结论成立的是A. 若OA OB ⊥,则||||2OA OB ≥B. 若OA OB ⊥,直线AB 过定点(1,0)C. 若OA OB ⊥, O 到直线AB 的距离不大于1D. 若直线AB 过抛物线的焦点F ,且1||3AF =,则||1BF = 12.如图,矩形中,为的中点,将沿直线翻折成,连结,为的中点,则在翻折过程中,下列说法正确的是 A.存在某个位置,使得;B.翻折过程中,的长是定值;C.若,则;D.若,当三棱锥的体积最大时,三棱锥的外接球的表面积是. 第Ⅱ卷(非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知两个单位向量,a b r r 的夹角为30o,(1)c ma m b =+-r r r ,0b c ⋅=r r ,则m =______.14.已知曲线22221x y a b-=(0a >,0b >)的一条渐近线经过点2,6),则该双曲线的离心率为 .15.若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为__________.16. 已知函数()22,,x x af x x x a⎧≤=⎨>⎩,①若1a =,则不等式()2f x ≤的解集为__________;②若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是__________. 四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)在①()222316 3c S b a =+-;②5cos 45b C c a +=,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,设ABC V 的面积为S ,已知 . (1)求tan B 的值;(2)若42,10S a ==,求b 的值.注:如果选择多个条件分别解答,按第一个解答计分.18. (12分)已知在四棱锥P ABCD -中,//AD BC ,12AB BC CD AD ===,G 是PB 的中点,PAD ∆是等边三角形,平面PAD ⊥平面ABCD . (Ⅰ)求证:CD ⊥平面GAC ; (Ⅱ)求二面角P AG C --的余弦值.19.(12分)已知数列{}n a 的前n 项和为n S ,且12n n S a a =-()*n ∈N ,数列{}n b 满足16b =,14n n nb S a =++()*n ∈N . (I )求数列{}n a 的通项公式; (Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12nT <. 20.(12分)某销售公司在当地A 、B 两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了A 、B 两家超市往年同期各50天的该食品销售记录,得到如下数据:销售件数 8 9 10 11 频数20402020以这些数据的频数代替两家超市的食品销售件数的概率,记X 表示这两家超市每日共销售食品件数,n 表示销售公司每日共需购进食品的件数. (1)求X 的分布列;(2)以销售食品利润的期望为决策依据,在19n =与n 20=之中选其一,应选哪个?21. (12分)已知椭圆()2222:10x y C a b a b +=>>,椭圆C 截直线1y =所得的线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,点D 是椭圆C 上的点,O 是坐标原点,若OA OB OD +=uu r uur uuu r ,判定四边形OADB 的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.22.(12分)已知函数2()2ln ()f x x ax x a R =-+∈. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.高三数学模拟题二参考答案一、CDBB ABAC二、9.ACD 10.AC 11.ACD 12.BD三、13. 4+ 14. 2 15. 8π 16. (1). (-∞ (2). (,2)(4,)-∞⋃+∞ 17.解: 17.解: (1)选择条件①.由題意得()2228 3acsin B a c b =+-.即2224sin 32a c b B ac+-=g整理可得344 cosB sinB sin B -=,…………4分 又 0sin B >.所以 0cos B >,所以sin 3cos 4B tan B B ==.…………5分 选择条件②.因为5cos 45b C c a +=,由正弦定理得,5sin cos 4sin 5sin B C C A +=,5sin cos 4sin 5sin()B C C B C +=+,即sin (45cos )0C B -=,…………3分 在ABC V 中,sin 0C ≠,所以4cos 5B =,3sin 5B ==,所以3tan 4B =.…………5分(2)由3 4tan B =,得35sin B =,又42, 10S a ==,则1131042225S acsin B c ==⨯⨯=,解得14c =.…………7分将42, 10,14S a c ===代入()222261636c S c a =++-中, 得()2222614164231410b ⨯=⨯++-,解得b =.…………10分18.(Ⅰ)证明:取AD 的中点为O ,连结OP ,OC ,OB ,设OB 交AC 于H ,连结GH . 因为//AD BC ,12AB BC CD AD ===, 四边形ABCO 与四边形OBCD 均为菱形,OB AC ∴⊥,//OB CD ,CD AC ⊥,…………2分因为PAD V 为等边三角形,O 为AD 中点,PO AD ∴⊥,因为平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD AD =.PO ⊂平面PAD 且PO AD ⊥,PO ∴⊥平面ABCD ,…………4分因为CD ⊂平面ABCD ,PO CD ∴⊥,因为H ,G 分别为OB , PB 的中点, //GH PO ∴,GH CD ∴⊥.………………5分又因为GH AC H ⋂= ,,AC GH ⊂平面GAC ,CD \^平面GAC .…………6分(Ⅱ)取BC 的中点为E ,以O 为空间坐标原点,分别以,,OE OD OP uu u r uuu r uur的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系O xyz -. 设4=AD ,则()0,0,23P ,()0,2,0A -,()3,1,0C,()0,2,0D ,31,,32G ⎛⎫- ⎪ ⎪⎝(0,2,23)AP =u u u r ,33(,,3)22AG =uuu r ,…………8分设平面PAG 的一法向量(),,n x y z →=.由00n AP n AG ⎧⋅=⎪⎨⋅=⎪⎩r uu u r r uuu r 2230333022y z x y z ⎧+=⎪⇒⎨++=⎪⎩ 3y z x z ⎧=-⎪⇒⎨=⎪⎩.令1z =,则(1,3,1)n =-r . 由(Ⅰ)可知,平面AGC 的一个法向量(3,1,0)CD =-u u u r,…………10分 15cos ,||||n CD n CD n CD ⋅<>==-r uu u rr uu u r r uu u r∴二面角P AG C --的平面角的余弦值为15-.…………12分19.解析:(I )由12n n S a a =-, 当2n ≥时,1112n n S a a --=-, 两式相减得12n n a a -=,…………3分 因为14n n nb S a =++, 所以11164a a =++,解得11a =,……4分 所以数列{}n a 是公比为2,11a =的等比数列,{}n a 的通项公式为12n n a -=.…………6分(Ⅱ)由1221nn n S a a =-=-,得11232nn n b -=++,……7分 即()()11122121n n n n b --=++1112121n n -=-++,………………9分 所以011211111111212121212121n n n T --⎛⎫⎛⎫⎛⎫=-+-++-⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭L 1112212n =-<+. ……………………12分 20.解:(1)由已知一家超市销售食品件数8,9,10,11的概率分别为12115555,,, .X 取值为16,17,18,19,20,21,22. ………………1分()111165525P X ==⨯=,()1241725525P X ==⨯⨯=;()22116182555525P X ==⨯+⨯⨯=; ()121161922555525P X ==⨯⨯+⨯⨯=;()11215202555525P X ==⨯+⨯⨯=; ()1122125525P X ==⨯⨯=()111225525P X ==⨯=,………………5分所以X 的分布列为………………6分(2) 当19n =时,记1Y 为A B ,销售该食品利润,则1Y 的分布列为()11466521145016001750190019502000205025252525252525E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯1822=. ………………9分当20n =时,记2Y 为,A B 销售该食品利润,则2Y 的分布列为()21466521140015501700185020002050210025252525252525E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯1804=.因为()()12E Y E Y > ,故应选19n =.………………12分21. 解:(Ⅰ)由22222211c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2,a b c ===………………3分得椭圆C 的方程为22142x y +=. ………………4分(Ⅱ)当直线l 的斜率不存在时,直线AB 的方程为1x =-或1x =, 此时四边形OADB .………………5分当直线l 的斜率存在时,设直线l 方程是y kx m =+,联立椭圆方程22142y kx m x y =+⎧⎪⎨+=⎪⎩ ()222124240k x kmx m ⇒+++-= ()228420k m∆=+->,2121222424,1212km m x x x x k k--+==++ , ………………7分 ()121222212m y y k x x m k +=++=+AB =,点O 到直线AB的距离是d =………………9分由OA OB OD +=uu r uur uuu r 得,2242,1212D D km mx y k k-==++, 因为点D 在曲线C 上,所以有2222421212142km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22122k m +=,………………11分由题意四边形OADB 为平行四边形,所以四边形OADB 的面积为OADBS AB d === 由22122k m +=得OADB S =, 故四边形OADB.………………12分22.解:(1)由2()2ln f x x ax x =-+得2()2f x x a x'=-+; 因为0x >,所以224x x+≥; 因此,当4a ≤时,2()20f x x a x'=-+≥在(0,)+∞上恒成立,所以()f x 在(0,)+∞上单调递增;………………2分当4a >时,由2()20f x x a x '=-+>得2220x ax -+>,解得x >或0x <<;由2()20f x x a x '=-+<x <<所以()f x在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增;在⎝⎭上单调递减;………………4分综上,当4a ≤时,()f x 在(0,)+∞上单调递增;当4a >时,()f x在0,4a ⎛- ⎪⎝⎭,4a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增;在,44a a ⎛⎫+ ⎪ ⎪⎝⎭上单调递减. ………………5分 (2)若()f x 有两个极值点()1212,x x x x <,由(1)可得, 12,x x 是方程2220x ax -+=的两不等实根, 所以122a x x +=,121x x =,………………6分 因此()()2221222111(2ln )(2ln )f x f x x ax x x ax x -=-+--+222222211212122222211212()()2ln 2ln 2ln x x x x x x x x x x x x x x x -++=-+=-+=+-,…7分 令22t x =,则2222222111()()2ln 2ln f x f x t t x x x t-=-+=-+; 由(1)可知2x =,当a ≥24x a +=≥= 所以[)22,e t x ∈=+∞,………………10分 令1()2ln g t t t t =-+,[),t e ∈+∞, 则222221221(1)()10t t t g t t t t t-+-'=--+=-=-<在[),t e ∈+∞上恒成立;所以1()2ln g t t t t =-+在[),t e ∈+∞上单调递减, 故max 1()()2g t g e e e==-+. 即()()21f x f x -的最大值为12e e -+.………………12分。

2020山东省新高考统一考试数学模拟卷-3e99

2020山东省新高考统一考试数学模拟卷-3e99

2020年普通高等学校招生全国统一考试(模拟卷) 数 学学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

项是符合题目要求的。

1.设集合(){}(){}2,2,,A x y x y B x y y x A B =+===Ç=,则A. (){}11,B. (){}24-,C. ()(){}1124-,,, D. Æ2.已知()1,1ia bi ab R i -+Î+是的共轭复数,则a b += A. 1-B. 12-C. 12D.1 3.设向量()()()1,1,1,3,2,1a b c ==-=,且()a b c l -^,则l = A.3 B.2 C. 2-D. 3-4. 101x x æö-ç÷èø的展开式中4x 的系数是的系数是 A. 210-B. 120-C.120 D.210 5.已知三棱锥S A B C -中,,4,213,2,62SAB ABC SB SC AB BC pÐ=Ð=====,则三棱锥S ABC -的体积是的体积是 A.4 B.6 C. 43D. 636.已知点A 为曲线()40y x x x =+>上的动点,B 为圆()2221x y -+=上的动点,则AB 的最小值是小值是 A.3 B.4 C. 32D. 427.设命题p :所有正方形都是平行四边形,则p Ø为 A.所有正方形都不是平行四边形 B.有的平行四边形不是正方形有的平行四边形不是正方形C.有的正方形不是平行四边形有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形不是正方形的四边形不是平行四边形 8.若21a b c ac b >>><且,则,则A. log log log abcb c a >>B. log log log c b a b c a>> C. log log log bacc b a >>D. log log log b c aa b c >> 二、多项选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按秘密级事项管理★启用前2020年普通高等学校招生考试全国统一考试(模拟卷)数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{(,)|2}A x y x y =+=,{}2(,)|B x y y x ==,则AB =A.{(1,1)}B.{(2,4)}-C.{(1,1),(2,4)}-D.∅2.已知(,)a bi a b +∈R 是11ii -+的共轭复数,则a b += A.1- B.12- C.12D.13.设向量(1,1)=a ,(1,3)=-b ,(2,1)=c ,且()λ-⊥a b c ,则λ=A.3B.2C.2-D.3-4.101()x x-的展开式中4x 的系数是 A.210- B.120- C.120 D.2105.已知三棱锥S ABC -中,,4,213,2,62SAB ABC SB SC AB BC π∠=∠=====,则三棱锥S ABC -的体积是A.4B.6C.43D.636.已知点A 为曲线4(0)y x x x=+>上的动点,B 为圆22(2)1x y -+=上的动点,则||AB 的最小值是A.3B.4C.32D.427.设命题P :所有正方形都是平行四边形。

则p ⌝为A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形8.若1a b c >>>,且2ac b <,则A.log log log a b c b c a >>B.log log log c b a b a c >>C.log log log b a c c b a >>D.log log log b c a a b c >>二、多项选择题:本题共4小题,每小题5分,共20分。

在每小题给出的四个选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得3分,有选错的得0分。

9.下图为某地区2006年2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年2018年A.财政预算内收入、城乡居民储蓄年末余额均呈增长趋势B.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C.财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D.城乡居民储蓄年末余额与财政预算内收入的差额逐年增大10.已知双曲线C 过点2)且渐近线为33y x =±,则下列结论正确的是 A.C 的方程为2213x y -=B.C 3C.曲线21x y e -=-经过C 的一个焦点D.直线210x -=与C 有两个公共点11.正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为BC ,1CC ,1BB 的中点.则A.直线1D D 与直线AF 垂直B.直线1A G 与平面AEF 平行C.平面AEF 截正方体所得的截面面积为98D.点C 与点G 到平面AEF 的距离相等12.函数()f x 的定义域为R ,且(1)f x +与(2)f x +都为奇函数,则A.()f x 为奇函数B.()f x 为周期函数C.(3)f x +为奇函数D.(4)f x +为偶函数三、填空题:本题共4小题,每小题5分,共20分。

13. 某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手作为攻擂者,从守擂选手中挑选1名选手作为守擂者,则攻擂者、守擂者的不同构成方式共有 种.14.已知43cos()sin 6παα+-=,则11sin()6πα+= . 15.直线l 过抛物线2:2(0)C y px p =>的焦点(1,0)F ,且与C 交于A ,B 两点,则p = ,11||||AF BF += .(本题第一空2分,第二空3分.) 16.半径为2的球面上有A ,B ,C ,D 四点,且AB ,AC ,AD 两两垂直,则ABC ∆,ACD ∆与ADB ∆面积之和的最大值为 .四、解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(10分)在①132b b a +=,②44a b =,③525S =-这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求k 的值,若k 不存在,请说明理由.设等差数列{}n a 的前n 项和为n S ,{}n b 是等比数列, ,152,3b a b ==,581b =-,是否存在k ,使得1k k S S +>且12k k S S ++<?注:如果选择多个条件分别解答,按第一个解答计分。

18.(12分)在ABC ∆中,90A ︒∠=,点D 在BC 边上,在平面ABC 内,过D 作DF BC ⊥且DF AC =.(1)若D 为BC 的中点,且CDF ∆的面积等于ABC ∆的面积,求ABC ∠; (2)若45ABC ︒∠=,且3BD CD =,求cos CFB ∠. 19.(12分)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF与平面ABCD 所成的角为45.(1)证明:EF 为异面直线AD 与SC 的公垂线; (2)若12EF BC =,求二面角B SC D --的余弦值. 20.(12分)下面给出了根据我国2012年2018年水果人均占有量y (单位:kg )和年份代码x 绘制的散点图和线性回归方程的残差图(2012年2018年的年份代码x 分别为17).(1)根据散点图分析y 与x 之间的相关关系;(2)根据散点图相应数据计算得711074ii y==∑,714517i i i x y ==∑,求y 关于x 的线性回归方程;(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.(精确到0.01)附:回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为: ()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =- 21.(12分)设中心在原点,焦点在x 轴上的椭圆E过点,F 为E 的右焦点,P 为E 上一点,PF x ⊥轴,F 的半径为PF .(1)求E 和F 的方程;(2)若直线:(0)l y k x k =>与F 交于A ,B 两点,与E 交于C ,D 两点,其中A ,C 在第一象限,是否存在k 使||||AC BD =?若存在,求l 的方程;若不存在,请说明理由. 21.(12分) 函数()(0)1a x f x x x +=>+,曲线()y f x =在点(1,(1))f 处的切线在y 轴上的截距为112. (1)求a ;(2)讨论2()(())g x x f x =的单调性; (3)设111,()n n a a f a +==,证明:222ln ln71x n a --<.山东省2020年高考模拟考试数学试题参考答案及解析一、单项选择题: 1、C [解析]C y x y x xy y x ,故选或解得根据题意⎩⎨⎧=-=⎩⎨⎧==⎩⎨⎧==+421122本题考查集合运算以及求解曲线的交点,本质是解一元二次方程,属于基础题。

2、D [解析]D b a b a i bi a i i i i i i 故选所以,所以根据题意,1,1,0,)1)(1()1(112=+===+-=-+-=+- 本题考查复数的运算以及共轭复数的概念,属于基础题。

3、A [解析]A c b c a c b a ,故选所以根据题意0,0)32(3)(==+--=•-•=•-λλλλ本题考查向量垂直的坐标运算,属于基础题。

4、B [解析]()()BT x r r x C x C T r x x r r r r rr r 故选的系数所以得到由项是的展开式中第根据题意,120,74102,1211)1(84102101010110-===--=-⎪⎭⎫ ⎝⎛=+---+本题考查二项式定理中二项展开式的系数问题,属于基础题。

5、C [解析]CV ABC S AS ABCAS AS AC SC AS AC SC AS SB AB AS AB SAB AC BC AB BC AB ABC ABC S ,故选的高为三棱锥面得再由又,又3432631,32,32,4,2,2,102,6,22222=⨯⨯=∴-∴⊥∴⊥∴=+==∴==⊥∴=∠=∴==⊥∴=∠- ππ本题考查立体几何中求三棱锥的体积,考查同学们的空间想象能力,属于基础题。

6、A [解析]()A AB B A y x x xx y 故选有最小值时,由数形结合易知当的图象,和圆(角坐标系中作出根据题意,可在同一直,3)1,2(),4,2(2)20422=+->+=本题考查圆锥曲线中圆的最值问题,属于基础题。

7、C [解析]根据全称命题和特称命题的关系,全称命题的否定是特称命题,故选C 本题考查全称命题的否定,属于基础题。

8、B [解析].,2,4,6,,2,3,4,1log 1log log log log log ,,,,1,,log log ,1log log ,1log log ,12B D c b aC A c b a Bb c cb b a b ac c b a C A c b a c a a c b c b ab c b b c b c ca b a c c a c a a b a ,故答案为可以排除再令可排除进行检验,令另外,可以代入特殊值故答案为而得又选项可排除======<>>>>∴<<∴<∴>>><∴=>=<∴>>> 本题考查不等式性质及对数函数的单调性,题目新颖,属于难题。

二、多项选择题:9、A,D [解析]根据题目提供的图表分析题目,区分好两条折线即可。

故选A,D 本题考查分析问题,读取图表的能力,属于基础题。

10、A,C [解析]选项错误。

以,故有一个公共点,所的方程,得线正确。

联立直线和双曲故选项),的焦点(经过选项错误。

,故为的离心率正确。

此时故选项得),又过点(的方程为设双曲线双曲线的渐近线为D C C C e y B e C A y x C x y x 00,21332.123),0(3,33222=∆-==≠=-∴±=-λλλ 本题考查双曲线的基本几何性质,属于基础题。

相关文档
最新文档