河南省洛阳市2016-2017学年高二下学期期末质量检测(6月)数学(文科)试卷和答案
河南省洛阳市高二下册第二学期期末质量检测(6月)数学(文)-含答案【精选】.doc

洛阳市2016-2017学年度高二年级质量检测数学试卷(文科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.若i 为虚数单位,,a b R ∈且2a ib i i+=+,则ab = A. -1 B. 1 C. -2 D.2 2. 设0x >,由不等式2314272,3,4,x x x x x x +≥+≥+≥L ,类比推广到1n ax n x+≥+,则a =A. n nB. 2nC. 2nD. n3.设双曲线()222109x y a a -=>的渐近线为320x y ±=,则a 的值为 A. 1 B. 2 C. 3 D. 44.用反证法证明“,a b N *∈,如果,a b 能被2017整除,那么,a b 中至少有一个能被2017整除”时,假设的内容是A. a 不能被2017整除B. a 不能被2017整除C. ,a b 都不能被2017整除D. ,a b 中至多有一个能被2017整除 5.为了考查某种中成药预防流感的效果,抽样调查了40人,得到如下数据:6.已知函数()ln 3f x x x =-,则曲线()y f x =在点()()1,1f 处的切线与坐标轴围成的三角形的面积为A. 1B.12 C. 14 D.187.若圆的方程为12cos 32sin x y θθ=-+⎧⎨=+⎩(θ为参数)直线的方程为2161x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆为位置关系是A. 相交且过圆心B.相交但不过圆心C. 相切D.相离 8.下列命题中正确的是A. 命题“00,sin 1x R x ∃∈>”的否定是“,sin 1x R x ∀∈>”B.“若0xy =,则0x =或0y =”的逆否命题是 “若0x ≠或0y ≠,则0xy ≠”C. 在ABC ∆中,A B >是sin sin A B >的充分不必要条件D.若()p q ∧⌝为假,()p q ∨⌝为真,则,p q 同真或同假 9.若0ab >,且直线20ax by +-=过点()2,1,则12a b+的最小值为 A.92 B. 4 C.72D.310. 已知抛物线2y =的焦点为F,A,B 为抛物线上两点,若3AF FB =u u u r u u u r,O 为坐标原点,则ABO ∆的面积为A. 11.设等差数列{}n a 满足()()5100810081201611,a a -+-=()()5100910091201611a a -+-=-,数列{}n a 的前n 项和为n S ,则A. 2016100810092016,S a a =>B. 2016100810092016,S a a =->C. 2016100810092016,S a a =<D.2016100810092016,S a a =-<12.若函数()22f x x ax b =++在区间()0,1和区间()1,2上各有一个零点,则31a b a +--的取值范围是 A. 1,14⎛⎫ ⎪⎝⎭ B.33,42⎛⎫ ⎪⎝⎭ C.15,44⎛⎫ ⎪⎝⎭ D. 5,24⎛⎫ ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分.13.将点P的极坐标32,4π⎛⎫⎪⎝⎭化为直角坐标为 .14.设A,B分别是复数12,z z在复平面内对应的两点,O为坐标原点,若1212z z z z+=-,则AOB∠的大小为 .15.某企业想通过做广告提高销售额,经预测可知本企业产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:由表中数据得线性回归方程为ˆˆˆy bx a=+,其中ˆ 6.5b=,由此可预测等广告费为7百万元时,销售额为(百万元).16.如图,已知双曲线()222210,0x ya ba b-=>>的左右焦点分别为12,F F,124F F=,P是双曲线右支上一点,直线2PF交y轴于点A,2APF∆的内切圆的切1PF边于点Q,若1PQ=,则双曲线的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)在平面直角坐标系xoy中,直线1C的参数方程为11232x ty t⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线2C的极坐标方程为()2212sin3ρθ+=(1)求曲线1C的普通方程和2C的直角坐标方程;(2)若直线1C与曲线2C相交于A,B两点,点()1,0M,求MA MB-的值.18.(本题满分12分)在ABC∆中,角,,A B C的对边分别为,,a b c,已知()2cos14cos cos.B C B C+-=(1)求A ; (2)若7,a ABC =∆的面积为332,求b c +19.(本题满分12分)已知数列{}n a 的首项为11a =,且1,.21nn n a a n N a *+=∈+(1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式; (2)设1n n n b a a +=,求数列{}n b 的前n 项和.n T .20.(本题满分12分)如图,在四棱锥S ABCD -中,ABD ∆是正三角形,,.CB CD SC BD =⊥ (1)求证:SA BD ⊥;(2)若120,BCD M ∠=o为棱SA 的中点,求证://DM 平面SBC .21.(本题满分12分)设函数()()()2,ln 0.x x af xg x x a e x==+>(1)求函数()f x 的极值;(2)若()12,0,x x ∃∈+∞,使得()()12g x f x ≤成立,求a 的取值范围.22.(本题满分12分)已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线22221x y a b-=的一条渐近线与x 轴所成的角为30o ,且双曲线的焦距为4 2.(1)求椭圆C 的方程;(2)过右焦点F 的直线l 交椭圆于A,B 两点,记AOF ∆的面积为1S ,BOF ∆的面积为2S ,当122S S =时,求OA OB ⋅u u u r u u u r的值.。
河南省洛阳市2016-2017学年高二下学期期末考试理数试题有答案-(数学)

洛阳市2016-2017学年高二年级质量检测数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,,a b R ,且2a i b i i,则复数a bi 的模等于( )23 5 62.命题“若a b ,则ac bc ”的逆否命题是( ) A.若a b ,则ac bc B.若ac bc ,则a b C.若ac bc ,则a bD.若a b ,则ac bc 3.设0x ,由不等式12x x,243xx ,3274xx ,…,类比推广到1na xn x ,则a ( )A.2nB.2nC.2nD.n n4.设随机变量21N ~,,若3P m ,则13P 等于( )A.122m B.1mC.12mD.12m 5.抛掷一枚质地均匀的骰子两次,记事件{A 两次的点数均为奇数},{B 两次的点数之和小于7},则|P B A ( ) A.13B.49C.59D.236.用数学归纳法证明“1111232nF n …”时,由n k 不等式成立,证明1n k 时,左边应增加的项数是( ) A.12kB.21kC.2kD.21k7.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据: 不关注 关注 总计 男生 30 15 45 女生 45 10 55 总计7525100根据表中数据,通过计算统计量2n ad bc Ka b c da cb d,并参考以下临界数据:20P K k 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k0.4550.7081.3232.0722.7063.845.0246.6357.87910.828A.0.10B.0.05C.0.025D.0.018.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( ) A.20种B.15种C.10种D.4种9.设随机变量2,X B p ~,随机变量3,Y B p ~,若519P X ,则31D Y ( )A.2B.3C.6D.710.已知抛物线243y x 的焦点为F ,A ,B 为抛物线上两点,若3AFFB ,O 为坐标原点,则AOB △的面积为( ) A.83B.3C.23311.设等差数列n a 满足5100810081201611a a ,5100910091201611a a ,数列n a 的前n 项和记为S ,则( ) A.20162016S ,10081009a a B.20162016S ,10081009a a C.20162016S ,10081009a aD.20162016S ,10081009a a12.设函数2ln ,021,0x x f xxx x ,若f a f b f c f d ,其中,,,a b c d 互不相等,则对于命题:0,1p abcd 和命题122:2,2q a b c de e e e 真假的判断,正确的是( )A.p 假q 真B.p 假q 假C.p 真q 真D.p 真q 假第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数3,01,1x x f xx x ,则定积分20f x dx .14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据: 单价x (元) 8 8.28.48.68.89 销量y (件)9084 83 80 7568由表中的数据得线性回归方程为y bx a ,其中20b ,预测当产品价格定为9.5(元)时,销量约为件.15.已知,x y 满足约束条件0,2323x x yx y,若y x 的最大值是a ,则二项式61ax x的展开式中的常数项为 .(数字作答) 16.若函数320h x ax bx cx d a图象的对称中心为00,M x h x ,记函数h x 的导函数为g x ,则有0'0g x ,设函数3232f xx x ,则12403240332017201720172017fff f … .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC △的三个内角,,A B C 所对应的边分别为,,a b c ,且满足1cos 2b Cc a . (1)求ABC △的内角B 的大小; (2)若ABC △的面积234Sb ,试判断ABC △的形状. 18.已知正项数列n a 的首项11a ,且221110n n n nn a a a na 对*n N 都成立.(1)求n a 的通项公式; (2)记2121nn n b a a ,数列n b 的前n 项和为n T ,证明:12nT . 19.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园. (1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案? (2)每名学生都被随机分配到其中的一个公园,设,X Y 分别表示5名学生分配到王城公园和牡丹公园的人数,记X Y ,求随机变量的分布列和数学期望E .20.如图,已知矩形11BB C C 所在平面与底面1ABB N 垂直,在直角梯形1ABB N 中,1AN BB ∥,AB AN ,112CBBAANBB .(1)求证:BN平面11C B N ;(2)求二面角1C C NB 的大小.21.已知椭圆C 的方程为222210x y a b ab ,双曲线22221x y a b 的一条渐近线与x 轴所成的夹角为30°,且双曲线的焦距为42.(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左,右焦点,过2F 作直线l (与x 轴不重合)交椭圆于A ,B 两点,线段AB 的中点为E ,记直线1F E 的斜率为k ,求k 的取值范围. 22.设函数ln f xx x ax ,a R .(1)当1a 时,求曲线yf x 在点1,1f 处的切线方程;f x b a x b恒成立,求整数b的最大值.(2)若对1x,1洛阳市2016-2017学年高二年级质量检测数学试卷参考答案(理)一、选择题1-5:CBDCD 6-10:CABAB 11、12:CA二、填空题13.7414.60 15.540 16.0 三、解答题17.(1)由正弦定理及已知得1sin sin sin sin sin 2B C C A B C , ∴1cos sin sin 2B CC ,由于sin 0C ,∴1cos 2B. 0,B ,所以3B . (2)由ABC △的面积213sin 234S ac b ,得2b ac ,由余弦定理得,2222cos b a c ac B ac ,所以20a c ,所以a c ,此时有22b ac a ,∴a b c ,所以ABC △为等边三角形.18.(1)由221110n n n nn a a a na 可得1110nn nna a n a na ,∵0n a ,∴11nn n a na , 从而11211121n n nn a na n a a a …,所以1na n. (2)由(1)知212111111212122121n n n b a a n n n n ,∴12111111123352121nnT b b b n n ……11112212n . 19.(1)依题意甲,乙,丙三人的分配方法有2种,其余二人的分配方法有22种,故共有2228种不同的分配方案.(2)设5名学生中恰有i 名被分到王城公园的事件为0,1,2,3,4,5i A i ,的所有可能取值是1,3,5.2332535223235551228C C C CP P A A P A P A,11115451141455532216C C C CP P A A P A P A ,055555050555152216C C CP P A A P A P A,则随机变量的分布列为1 3 5P 58516116故随机变量的数学期望55115135816168E.20.(1)证明:∵矩形11BB CC所在平面与底面1ABB N垂直,则CB底面1ABB N.∵1AN BB∥,AB AN,则1AB BB,如图,以B为坐标原点,以BA,1BB,BC为坐标轴,建立空间直角坐标系,不妨设14BB,则2,2,0N,10,4,2C,10,4,0B,,0,0,2C,∵1440B N BN,则1B N BN,11BN B C,且1111B N BC B,则BN平面11C B N.(2)设平面1C BN的一个法向量为,,m x y z,由于2,2,0BN,12,2,2C N,由1n BNn C N,得x yx y z,令1x得1,1,2m.同理求得平面1C CN的一个法向量为1,0,1n.设二面角1C C N B的平面角为,则3cos2m nm n.又二面角1C C N B为锐二面角,所以二面角1C C N B的大小是30°.21.(1)一条渐近线与x轴所成的夹角为30°知3tan303ba°,即223a b,又22c,所以228a b,解得26a,22b,所以椭圆C的方程为22162x y.(2)由(1)知22,0F ,设11,A x y ,22,B x y ,设直线AB 的方程为2x ty . 联立221622x y x ty 得223420t y ty , 由12243ty y t 得122123x x t ,∴2262,33tEt t ,又12,0F ,所以直线1F E 的斜率222236623tt t kt t .①当0t 时,0k ; ②当0t时,2116266t kttt,即60,12k . 综合①②可知,直线1F E 的斜率k 的取值范围是66,1212. 22.(1)由ln f x x x ax 得'ln 1f x x a , 当1a 时,'ln 2f x x ,11f ,'12f ,求得切线方程为21y x .(2)若对1x ,1f x b a x b 恒成立等价于ln 1x x xbx 对1x 恒成立,设函数ln 1x x xg xx ,则2ln 2'1x x g x x ,再设函数ln 2h x x x ,则1'1h x x. ∵1x ,'0h x ,即h x 在1,上为增函数,又31ln 30h ,42ln 40h ,所以存在03,4x ,使得00h x ,∴当01,x x 时,0h x ,即'0g x ,故g x 在01,x 上递减; 当0,xx 时,0h x,即'0g x,故g x 在0,x 上递增.∴g x 的最小值为00000ln 1x x x g x x .由000ln 20h x x x 得00ln 2x x .所以000021x x x g x x x ,所以0b x ,又03,4x ,故整数b 的最大值为3.。
河南省洛阳市2016-2017学年高二下学期期末考试文数试题有答案-(数学)

洛阳市2016-2017学年高二年级质量检测数学试卷(文)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,,a b R Î,且2a ib i i+=+,则ab =( ) A.1-B.1C.2-D.22.设0x >,由不等式12x x +?,243x x +?,3274x x +?,…,类比推广到1n ax n x+?,则a =( )A.n nB.2nC.2nD.n3.设双曲线()222109x y a a -=>的渐近线方程为320x y ?,则a 的值为( )A.1B.2C.3D.44.用反证法证明“*,a b N Î,如果a 、b 能被2017整除,那么,a b 中至少有一个能被2017整除”时,假设的内容是( )A.a 不能被2017整除B.b 不能被2017整除C.,a b 都不能被2017整除D.,a b 中至多有一个能被2017整除5.为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据根据表中数据,通过计算统计量()()()()()2n ad bc K a b c d a c b d -=++++,并参考以下临界数据:A.0.05B.0.025C.0.01D.0.0056.已知函数()ln 3f x x x =-,则曲线()y f x =在点()()1,1f 处的切线与坐标轴围成的三角形的面积为( ) A.1B.12C.14D.187.若圆的方程为12cos 32sin x y q q ì=-+ïí=+ïî(q 为参数),直线的方程为2161x t y y ì=-ïí=-ïî(t 为参数),则直线与圆的位置关系是( )A.相交过圆心B.相交而不过圆心C.相切D.相离8.下列命题中正确的是( )A.命题“0x R $?,0sin 1x >”的否定是“x R "?,sin 1x >”B.“若0xy =,则0x =或0y =”的逆否命题为“若0x ¹或0y ¹,则0xy ¹”C.在ABC △中,A B >是sin sin A B >的充分不必要条件D.若()p q 儇为假,()p q 谪为真,则,p q 同真或同假 9.若0ab >且直线20ax by +-=过点()2,1P ,则12a b+的最小值为( ) A.92B.4C.72D.310.已知抛物线2y =的焦点为F ,A ,B 为抛物线上两点,若3AF FB =,O 为坐标原点,则AOB △的面积为( )A.B.C.11.设等差数列{}n a 满足()()5100810081201611a a -+-=,()()5100910091201611a a -+-=-,数列{}n a 的前n 项和记为S ,则( )A.20162016S =,10081009a a >B.20162016S =-,10081009a a >C.20162016S =,10081009a a <D.20162016S =-,10081009a a <12.若函数()22f x x ax b =++在区间()0,1和()1,2内各有一个零点,则31a b a +--的取值范围是( ) A.1,14骣琪琪桫B.33,42骣琪琪桫C.15,44骣琪琪桫D.5,24骣琪琪桫第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.将点P 的极坐标34p化成直角坐标为 . 14.设,A B 分别是复数12,z z ,在复平面上对应的两点,O 为原点,若1212z z z z +=-,则AOB ∠的大小为 . 15.某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x (单位:百万元)与销售额y (单位:百万元)之间有如下对应数据:由表中的数据得线性回归方程为y bx a =+,其中 6.5b =,由此预测当广告费为7百万元时,销售额为 万元.16.如图,已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为12,F F ,124F F =,P 是双曲线右支上一点,直线2PF 交y 轴于点A ,1APF △的内切圆切边1PF 与点Q ,若1PQ =,则双曲线的离心率为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在直角坐标系xOy 中,直线1C的参数方程为112x t y ì=+ïïíïïî(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()2212sin 3r q +=. (1)写出1C 的普通方程为2C 的直角坐标方程;(2)直线1C 与曲线2C 相交于,A B 两点,点()1,0M ,求MA MB -.18.在ABC △中,角,,A B C 的对边分别为,,a b c ,已知()2cos 14cos cos B C B C --=. (1)求A ;(2)若a ABC △,求b c +. 19.已知数列{}n a 的首项11a =,且()*121nn n a a n N a +=?+.(1)证明:数列1n a 禳镲睚镲铪是等差数列,并求数列{}n a 的通项公式;(2)设1n n n b a a +=,求数列{}n b 的前n 项和n T .20.如图,四棱锥S ABCD -中,ABD △是正三角形,CB CD =,SC BD ^. (1)求证:SA BD ^;(2)若120BCD =∠°,M 为棱SA 的中点,求证:DM ∥平面SBC.21.设函数()2xx f x e=,()()ln 0ag x x a x=+>. (1)求函数()f x 的极值; (2)若()12,0,x x $??,使得()()12g x f x £成立,求a 的取值范围.22.已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线22221x y a b-=的一条渐近线与x 轴所成的夹角为30°,且双曲线的焦距为(1)求椭圆C 的方程;(2)过右焦点F 的直线l ,交椭圆于,A B 两点,记AOF △的面积为1S ,BOF △的面积为2S ,当122S S =时,求OA OB ×的值.洛阳市2016-2017学年高二年级质量检测数学试卷参考答案(文)一、选择题1-5:CABCA 6-10:CBDBB 11、12:CD二、填空题13.()1,1- 14.2p15.63 16.2 三、解答题17.(1)曲线1C0y --,曲线2C 的直角坐标方程为2213x y +=.(2)将直线1C 的参数方程代入2C 的直角坐标方程得:25240t t +-=, 1225t t +=-, 由t 的几何意义可知:1225MA MB t t -=+=. 18.(1)∵()2cos cos sin sin 14cos cos B C B C B C +-=, ∴2cos cos 2sin sin 1B C B C -=-, ∴()2cos 1B C +=-,∴1cos 2A =. 由0A p <<,3A p =. (2)由(1)得sin A ,由面积公式1sin 2bc A 可得6bc =.①根据余弦定理得2222271cos 2122b c a b c A bc +-+-===,则()222213b c b c bc +=+-=.② ①②两式联立可得5b c +=. 19.(1)由121n n n a a a +=+可得1112n n a a +=+,即1112n na a +-=, 又11a =,即111a =,∴数列1n a 禳镲睚镲铪是首项为1,公差为2的等差数列,∴()111221n n n a =+-?-,即121n a n =-.(2)由于111122121n n n b a a n n +骣琪==-琪-+桫, ∴12111111123352121n n T b b b n n 骣琪=+++=-+-++-琪-+桫 (11122121)nn n 骣琪=-=琪++桫. 20.证明:(1)连结AC 交BD 于O ,由于CB CD =,AB AD =,知AC BD ^,∵SC BD ^,SC CA C =, ∴BD ^平面SAC , 又SA Ì平面SAC , ∴SA BD ^.(2)取AB 的中点N ,连结MN ,DN , ∵M 是SA 中点,∴MN BS ∥, ∴MN ∥平面SBC ,∵ABD △是正三角形,∴ND AB ^,∵120BCD =∠°得30CBD =∠°,∴90ABC =∠°,即BC AB ^, ∴ND BC ∥,∴ND ∥平面SBC , ∵MNND N =,∴平面MND ∥平面SBC ,又DM Ì平面MND , ∴DM ∥平面SBC .21.(1)由()2x x f x e =得()22'xx x f x e -=,令()'0f x =得2x =或0x =.当x 变化时,()'f x 与()f x 的变化情况如下表:故函数()f x 的极大值为2e ,极小值为0. (2)()12,0,x x $??,使得()()12g x f x £,等价于当()0,x ??时,()()min max g x f x £,由()ln a g x x x =+得()2'x ag x x-=,当()0,x a Î时,()'0g x <,()g x 递减,当(),x a ??时,()'0g x >,()g x 递增,所以当0x >时,()()min 1ln g x g a a ==+. 由(1)知()()2max42f x f e ==,解241ln a e+?得241e a e -£.故a 的取值范围是2410,e e -纟çúçú棼.22.(1)由一条渐近线与x 轴所成的夹角为30°知tan 30b a ==°223a b =,又双曲线中c =228a b +=,解得26a =,22b =,所以椭圆C 的方程为22162x y +=.(2)由(1)知()2,0F ,设直线AB 的方程为2x ty =+,()11,A x y ,()22,B x y , 联立221622x y x ty ìï+=ïíï=+ïî得()223420t y ty ++-=, 所以1221224323ty y t y y t ì-+=ïï+í-ï=ï+î①②由题意122S S =知122y y =- ③ 由①②③得215t =.将215t =代入②,得1258y y =-,又()()()2121212122722248x x ty ty t y y t y y =++=+++=, 所以121227511884OA OB x x y y ?+=-=.。
河南省洛阳市高二下学期期末质量检测数学(文)

洛阳市2017—2018学年高二质量检测数学试卷(文) 第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卡上。
2.考试结束,将答题卡交回。
一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A={x | x >1} , B ? {x | x 2 - 3x - 4},则 A ∩B = A .(1, 4) B .(-1, 4) C .(-1,1) ) D .(-1, +∞)2.复数 z 满足 (2 + i) z =2- i (i 是虚数单位) ,则 z 在复平面对应的点所在象限为A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知等比数列 {a n } 中, a 2 =3, a 5 =81, b n =log3 a n ,数列 {b n }的前 n 项和为 Tn ,则 T 8= A .36 B.28 C.45 D.324.以双曲线1322=-y x 的焦点为顶点,离心率为3的双曲线标准方程为 A .116422=-y x B. 141622=-y x C. 14822=-y x D. 18422=-y x 5.已知函数b ax x a x f +-=2ln )(,函数 )(x f 在 (1, )1(f ) 处切线方程为 12+=x y ,则 ab 的值为 A .-2 B .2 C .-4 ) D .46.某程序框图如图所示,则该程序运行后输出 S 值为 A .3013 B . 3512 C .4019 D .42177.已知实数 y x ,满足⎪⎩⎪⎨⎧≤--≥-≥+42122y x y x y x ,若 y ax z +=的最大值为 16,则实数 a =A .2B .21 C .-2 ) D .21- 8.在极坐标系中与圆θρsin 4=相切的一条直线的方程为 A .2cos =θρ B. 2sin =θρC. )3sin(4πθρ+= D. )3sin(4πθρ-=9.在△ABC 中,AC AC B A sin sin 2cos cos sin -+=是角 A , B , C 成等差数列的 A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件10.对于大于或等于 2 的正整数幂运算有如下分解方式:,...191715134,11973,532,...75314,5313,312333222+++=++=+=+++=++=+=根据以上规律,若,11...5312++++=m 3p 的分解式中的最小正整数为 21,则 m+ p = A .9 B .10 C .11 D .1211.已知点 A(0, 2) ,抛物线 C :px y 22= ( p > 0) 的焦点为 F ,射线 FA 与抛物线 C 交于点 M ,与抛物线准线相交于 N ,若||5||FM MN =,则 p 的值为 A .21B .1C .2D .3 12.已知函数⎪⎩⎪⎨⎧-≥=ox xe x xe x f xx <,0,)(( e 是自然对数底数) ,方程)(,01)()(2R t x tf x f ∈=++有四个实数根,则 t 的取值范围为A . ),1(+∞+e e B .)1,(e e ---∞ C .)2,1(---e e D .)1,2(ee +第Ⅱ卷(非选择题,共 90 分)二、填空题:本大题共 4 个小题,每小题 5 分,共 20 分. 13.复数 z=(1 + i)(2 +i)(3 +i) ,则 z = .14.某工厂为了对新研发的一种产品进行合理定价,将该产品事先拟订的价格进行试销,得到如下数据。
河南省洛阳市2016-2017学年高二下学期期末考试理数试题-含答案

洛阳市2016-2017学年高二年级质量检测数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,,a b R Î,且2a ib i i+=+,则复数a bi +的模等于( )2.命题“若a b >,则ac bc >”的逆否命题是( ) A.若a b >,则ac bc £ B.若ac bc £,则a b £ C.若ac bc >,则a b >D.若a b £,则ac bc £3.设0x >,由不等式12x x +?,243x x +?,3274x x +?,…,类比推广到1n ax n x+?,则a =( )A.2nB.2nC.2nD.n n4.设随机变量()21N x ~,,若()3P m x >=,则()13P x <<等于( ) A.122m - B.1m - C.12m - D.12m - 5.抛掷一枚质地均匀的骰子两次,记事件{A =两次的点数均为奇数},{B =两次的点数之和小于7},则()|P B A =( ) A.13B.49C.59D.236.用数学归纳法证明“()1111232n F n ++++<…”时,由n k =不等式成立,证明1n k =+时,左边应增加的项数是( ) A.12k -B.21k -C.2kD.21k +7.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量()()()()()2n ad bc K a b c d a c b d -=++++,并参考以下临界数据:过( ) A.0.10B.0.05C.0.025D.0.018.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( )A.20种B.15种C.10种D.4种9.设随机变量()2,X B p ~,随机变量()3,Y B p ~,若()519P X ?,则)1D +=( )A.2B.3C.6D.710.已知抛物线2y =的焦点为F ,A ,B 为抛物线上两点,若3AF FB =,O 为坐标原点,则AOB △的面积为( ) A.B.C.11.设等差数列{}n a 满足()()5100810081201611a a -+-=,()()5100910091201611a a -+-=-,数列{}n a 的前n 项和记为S ,则( ) A.20162016S =,10081009a a > B.20162016S =-,10081009a a > C.20162016S =,10081009a a <D.20162016S =-,10081009a a <12.设函数()2ln ,021,0x x f x x x x ì->ï=íï+-?î,若()()()()f a f b f c f d ===,其中,,,a b c d 互不相等,则对于命题():0,1p abcd Î和命题)122:2,2q a b c d e e e e --é+++?-+-ë真假的判断,正确的是( ) A.p 假q 真B.p 假q 假C.p 真q 真D.p 真q 假第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数()3,01,1x x f x x x ì#ï=í>ïî,则定积分()20f x dx =ò .14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:20b =-9.5销量约为 件.15.已知,x y 满足约束条件0,2323x x y x y ì³ïï+?íï+?ïî,若y x -的最大值是a ,则二项式61ax x 骣琪-琪桫的展开式中的常数项为 .(数字作答)16.若函数()()320h x ax bx cx d a =+++?图象的对称中心为()()00,M x h x ,记函数()h x 的导函数为()g x ,则有()0'0g x =,设函数()3232f x x x =-+,则12403240332017201720172017f f f f 骣骣骣骣琪琪琪琪++++=琪琪琪琪桫桫桫桫… . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC △的三个内角,,A B C 所对应的边分别为,,a b c ,且满足1cos 2b Cc a +=.(1)求ABC △的内角B 的大小; (2)若ABC △的面积2S ,试判断ABC △的形状. 18.已知正项数列{}n a 的首项11a =,且()221110n n n n n a a a na ++++-=对*n N "?都成立.(1)求{}n a 的通项公式;(2)记2121n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:12n T <. 19.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?(2)每名学生都被随机分配到其中的一个公园,设,X Y 分别表示5名学生分配到王城公园和牡丹公园的人数,记X Y x =-,求随机变量x 的分布列和数学期望()E x .20.如图,已知矩形11BB C C 所在平面与底面1ABB N 垂直,在直角梯形1ABB N 中,1AN BB ∥,AB AN ^,112CB BA AN BB ===.(1)求证:BN ^平面11C B N ; (2)求二面角1C C N B --的大小.21.已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线22221x y a b-=的一条渐近线与x 轴所成的夹角为30°,且双曲线的焦距为(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左,右焦点,过2F 作直线l (与x 轴不重合)交椭圆于A ,B 两点,线段AB 的中点为E ,记直线1F E 的斜率为k ,求k 的取值范围. 22.设函数()ln f x x x ax =?,a R Î.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若对1x ">,()()1f x b a x b >+--恒成立,求整数b 的最大值.洛阳市2016-2017学年高二年级质量检测数学试卷参考答案(理)一、选择题1-5CBDCD 6-10CABAB 11、12:CA二、填空题13.7414.60 15.540- 16.0 三、解答题17.(1)由正弦定理及已知得()1sin sin sin sin sin 2B C C A B C +==+,∴1cos sin sin 2B C C =,由于sin 0C ¹,∴1cos 2B =.()0,B p Î,所以3B p=.(2)由ABC △的面积21sin 23S ac p =,得2b ac =,由余弦定理得,2222cos b a c ac B ac =+-=, 所以()20a c -=,所以a c =, 此时有22b ac a ==,∴a b c ==, 所以ABC △为等边三角形.18.(1)由()221110n n n n n a a a na +-++-=可得()()1110n n n n a a n a na ++轾++-=臌, ∵0n a >,∴()11n n n a na ++=,从而()()11211121n n n n a na n a a a +-+==-===?…, 所以1n a n=. (2)由(1)知212111111212122121n n n b a a n n n n -+骣琪==?-琪-+--桫, ∴12111111123352121n n T b b b n n 骣琪=+++=-+-++-琪-+桫 (11112212)n 骣琪=-<琪+桫.19.(1)依题意甲,乙,丙三人的分配方法有2种,其余二人的分配方法有22种,故共有2228?种不同的分配方案.(2)设5名学生中恰有i 名被分到王城公园的事件为()0,1,2,3,4,5i A i =,x 的所有可能取值是1,3,5.()()()()2332535223235551228C C C C P P A A P A P A x ==+=+=+=,()()()()11115451141455532216C C C C P P A A P A P A x ==+=+=+=,()()()()055555050555152216C C C P P A A P A P A x ==+=+=+=,则随机变量x 的分布列为故随机变量x 的数学期望()135816168E x =???. 20.(1)证明:∵矩形11BB CC 所在平面与底面1ABB N 垂直,则CB ^底面1ABB N .∵1AN BB ∥,AB AN ^,则1AB BB ^,如图,以B 为坐标原点,以BA ,1BB ,BC 为坐标轴,建立空间直角坐标系,不妨设14BB =,则()2,2,0N ,()10,4,2C ,()10,4,0B ,(),0,0,2C , ∵1440B N BN ?-=,则1B N BN ^,11BN B C ^,且1111B NB C B =,则BN ^平面11C B N .(2)设平面1C BN 的一个法向量为(),,m x y z =,由于()2,2,0BN =,()12,2,2C N =--, 由100n BN n C N ì?ïíï?î,得00x y x y z ì+=ïí--=ïî,令1x =得()1,1,2m =-.同理求得平面1C CN 的一个法向量为()1,0,1n =.设二面角1C C N B --的平面角为q , 则3cos m n m nq ×==. 又二面角1C C N B --为锐二面角,所以二面角1C C N B --的大小是30°. 21.(1)一条渐近线与x 轴所成的夹角为30°知tan 30b a =°,即223a b =, 又c =228a b +=,解得26a =,22b =,所以椭圆C 的方程为22162x y +=.(2)由(1)知()22,0F ,设()11,A x y ,()22,B x y ,设直线AB 的方程为2x ty =+. 联立221622x y x ty ìï+=ïíï=+ïî得()223420t y ty ++-=, 由12243t y y t -+=+得122123x x t +=+, ∴2262,33tE t t 骣-琪琪++桫, 又()12,0F -,所以直线1F E 的斜率222236623ttt k t t -+==+--+.①当0t =时,0k =;②当0t ¹时,2166tk tt t==?++,即k 纟çÎç棼. 综合①②可知,直线1FE 的斜率k 的取值范围是-臌. 22.(1)由()ln f x x x ax =?得()'ln 1f x x a =++, 当1a =时,()'ln 2f x x =+,()11f =,()'12f =, 求得切线方程为21y x =-.(2)若对1x ">,()()1f x b a x b >+--恒成立等价于ln 1x x xb x +<-对1x ">恒成立, 设函数()ln 1x x xg x x +=-,则()()2ln 2'1x x g x x --=-,再设函数()ln 2h x x x =--,则()1'1h x x=-. ∵1x >,()'0h x >,即()h x 在()1,+?上为增函数,又()31ln 30h =-<,()42ln 40h =->, 所以存在()03,4x Î,使得()00h x =,∴当()01,x x Î时,()0h x <,即()'0g x <,故()g x 在()01,x 上递减; 当()0,x x ??时,()0h x >,即()'0g x >,故()g x 在()0,x +?上递增.∴()g x 的最小值为()00000ln 1x x x g x x +=-.由()000ln 20h x x x =--=得00ln 2x x =-. 所以()()00000021x x x g x x x -+==-,所以0b x <,又()03,4x Î,故整数b 的最大值为3.。
河南省洛阳市2016-2017学年高二下学期期末质量检测(6月)数学(文)有答案

洛阳市2016-2017学年度高二年级质量检测数学试卷(文科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若i 为虚数单位,,a b R ∈且2a ib i i+=+,则ab = A. -1 B. 1 C. -2 D.22. 设0x >,由不等式2314272,3,4,x x x x x x +≥+≥+≥,类比推广到1n ax n x+≥+,则a = A. n n B. 2n C. 2n D. n3.设双曲线()222109x y a a -=>的渐近线为320x y ±=,则a 的值为 A. 1 B. 2 C. 3 D. 44.用反证法证明“,a b N *∈,如果,a b 能被2017整除,那么,a b 中至少有一个能被2017整除”时,假设的内容是A. a 不能被2017整除B. a 不能被2017整除C. ,a b 都不能被2017整除D. ,a b 中至多有一个能被2017整除5.为了考查某种中成药预防流感的效果,抽样调查了40人,得到如下数据:6.已知函数()ln 3f x x x =-,则曲线()y f x =在点()()1,1f 处的切线与坐标轴围成的三角形的面积为A. 1B.12 C. 14 D.18 7.若圆的方程为12cos 32sin x y θθ=-+⎧⎨=+⎩(θ为参数)直线的方程为2161x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆为位置关系是A. 相交且过圆心B.相交但不过圆心C. 相切D.相离 8.下列命题中正确的是A. 命题“00,sin 1x R x ∃∈>”的否定是“,sin 1x R x ∀∈>”B.“若0xy =,则0x =或0y =”的逆否命题是 “若0x ≠或0y ≠,则0xy ≠”C. 在ABC ∆中,A B >是sin sin A B >的充分不必要条件D.若()p q ∧⌝为假,()p q ∨⌝为真,则,p q 同真或同假9.若0ab >,且直线20ax by +-=过点()2,1,则12a b+的最小值为 A.92 B. 4 C.72D.3 10.已知抛物线2y =的焦点为F,A,B 为抛物线上两点,若3AF FB =,O 为坐标原点,则ABO ∆的面积为A.11.设等差数列{}n a 满足()()5100810081201611,a a -+-=()()5100910091201611a a -+-=-,数列{}n a 的前n 项和为n S ,则A. 2016100810092016,S a a =>B. 2016100810092016,S a a =->C. 2016100810092016,S a a =<D.2016100810092016,S a a =-<12.若函数()22f x x ax b =++在区间()0,1和区间()1,2上各有一个零点,则31a b a +--的取值范围是A. 1,14⎛⎫⎪⎝⎭ B.33,42⎛⎫ ⎪⎝⎭ C.15,44⎛⎫ ⎪⎝⎭ D. 5,24⎛⎫ ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分. 13.将点P的极坐标34π⎫⎪⎝⎭化为直角坐标为 . 14.设A,B 分别是复数12,z z 在复平面内对应的两点,O 为坐标原点,若1212z z z z +=-,则AOB ∠的大小为 .15.某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x (单位:百万元)与销售额y (单位:百万元)之间有如下对应数据:由表中数据得线性回归方程为ˆˆˆybx a =+,其中ˆ 6.5b =,由此可预测等广告费为7百万元时,销售额为 (百万元).16.如图,已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为12,F F ,124F F =,P 是双曲线右支上一点,直线2PF 交y 轴于点A ,2APF ∆的内切圆的切1PF 边于点Q ,若1PQ =,则双曲线的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)在平面直角坐标系xoy 中,直线1C的参数方程为112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为()2212sin 3ρθ+=(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)若直线1C 与曲线2C 相交于A,B 两点,点()1,0M ,求MA MB -的值.18.(本题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知()2c o s 14c o s c o s .B C B C +-= (1)求A ; (2)若7,a ABC =∆的面积为33,求b c +19.(本题满分12分)已知数列{}n a 的首项为11a =,且1,.21nn n a a n N a *+=∈+(1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式; (2)设1n n n b a a +=,求数列{}n b 的前n 项和.n T .20.(本题满分12分)如图,在四棱锥S A B C D -中,ABD ∆是正三角形,,.CB CD SC BD =⊥ (1)求证:SA BD ⊥;(2)若120,BCD M ∠=为棱SA 的中点,求证://DM 平面SBC .21.(本题满分12分)设函数()()()2,ln 0.x x af xg x x a e x==+> (1)求函数()f x 的极值;(2)若()12,0,x x ∃∈+∞,使得()()12g x f x ≤成立,求a 的取值范围.22.(本题满分12分)已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线22221x y a b-=的一条渐近线与x 轴所成的角为30,且双曲线的焦距为(1)求椭圆C 的方程; 的面积为1S ,(2)过右焦点F 的直线l 交椭圆于A,B 两点,记AOF∆BOF ∆的面积为2S ,当122S S =时,求OA OB ⋅的值.。
河南省洛阳市2016-2017学年高二下学期期末考试理数试题-含答案
洛阳市2016-2017学年高二年级质量检测数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,,a b R Î,且2a ib i i+=+,则复数a bi +的模等于( )2.命题“若a b >,则ac bc >”的逆否命题是( ) A.若a b >,则ac bc £ B.若ac bc £,则a b £ C.若ac bc >,则a b >D.若a b £,则ac bc £3.设0x >,由不等式12x x +?,243x x +?,3274x x +?,…,类比推广到1n ax n x+?,则a =( ) A.2nB.2nC.2nD.n n4.设随机变量()21N x ~,,若()3P m x >=,则()13P x <<等于( ) A.122m - B.1m - C.12m - D.12m - 5.抛掷一枚质地均匀的骰子两次,记事件{A =两次的点数均为奇数},{B =两次的点数之和小于7},则()|P B A =( ) A.13B.49C.59D.236.用数学归纳法证明“()1111232n F n ++++<…”时,由n k =不等式成立,证明1n k =+时,左边应增加的项数是( ) A.12k -B.21k -C.2kD.21k +7.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量()()()()()2n ad bc K a b c d a c b d -=++++,并参考以下临界数据:超过( ) A.0.10B.0.05C.0.025D.0.018.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( ) A.20种B.15种C.10种D.4种9.设随机变量()2,X B p ~,随机变量()3,Y B p ~,若()519P X ?,则)1D +=( )A.2B.3C.6D.710.已知抛物线2y =的焦点为F ,A ,B 为抛物线上两点,若3AF FB =,O 为坐标原点,则AOB △的面积为( ) A.B.C.11.设等差数列{}n a 满足()()5100810081201611a a -+-=,()()5100910091201611a a -+-=-,数列{}n a 的前n 项和记为S ,则( ) A.20162016S =,10081009a a > B.20162016S =-,10081009a a > C.20162016S =,10081009a a <D.20162016S =-,10081009a a <12.设函数()2ln ,021,0x x f x x x x ì->ï=íï+-?î,若()()()()f a f b f c f d ===,其中,,,a b c d 互不相等,则对于命题():0,1p abcd Î和命题)122:2,2q a b c d e e e e --é+++?-+-ë真假的判断,正确的是( ) A.p 假q 真B.p 假q 假C.p 真q 真D.p 真q 假第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数()3,01,1x x f x x x ì#ï=í>ïî,则定积分()20f x dx =ò .14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:20b =-9.5时,销量约为 件.15.已知,x y 满足约束条件0,2323x x y x y ì³ïï+?íï+?ïî,若y x -的最大值是a ,则二项式61ax x 骣琪-琪桫的展开式中的常数项为 .(数字作答)16.若函数()()320h x ax bx cx d a =+++?图象的对称中心为()()00,M x h x ,记函数()h x 的导函数为()g x ,则有()0'0g x =,设函数()3232f x x x =-+,则12403240332017201720172017f f f f 骣骣骣骣琪琪琪琪++++=琪琪琪琪桫桫桫桫… . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC △的三个内角,,A B C 所对应的边分别为,,a b c ,且满足1cos 2b Cc a +=.(1)求ABC △的内角B 的大小; (2)若ABC △的面积2S ,试判断ABC △的形状. 18.已知正项数列{}n a 的首项11a =,且()221110n n n n n a a a na ++++-=对*n N "?都成立.(1)求{}n a 的通项公式;(2)记2121n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:12n T <. 19.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?(2)每名学生都被随机分配到其中的一个公园,设,X Y 分别表示5名学生分配到王城公园和牡丹公园的人数,记X Y x =-,求随机变量x 的分布列和数学期望()E x . 20.如图,已知矩形11BB C C 所在平面与底面1ABB N 垂直,在直角梯形1ABB N 中,1AN BB ∥,AB AN ^,112CB BA AN BB ===.(1)求证:BN ^平面11C B N ; (2)求二面角1C C N B --的大小.21.已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线22221x y a b-=的一条渐近线与x 轴所成的夹角为30°,且双曲线的焦距为(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左,右焦点,过2F 作直线l (与x 轴不重合)交椭圆于A ,B 两点,线段AB 的中点为E ,记直线1F E 的斜率为k ,求k 的取值范围. 22.设函数()ln f x x x ax =?,a R Î.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若对1x ">,()()1f x b a x b >+--恒成立,求整数b 的最大值.洛阳市2016-2017学年高二年级质量检测数学试卷参考答案(理)一、选择题1-5CBDCD 6-10CABAB 11、12:CA二、填空题13.7414.60 15.540- 16.0 三、解答题17.(1)由正弦定理及已知得()1sin sin sin sin sin 2B C C A B C +==+,∴1cos sin sin 2B C C =,由于sin 0C ¹,∴1cos 2B =.()0,B p Î,所以3B p=.(2)由ABC △的面积21sin 23S ac p =,得2b ac =,由余弦定理得,2222cos b a c ac B ac =+-=, 所以()20a c -=,所以a c =, 此时有22b ac a ==,∴a b c ==, 所以ABC △为等边三角形.18.(1)由()221110n n n n n a a a na +-++-=可得()()1110n n n n a a n a na ++轾++-=臌, ∵0n a >,∴()11n n n a na ++=,从而()()11211121n n n n a na n a a a +-+==-===?…, 所以1n a n=. (2)由(1)知212111111212122121n n n b a a n n n n -+骣琪==?-琪-+--桫, ∴12111111123352121n n T b b b n n 骣琪=+++=-+-++-琪-+桫 (11112212)n 骣琪=-<琪+桫.19.(1)依题意甲,乙,丙三人的分配方法有2种,其余二人的分配方法有22种,故共有2228?种不同的分配方案.(2)设5名学生中恰有i 名被分到王城公园的事件为()0,1,2,3,4,5i A i =,x 的所有可能取值是1,3,5.()()()()2332535223235551228C C C C P P A A P A P A x ==+=+=+=,()()()()11115451141455532216C C C C P P A A P A P A x ==+=+=+=,()()()()055555050555152216C C C P P A A P A P A x ==+=+=+=,则随机变量x 的分布列为故随机变量x 的数学期望()135816168E x =???. 20.(1)证明:∵矩形11BB CC 所在平面与底面1ABB N 垂直,则CB ^底面1ABB N . ∵1AN BB ∥,AB AN ^,则1AB BB ^,如图,以B 为坐标原点,以BA ,1BB ,BC 为坐标轴,建立空间直角坐标系,不妨设14BB =,则()2,2,0N ,()10,4,2C ,()10,4,0B ,(),0,0,2C , ∵1440B N BN ?-=,则1B N BN ^,11BN B C ^,且1111B NB C B =,则BN ^平面11C B N .(2)设平面1C BN 的一个法向量为(),,m x y z =,由于()2,2,0BN =,()12,2,2C N =--, 由100n BN n C N ì?ïíï?î,得00x y x y z ì+=ïí--=ïî,令1x =得()1,1,2m =-.同理求得平面1C CN 的一个法向量为()1,0,1n =.设二面角1C C N B --的平面角为q , 则3cos m n m nq ×==. 又二面角1C C N B --为锐二面角,所以二面角1C C N B --的大小是30°. 21.(1)一条渐近线与x 轴所成的夹角为30°知tan 30b a =°,即223a b =, 又c =228a b +=,解得26a =,22b =,所以椭圆C 的方程为22162x y +=.(2)由(1)知()22,0F ,设()11,A x y ,()22,B x y ,设直线AB 的方程为2x ty =+. 联立221622x y x ty ìï+=ïíï=+ïî得()223420t y ty ++-=, 由12243t y y t -+=+得122123x x t +=+, ∴2262,33tE t t 骣-琪琪++桫, 又()12,0F -,所以直线1F E 的斜率222236623ttt k t t -+==+--+.①当0t =时,0k =;②当0t ¹时,2166tk tt t==?++,即k 纟çÎç棼. 综合①②可知,直线1FE 的斜率k 的取值范围是-臌. 22.(1)由()ln f x x x ax =?得()'ln 1f x x a =++, 当1a =时,()'ln 2f x x =+,()11f =,()'12f =, 求得切线方程为21y x =-.(2)若对1x ">,()()1f x b a x b >+--恒成立等价于ln 1x x xb x +<-对1x ">恒成立, 设函数()ln 1x x xg x x +=-,则()()2ln 2'1x x g x x --=-,再设函数()ln 2h x x x =--,则()1'1h x x=-. ∵1x >,()'0h x >,即()h x 在()1,+?上为增函数,又()31ln 30h =-<,()42ln 40h =->, 所以存在()03,4x Î,使得()00h x =,∴当()01,x x Î时,()0h x <,即()'0g x <,故()g x 在()01,x 上递减; 当()0,x x ??时,()0h x >,即()'0g x >,故()g x 在()0,x +?上递增.∴()g x 的最小值为()00000ln 1x x x g x x +=-.由()000ln 20h x x x =--=得00ln 2x x =-. 所以()()00000021x x x g x x x -+==-,所以0b x <,又()03,4x Î,故整数b 的最大值为3.。
河南省洛阳市2016-2017学年高二下学期期末考试理数试题-含答案
洛阳市2016-2017学年高二年级质量检测数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,,a b R Î,且2a ib i i+=+,则复数a bi +的模等于( )2.命题“若a b >,则ac bc >”的逆否命题是( ) A.若a b >,则ac bc £ B.若ac bc £,则a b £ C.若ac bc >,则a b >D.若a b £,则ac bc £3.设0x >,由不等式12x x +?,243x x +?,3274x x +?,…,类比推广到1n ax n x+?,则a =( ) A.2nB.2nC.2nD.n n4.设随机变量()21N x ~,,若()3P m x >=,则()13P x <<等于( ) A.122m - B.1m - C.12m - D.12m - 5.抛掷一枚质地均匀的骰子两次,记事件{A =两次的点数均为奇数},{B =两次的点数之和小于7},则()|P B A =( ) A.13B.49C.59D.236.用数学归纳法证明“()1111232n F n ++++<…”时,由n k =不等式成立,证明1n k =+时,左边应增加的项数是( ) A.12k -B.21k -C.2kD.21k +7.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量()()()()()2n ad bc K a b c d a c b d -=++++,并参考以下临界数据:过( ) A.0.10B.0.05C.0.025D.0.018.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( ) A.20种B.15种C.10种D.4种9.设随机变量()2,X B p ~,随机变量()3,Y B p ~,若()519P X ?,则)1D +=( )A.2B.3C.6D.710.已知抛物线2y =的焦点为F ,A ,B 为抛物线上两点,若3AF FB =,O 为坐标原点,则AOB △的面积为( ) A.B.C.11.设等差数列{}n a 满足()()5100810081201611a a -+-=,()()5100910091201611a a -+-=-,数列{}n a 的前n 项和记为S ,则( ) A.20162016S =,10081009a a > B.20162016S =-,10081009a a > C.20162016S =,10081009a a <D.20162016S =-,10081009a a <12.设函数()2ln ,021,0x x f x x x x ì->ï=íï+-?î,若()()()()f a f b f c f d ===,其中,,,a b c d 互不相等,则对于命题():0,1p abcd Î和命题)122:2,2q a b c d e e e e --é+++?-+-ë真假的判断,正确的是( ) A.p 假q 真B.p 假q 假C.p 真q 真D.p 真q 假第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数()3,01,1x x f x x x ì#ï=í>ïî,则定积分()20f x dx =ò .14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:20b =-9.5时,销量约为 件.15.已知,x y 满足约束条件0,2323x x y x y ì³ïï+?íï+?ïî,若y x -的最大值是a ,则二项式61ax x 骣琪-琪桫的展开式中的常数项为 .(数字作答)16.若函数()()320h x ax bx cx d a =+++?图象的对称中心为()()00,M x h x ,记函数()h x 的导函数为()g x ,则有()0'0g x =,设函数()3232f x x x =-+,则12403240332017201720172017f f f f 骣骣骣骣琪琪琪琪++++=琪琪琪琪桫桫桫桫… . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC △的三个内角,,A B C 所对应的边分别为,,a b c ,且满足1cos 2b Cc a +=.(1)求ABC △的内角B 的大小; (2)若ABC △的面积2S ,试判断ABC △的形状. 18.已知正项数列{}n a 的首项11a =,且()221110n n n n n a a a na ++++-=对*n N "?都成立.(1)求{}n a 的通项公式;(2)记2121n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:12n T <. 19.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?(2)每名学生都被随机分配到其中的一个公园,设,X Y 分别表示5名学生分配到王城公园和牡丹公园的人数,记X Y x =-,求随机变量x 的分布列和数学期望()E x . 20.如图,已知矩形11BB C C 所在平面与底面1ABB N 垂直,在直角梯形1ABB N 中,1AN BB ∥,AB AN ^,112CB BA AN BB ===.(1)求证:BN ^平面11C B N ; (2)求二面角1C C N B --的大小.21.已知椭圆C 的方程为()222210x y a b a b +=>>,双曲线22221x y a b-=的一条渐近线与x 轴所成的夹角为30°,且双曲线的焦距为(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左,右焦点,过2F 作直线l (与x 轴不重合)交椭圆于A ,B 两点,线段AB 的中点为E ,记直线1F E 的斜率为k ,求k 的取值范围. 22.设函数()ln f x x x ax =?,a R Î.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若对1x ">,()()1f x b a x b >+--恒成立,求整数b 的最大值.洛阳市2016-2017学年高二年级质量检测数学试卷参考答案(理)一、选择题1-5CBDCD 6-10CABAB 11、12:CA二、填空题13.7414.60 15.540- 16.0 三、解答题17.(1)由正弦定理及已知得()1sin sin sin sin sin 2B C C A B C +==+,∴1cos sin sin 2B C C =,由于sin 0C ¹,∴1cos 2B =.()0,B p Î,所以3B p=.(2)由ABC △的面积21sin 23S ac p =,得2b ac =,由余弦定理得,2222cos b a c ac B ac =+-=, 所以()20a c -=,所以a c =, 此时有22b ac a ==,∴a b c ==, 所以ABC △为等边三角形.18.(1)由()221110n n n n n a a a na +-++-=可得()()1110n n n n a a n a na ++轾++-=臌, ∵0n a >,∴()11n n n a na ++=,从而()()11211121n n n n a na n a a a +-+==-===?…, 所以1n a n=. (2)由(1)知212111111212122121n n n b a a n n n n -+骣琪==?-琪-+--桫, ∴12111111123352121n n T b b b n n 骣琪=+++=-+-++-琪-+桫 (11112212)n 骣琪=-<琪+桫.19.(1)依题意甲,乙,丙三人的分配方法有2种,其余二人的分配方法有22种,故共有2228?种不同的分配方案.(2)设5名学生中恰有i 名被分到王城公园的事件为()0,1,2,3,4,5i A i =,x 的所有可能取值是1,3,5.()()()()2332535223235551228C C C C P P A A P A P A x ==+=+=+=,()()()()11115451141455532216C C C C P P A A P A P A x ==+=+=+=,()()()()055555050555152216C C C P P A A P A P A x ==+=+=+=,则随机变量x 的分布列为故随机变量x 的数学期望()135816168E x =???. 20.(1)证明:∵矩形11BB CC 所在平面与底面1ABB N 垂直,则CB ^底面1ABB N . ∵1AN BB ∥,AB AN ^,则1AB BB ^,如图,以B 为坐标原点,以BA ,1BB ,BC 为坐标轴,建立空间直角坐标系,不妨设14BB =,则()2,2,0N ,()10,4,2C ,()10,4,0B ,(),0,0,2C , ∵1440B N BN ?-=,则1B N BN ^,11BN B C ^,且1111B NB C B =,则BN ^平面11C B N .(2)设平面1C BN 的一个法向量为(),,m x y z =,由于()2,2,0BN =,()12,2,2C N =--, 由100n BN n C N ì?ïíï?î,得00x y x y z ì+=ïí--=ïî,令1x =得()1,1,2m =-.同理求得平面1C CN 的一个法向量为()1,0,1n =.设二面角1C C N B --的平面角为q , 则3cos m n m nq ×==. 又二面角1C C N B --为锐二面角,所以二面角1C C N B --的大小是30°. 21.(1)一条渐近线与x 轴所成的夹角为30°知tan 30b a =°,即223a b =, 又c =228a b +=,解得26a =,22b =,所以椭圆C 的方程为22162x y +=.(2)由(1)知()22,0F ,设()11,A x y ,()22,B x y ,设直线AB 的方程为2x ty =+. 联立221622x y x ty ìï+=ïíï=+ïî得()223420t y ty ++-=, 由12243t y y t -+=+得122123x x t +=+, ∴2262,33tE t t 骣-琪琪++桫, 又()12,0F -,所以直线1F E 的斜率222236623ttt k t t -+==+--+.①当0t =时,0k =;②当0t ¹时,2166tk tt t==?++,即k 纟çÎç棼. 综合①②可知,直线1FE 的斜率k 的取值范围是-臌. 22.(1)由()ln f x x x ax =?得()'ln 1f x x a =++, 当1a =时,()'ln 2f x x =+,()11f =,()'12f =, 求得切线方程为21y x =-.(2)若对1x ">,()()1f x b a x b >+--恒成立等价于ln 1x x xb x +<-对1x ">恒成立, 设函数()ln 1x x xg x x +=-,则()()2ln 2'1x x g x x --=-,再设函数()ln 2h x x x =--,则()1'1h x x=-. ∵1x >,()'0h x >,即()h x 在()1,+?上为增函数,又()31ln 30h =-<,()42ln 40h =->, 所以存在()03,4x Î,使得()00h x =,∴当()01,x x Î时,()0h x <,即()'0g x <,故()g x 在()01,x 上递减; 当()0,x x ??时,()0h x >,即()'0g x >,故()g x 在()0,x +?上递增.∴()g x 的最小值为()00000ln 1x x x g x x +=-.由()000ln 20h x x x =--=得00ln 2x x =-. 所以()()00000021x x x g x x x -+==-,所以0b x <,又()03,4x Î,故整数b 的最大值为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 由( )知 ( ) ( )= 4 ,解 1+l 1 2 n ≤ 2 得 m .
≤
. ……1 2分
( )由一条渐近线与 2 2. 1 又双曲线中
轴所成的夹角为 3 0 ʎ知
a n3 0 ʎ= =t
3, 槡 即 3
2
2 =3 ,
所以 2 + 2 = 8, 解得 2 = 6,2 = 2. 2, =2 槡 2 2 所以椭圆 的方程为 +æ = 1. ……4 分 6 2 ( )由 ( )知 ( ) , 设直线 ≏ 的方程为 =ˇ , (2, 2 1 2, 0 ≏( 1 , . æ +2, æ æ 1) 2) 烄 +æ = 1 2 2 联立烅6 2 得( ) ˇ ˇ +3 æ -2 = 0, æ +4 烆 =ˇ 2 æ+ ˇ -4 烄 ① æ 1 +æ 2 = 2 ˇ +3 所以烅 -2 ② æ 1 2 = 2 烆æ ˇ +3 由题意 1 = 2 2 知 æ æ 1 =-2 2 ③ 1 2 由 ①②③ 得ˇ = . 5 1 代入 , 5, 2 将ˇ ② 得æ = æ 1 2 =- 5 8 2 7 2 ) ( )=ˇ ( ˇ ˇ ˇ . =( +4 = æ1 +2 æ2 +2 æ æ æ 1 2 +2 1 +æ 2) 8 2 7 5 1 1 → ·⦠ ≏ → 所以⦠ . = 1 2 +æ - = æ 1 2 = 8 8 4 又
根据余弦定理得 c o s ≏=
1
∰
……4 分 ʑ 1
∰
) 即 ∰-1 ∰-1, = 1+ ( ˑ2 = 2
∰
=
1 . 2 ∰-1
……6 分
高二数学 ( 文) 答案 第1 页 ( 共 3 页) ) 2 0 1 7. 4 (
1( 1 1 ) , ……8 分 - ∰-1 2 ∰+1 22 1 1 1 1 1 1 ) ʑ ∰ = 1 + 2 + … + ∰ = ( 1- + - + … + - 2 3 3 5 2 ∰-1 2 ∰+1 ……1 0分 1 1 ) ∰ ……1 1- . 2分 = ( = ∰+1 2 ∰+1 2 2 证明 : ( )连结 ≏ 交 于⦠, 由于 , 2 0. 1 = , ……2 分 ≏ = ≏ 知, ≏ ⊥ , ȵ ≏ = ⊥ ∩ ……4 分 ʑ ⊥ 平面 ≏ , 又 ≏ 平面 ≏ ……6 分 ʑ ≏ ⊥ . ( )取 ≏ 中点 , 连结 Ω , 2 ( )由于 2
2 1
的普通方程为槡 3 -æ - 槡 3 = 0,
2
……2 分
的直角坐标方程为
1
( )将直线 2
2 ……4 分 +æ = 1. 3 2 的参数方程代入 2 的直角坐标方程得 : 5 ˇ ˇ-4 = 0, +2 ……6 分
ˇ ˇ 1+ 2 =-
2, 5
……8 分
2 …… 分 由ˇ 的几何意义可知 : ˇ ˇ . 1 0 β βΩ≏ β - βΩ β β=β 1+ 2 β= 5 ( ) ( 1 8. 1 ȵ 2 c o sc o s +s i ns i n ) c o sc o s , -1 = 4 ……2 分 ʑ 2 c o sc o s -2 s i ns i n =-1, 1 ( + )=-1, ……4 分 ʑ 2 c o s c o s ≏= , ʑ 2 由 0 < ≏ < π, ≏ = π. 3 3 ( )由 ( )得 s 2 1 i n≏ = 槡 , 2 33 由面积公式 1 s i n ≏ = 槡 可得 2 2
2
……6 分
① = 6,
……8 分
2 2 2 2 + - + -7 1 , = = 2 1 2 2 2 2 2 则 + = ( + ) -2 = 1 , ……1 3② 0分 ……1 2分 ①② 两式联立可得 + = 5. ∰ ( )由 ∰+1 = 可得 1 = 1 +2 即 ,1 - 1 = 2, ……2 分 1 9. 1 2 ∰ +1 ∰ 1 ∰ ∰ 1 ∰ + + 1 公差为 2 的等差数列 , 又 1 = 1 即 1 = 1, ʑ 数列 { }是首项为 1,
∰
=
∰ ∰ 1 +
=
ȵ Ω 是 ≏ 的中点 , ʑ Ω ∥ 平面 ……8 分 ʑ Ω ∥ . 是正三角形 , ȵ △≏ ʑ ⊥≏ . 得 即 ȵ ∠ 2 0 ʎ ∠ 0 ʎ, 0 ʎ, =1 =3 =9 ʑ ∠≏ ⊥≏ . , 平面 ……1 ʑ ʑ 0分 ∥ ∥ , ȵ Ω ∩ = , 又 Ω 平面 Ω , ……1 ʑ 平面 Ω 1分 ∥ 平面 ……1 ʑ Ω ∥ 平面 C. 2分 2 2 2 - , ( )由 ( )= 得 ᶄ( )= 令 ᶄ( )= 0 得 = 2 或 = 0. 2 1. 1 ……1 分 当 变化时 , ᶄ( )与 ( )的变化情况如下表 : ( ) 0 - ɕ, 0 0 极小值 0 ( ) 0, 2 + 递增 2 0 极大值 4
……6 分 0, + ɕ )时 , ∈( ……7 分
当 ∈( 时, 递减 ; 当 ∈ (, 时, 递 0, ) ᶄ( ) ᶄ( ) + ɕ) <0, ( ) >0, ( ) 增. 所以当 > 0 时 , ( ) ( )= 1+l ……9 分 n . m i n = 高二数学 ( 文) 答案 第2 页 ( 共 3 页) ) 2 0 1 7. 4 (
洛阳市2 — —2 0 1 6— 0 1 7学年高二年级质量检测
数学试卷参考答案( 文)
一、 选择题 1-5C A B C A 6-1 0C B D B B 1 1-1 2C D 二、 填空题 π ) 1 3.( 1 4. 1 5. 6 3 1 6. 2 -1, 1 2 三 .解答题 )曲线 1 7.( 1 曲线
2
( 2, + ɕ) - 递减 ……5 分
ᶄ( )
()
- 递减
故函数 ( )的极大值为 4 , 极小值为 0. 2 ( ) , 使得 ( 1)≤ ( 2) , 等价于当 2 0, + ɕ) 1 ,2 ∈ ( () ( ) m i n ≤ m a x. 由 ( )=l n + 得 ᶄ( )= - . 2