现代控制理论-第17章-模型参考自适应控制

合集下载

《现代控制理论》课件

《现代控制理论》课件
现代控制理论
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。

自适应控制

自适应控制

自适应控制什么是自适应控制自适应控制是一种控制系统设计方法,它通过实时监测和调整系统的参数来适应不确定的外部环境和内部系统变化。

自适应控制可以提高控制系统的性能和鲁棒性,使其能够快速、准确地响应不断变化的环境或系统参数。

在传统的控制系统中,通常假设系统的数学模型是已知和固定的。

然而,在实际应用中,系统的动态特性常常受到各种因素的影响,如外部扰动、参数变化、非线性效应等。

这些因素使得传统的控制方法往往无法满足系统的控制要求。

而自适应控制则能够通过不断地观测和在线调整系统参数,使系统能够适应这些变化,并实现良好的控制效果。

自适应控制的基本原理自适应控制的基本原理是根据系统的实时反馈信息来调整控制器的参数。

具体来说,自适应控制系统通常由以下几个部分组成:1.参考模型:参考模型是指描述所期望控制系统输出的理想模型,通常由一组差分方程来表示。

参考模型的作用是指导控制系统的输出,使其能够尽可能接近参考模型的输出。

2.系统模型:系统模型是指描述被控对象的数学模型,包括其输入、输出和动态特性。

系统模型是自适应控制的重要基础,它确定了控制系统需要调整的参数和控制策略。

3.控制器:控制器是自适应控制系统的核心部分,它根据系统输出和参考模型的误差来实时调整控制器的参数。

控制器可以通过不同的算法来实现,如模型参考自适应控制算法、最小二乘自适应控制算法等。

4.参数估计器:参数估计器是自适应控制系统的关键组件,它用于估计系统模型中的未知参数。

参数估计器可以通过不断地观测系统的输入和输出数据来更新参数估计值,从而实现对系统参数的实时估计和调整。

5.反馈环路:反馈环路是指通过测量系统输出并将其与参考模型的输出进行比较,从而产生误差信号并输入到控制器中进行处理。

反馈环路可以帮助控制系统实时调整控制器的参数,使系统能够适应外部环境和内部变化。

自适应控制的应用领域自适应控制在各个领域都有广泛的应用,特别是在复杂和变化的系统中,其优势更为突出。

模型参考自适应控制ppt课件

模型参考自适应控制ppt课件

kpDp (s)
(1)
kmNm (s)

P( s)
Yp (s) R(s)
a*(s)
(s)
1
Dm (s) kmNm (s)
b* (s)
Dm (s) (s)
kma*(s)
0 (s)Dm (s) kmb*(s)
(2)

kp
N p (s) Dp (s)
kma*(s)
0 (s)Dm (s) kmb*(s)
23
2、假定
被辨识对象:
P(s) Yp (s) kpN p (s) R(s) Dp (s)
参考模型: 参考输入:
M (s) Ym (s) km Nm (s) U (s) Dm (s)
设r(t)是t的分段连续函数,且有界。 辨识的目的:根据可量测的r(t)和yp (t) 决定k p , N p (s), Dp (s)的系数。
设置参数可调的控制器,与模型一起组成参数可调系统
16
前馈可调增益 反馈可调增益
u
t
使ymt
完全跟踪
ypt
p(s)
r(t)
kp
y p (t )
s ap
- e1(t)
a0(t)
前馈
M (s)
+ u(t) km

s am

ym (t )
反馈 b0(t) 可调系统
17
其中:
模型的输入控制u t 为
过程位置互换。
基本思想:同MARC设计思想,即通过自适应控制器
来调整模型使e(t)0,这样的模型就是我
们要辨识的结果。
“对偶性质”设计MRAC的方法用于辨识; 将模型参考辨识方法用于设计MARC。

自适应控制(1)

自适应控制(1)

一、概述1.自适应控制的控制对象:自适应控制的研究对象是具有一定程度不确定性的系统,这里所谓的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。

2.自适应控制的基本思想是:在控制系统设计时,不断地测量受控对象的状态,性能或参数,从而“认识”或“掌握”系统当前的运行状况,并将系统当前的性能指标与期望的指标相比较,从而根据比较结果作出决策,来改变控制器的结构、参数或根据自适应的规律来改变控制作用,以保证系统运行在某种意义下最优或次优的状态。

3.吉布森1962年提出以下定义:(1)在线辨识:一个自适应控制系统必须能提供对象当前状态的连续信息;(2)决策控制:它必须将系统当前的性能和希望的或者最优的性能进行比较,并作出使系统趋向最优性能的决策;(3)在线修正:它必须对控制器进行修正以便是系统趋向最优状态。

这三方面的功能是自适应系统所必须具有的功能。

4.与其他控制方法的比较自适应控制和常规的反馈控制和最优控制一样,也是一种基于数学模型的控制方法,所不同的只是自适应控制所依据的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐步完善。

具体地说,可以依据对象的输入输出数据,不断地辨识模型参数,这个过程称为系统的在线辩识。

随着生产过程的不断进行,通过在线辩识,模型会变得越来越准确,越来越接近于实际。

既然模型在不断的改进,显然,基于这种模型综合出来的控制作用也将随之不断的改进。

在这个意义下,控制系统具有一定的适应能力。

比如说,当系统在设计阶段,由于对象特性的初始信息比较缺乏,系统在刚开始投入运行时可能性能不理想,但是只要经过一段时间的运行,通过在线辩识和控制以后,控制系统逐渐适应,最终将自身调整到一个满意的工作状态。

再比如某些控制对象,其特性可能在运行过程中要发生较大的变化,但通过在线辩识和改变控制器参数,系统也能逐渐适应。

常规的反馈控制系统对于系统内部特性的变化和外部扰动的影响都具有一定的抑制能力,但是由于控制器参数是固定的,所以当系统内部特性变化或者外部扰动的变化幅度很大时,系统的性能常常会大幅度下降,甚至是不稳定。

现代控制理论

现代控制理论

现代控制理论⾮线性动态系统的稳定性和鲁棒控制理论研究上世纪50年代,Kallman成功的将状态空间法引⼊到系统控制理论中,从⽽标志着现代控制理论研究的开始。

现代控制理论的研究对象是系统的数学模型,它根据⼈们对系统的性能要求,通过对被控对象进⾏模型分析来设计系统的控制律,从⽽保证闭环系统具有期望的性能。

其中,线性系统理论已经形成⼀套完整的理论体系。

过去⼈们常⽤线性系统理论来处理很多⼯程问题,并在⼀定范围内取得了⽐较满意的效果。

然⽽,这种处理⽅法是以忽略系统中的动态⾮线性因素为代价的。

实际中很多物理系统都具有固有的动态⾮线性特性,如库仑摩擦、饱和、死区、滞环等,这些⾮线性动态⾮线性特性的存在常常使系统的控制性能下降,甚⾄变得不稳定。

这就使得利⽤线性系统理论处理⾮线性动态系统⾯临巨⼤的困难。

此外,在控制系统运⾏过程中,环境的变化或者元件的⽼化,以及外界⼲扰等不确定因素也会造成系统实际参数和标称值之间出现较⼤差别。

因此,基于标称数学模型所设计的控制律⼀般很难达到期望的性能指标,甚⾄会使系统不稳定。

综上所述,研究不确定条件下⾮线性动态系统的鲁棒稳定性及鲁棒控制间题具有重要的理论意义和迫切的实际需要。

⾮线性动态系统是指按确定性规律随时间演化的系统,⼜称动⼒学系统,其理论来源于经典⼒学,⼀般由微分⽅程来描述。

美国数学家Birkhoff[1]发展了法国数学家Poincare在天体⼒学和微分⽅程定性理论⽅⾯的研究,奠定了动态系统理论的基础。

在实际动态系统中,对象往往受到各种各样的不确定的影响,所以其数学模型⼀般不可能精确得到。

因此,我们只能⽤近似的标称数学模型来描述被控对象,并据此来设计控制系统,动态系统鲁棒控制由此产⽣。

所谓鲁棒性就是指系统预期⾮线性动态系统的稳定性和鲁棒控制理论研究的设计品质不因不确定性的存在⽽遭到破坏的特性,鲁棒控制是⾮线性动态系统控制理论研究的⼀个⾮常重要的分⽀。

现代控制理论的发展促进了对动态系统的研究,使它的应⽤从经典⼒学扩⼤到⼀般意义下的系统。

模型参考自适应控制

模型参考自适应控制

10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。

如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。

如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。

所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。

因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。

目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。

10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。

实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。

在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。

在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。

自适应控制 课件

自适应控制 课件

自适应控制与应用自适应控制与应用第一章自适应控制基本概念第二章模型参考自适应系统设计初步第三章用李亚普诺夫稳定性理论设计MRAC第四章用波波夫超稳定性理论设计MRAC第五章自校正技术及自校正控制器调节器的设计第六章极点配置的自校正技术第一章自适应控制的基本概念1-1 自适应控制的产生1-2自适应控制的定义1-3 自适应控制的基本原理1-4 自适应控制系统的主要类型1-5自适应控制的应用1-1 自适应控制的产生传统的控制系统设计方法,通常是首先建立被控对象的数学模型,然后根据所建数学模型的特性设计控制器(控制律),实施控制。

为了要成功的设计一个控制系统,无论是常规的反馈控制系统还是最优控制系统,都必须要设计者事先知道被控对象的所有特征,及其结构和参数。

1-1 自适应控制的产生设计都要求事先掌握被控对象或被控过程的数学模型。

然而有些数学模型是很难事先确知的,或者由于种种原因,一些系统的数学模型会在运行过程中发生较大范围的变化,这就是说,设计者对系统的特性并不是完全掌控的,或者说系统的特性是不肯定的。

在这些情况下,常规控制就往往达不到预定的控制要求。

引起被控对象特性发生变化的主要原因有:(1)由于系统所处环境的变化而引起的被控对象的参数值的变化。

1-1 自适应控制的产生许多控制对象的数学模型随着时间或工作环境的改变而发生变化,而变化规律往往事先不知道。

例如:引起被控对象特性发生变化的主要原因有:(1)由于系统所处环境的变化而引起的被控对象的参数值的变化。

1-1 自适应控制的产生许多控制对象的数学模型随着时间或工作环境的改变而发生变化,而变化规律往往事先不知道。

(2)系统本身由于工作情况的变化而引起自身参数值的改变.1-1 自适应控制的产生当被控对象的数学模型参数在小范围内变化时,可用一般的反馈控制、最优控制或补偿控制等方法使得系统对外部的扰动或内部参数的小范围变动不很敏感,以达到预期性能。

而当被控对象的数学模型参数在大范围内变化时,上述方法就不能圆满解决问题了,为了使控制对象的参数在大范围变化时,系统仍能自动的工作于最优或次优状态,因而提出了自适应控制的问题。

现代控制理论ppt

现代控制理论ppt

求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入

动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K & oB12e1tK KM o yMt
(17-11) (17-12) (17-13)
(17-14)

B
2 B1
Ks KM
,则得
K oB e1tyM t
(17-15)
这就是可调整参数K o 的自适应律。于是M.I.T.自适应控制系统的 数学பைடு நூலகம்型可归结为
输出误差: D s e 1 s K M K o K s N s r s 模型输出: D s y M s K M N s r s
解: 本例自适应控制系统的数学模型可表示成
输出误差: T e & 1 e 1 K M K o K sr
(17-19)
模型输出: T y & MyMK M T
(17-20)
自适应律:
Ko Be1yM
(17-21)
现在来检查系统的稳定性。设 rt ro ,对式(17-19)进行求导得
Te & 1e1K & oK sT o
D s e 1 s K M K o K s N s r s
上式对 K o 求导:
DseK soKsNsrs
(17-8) (17-9) (17-10)
由参考模型传递函数可得
KM
Ns Ds
yM s rs
N DssrsK1M yMs
e1t
Ko
Ko KM
yMt
代入式(17-7),则得
第十七章 模型参考自适应控制
模型参考自适应控制在原理及结构上与自校正控制有很大差 别,这类系统的性能要求不是用一个指标函数来表达,而是 用一个参考模型的输出或状态响应来表达,例如导弹的稳定 控制系统。
参考模型的输出或状态相当于给定一个动态性能指标,通 过比较受控对象及参考模型的输出或状态响应取得误差信 息,按照一定的规律(自适应律)来修正实际系统的参数 (参数自适应)或产生一个辅助输入信号(信号综合自适 应),从而使实际系统的输出或状态尽量跟随参考模型的 输出或状态。参数修正的规律或辅助输入信号的产生是由 自适应机构来完成的。
模型参考自适应系统的基本设计方法有以三种: ⑴ 参数最优化方法: ⑵ 基于李雅诺夫稳定性理论的设计方法: ⑶ 基于波波夫超稳定性及正性概念的设计方法。
下面,我们将对各种设计方法分别进行介绍。
第一节 按局部参数最优化设计自适应控制的方法
这是以参数最优化理论为基础的设计方法。它的基本思想 是:假设可调系统中包含若干个可调参数,取系统性能指 标为理想模型与可调系统之间误差的函数,显然它亦是可 调参数的函数,因此可以将性能指标看作参数空间的一个 超曲面。
当外界条件发生变动或出现干扰时,受控对象特性会发 生相应变化,由自适应机构检测理想模型与实际系统之 间的误差,例如水箱液面控制系统。对系统的可调参数 进行调整,且寻求最优的参数,使性能指标处于超曲面 的最小值或其邻域内。
最常用的参数最优化方法有梯度法、共轭梯度法等。这种设 计方法最早是由M.I.T.在五十年代末提出来的,故M.I.T.法。 M.I.T.提出的自适应方案假定受控对象传递函数为:
自适应律:
K & oB e1tyM t
(17-15) (17-15) (17-15)
其结构图如图17-3所示。由图可见,自适应机构包括了一个乘法 器及一个积分器。M.I.T.自适应控制方案的优点是结构比较简单,
并且自适应律所需信号只是参考模型的输出yM t 以及参考模型输 出与可调系统输出之误差 e1 t ,它不需要状态信息,因此这些都是
图(17-1)模型参考自适应系统基 本结构图
模型参考自适应控制问题的提法可归纳:根据获得的有关受 控对象及参考模型的信息(状态、输出、误差、输入等)设 计一个自适应控制律,按照该控制律自动地调整控制器的可 调参数(参数自适应)或形成辅助输入信号(信号综合自适 应),使可调系统的动态特性尽量接近理想的参考模型的动 态特性。 由图17-1可见,参考模型与可调系统的相互位置是并联的, 因此称为并联模型参考自适应系统。这是最普遍的一种结构 方案。除此之外,还有串并联方案及串联方案,其基本结构 如图17-2所示。
J
t 0
e12
d
(17-3)
式中,e1yMys为输出广义误差。要求设计调节 K 0 的自适应律,使 以上性能指标达到最小。下面,用梯度法来求它的自适应律。
为使J达最小,首先要求出J对K 0 的梯度;
J
K0
t
02e1
e1 K0
d
(17-4)
按梯度法,K 0 的调整值应为
K0
B1
J K0
(17-5)
式中, B 1 为步长,是经适当选定的正常数。经一步调整后 K 0 值为
J Ko Ko0 B1 Ko
(17-6)
可以通过如下运算来求梯度 J 。对式(17-6)求导可得
K o
K & oB1d dtK JoB12e1 K e1o
(17-7)
为了计算e1 /Ko先求传递函数
故有
W ese r1ssK MK oK sN D s s
容易获得的。但是M.I.T.方案不能保证自适应系统总是稳定的,因 此,最后必须对整个系统的稳定性进行检验,这可以通过以下例 子来说明。
例17-1 设对象为一阶系统,其传递函数为
Ws
s
1
Ks Ts
s
式中,T s 为已知常数,K s 受环境影响而改变。设参考模型传递函数 为
WM
s
KM 1TM
s
式中TMTs To。试根据M.I.T.自适应控制方案,设计自适应控制系 统。其结构如图17-4所示。
由于在一般情况下,被控对象的参数是不便直接调整的,为 了实现参数可调,必须设置一个包含可调参数的控制器。这 些可调参数可以位于反馈通道、前馈通道或前置通道中,分 别对应地称为反馈补偿器、前馈补偿器、前馈补偿器及前置 滤波器,例如航天飞机的姿态控制系统。
为了引入辅助输入信号,则需要构成单独的自适应环路。 它们与受控对象组成可调系统。模型参考自适应控制系 统的基本结构如图17-1所示。
WS
s
Ks
Ns Ds
(17-1)
式中,只有 K s 受环境影响而变化,是未知的; N s 及 D s 则
为已知的常系数多项式。所选择的参考模型传递函数为:
WM
s
KM
Ns Ds
(17-2)
式中,K M 根据希望的动态响应来确定。
在可调系统中仅设置了一个可调的前置增益 K,M 由自适应机构来进 行调节。选取性能指标为
相关文档
最新文档