初等几何变换

初等几何变换
初等几何变换

几何变换

法则1:若问题的整个图形或其一部分是一个轴对称图形,则可尝试找出或作出对称轴,从对称轴上多想主意.

添辅助线的具体方法:

(1)若问题中有一点及一直线,可尝试过点作直线的垂线; (2)若问题中有一点及一圆,可试将点与圆心用直线连接起来; (3)若问题中有相交的两直线,可试作它们交角的分角线;

(4)若问题中有平行的两直线,可试作一条与它们垂直的直线,或者试作与它们等距的一条平行线;

(5)若问题中有一圆及一直线,则可试过圆心作直线的垂线.特别,对于一圆及其一条切线,可试将圆心与切点相连;对于一圆及其中一条弦,可试将圆心与弦的中点连结;

(6)若问题中有两个不同的圆,可试作它们的连心线.

1.以O 为圆心的两个同心圆,与一直线顺次交于A 、B 、C 、D 四点,求证:

AOB COD ∠=∠.

证明:作OM AD ⊥,垂足为M ,则

AOM DOM ∠=∠,BOM COM ∠=∠

两式相减,得

AOB COD ∠=∠

法则2:若问题中的图形或其一部分是一轴对称图形,也可尝试添加一些对称的线条,使图形结构更加完整,从而显示出解题途径.

添辅助线的基本规律:

(1)若问题中有一圆O 及其一条弦AB ,可试连半径OA 和OB (两条对称的线段),得到等腰三角形OAB ;

(2)若问题中包含两个相交的圆,可试作公共弦(一条关于连心线对称的线段); (3)若问题中包含两个相切的圆,可尝试过切点作它们的公切线(一条关于连心线对称的直线).

2.已知正方形ABCD 的边AB 延长线上有一点E ,AD 的延长线上有一点F ,满足AE AF AC ==,若直线EF 交BC 于G ,交CD 于H ,求证:EG GC CH HF ===.

证明(1):连AC ,则由对称性得GC HC =,EG FH =,再连AG ,并设EF 交AC 于K ,于是△AEK 和△ACB 都是等腰直角三角形,并且由AE AC =,知道

△AEK ≌△ACB

因而,EK CB =,AK AB =

由此推出Rt AKG ≌Rt ABG ,∴GK GB = 由等量相减得GE GC =,因而最后有

EG GC CH HF ===

证明(2):连AC ,由对称性得GC HC =,EG FH =,再连EC ,则由AE AC =,得

ACE AEC ∠=∠,又因45ACB AEF ∠=∠= ,相减得ECG CGE ∠=∠,所以EG GC =,

所以EG GC CH HF ===

法则3:若问题中的图形的某一部分关于一直线l 对称,则可尝试对图形适当部分作关于l 的对称变换,将分散的已知条件聚拢起来.

3.证明过△ABC 的垂心H 及其任两个顶点所作的三个圆彼此相等.

证明:如图,作B 点关于直线AH 的对称点G ,连

HG 、AG ,则由对称性得△AHG ≌△A H B ,因而AGH ABH ∠=∠,又90ABH BAE ACH ∠=-∠=∠ ,

∴AGH ACH ∠=∠,因而四点A 、H 、G 、C 共

圆,过A 、H 、B 所作的圆等于过A 、H 、G 所作的圆,因而等于过A 、H 、C 所作的圆,同理它们也等于过H 、B 、C 所作的圆.

4.△ABC 中,AD 是角A 的角平分线,已知

AB AC CD =+,求证:2C B ∠=∠

证明:在AB 上取AE AC =,则E 点和C 点关于AD 对

A

B

C

D

E

F

H

K

G

A B

C

D

E

F H

A

B

C

D

E

称,连DE ,由对称性得CD ED =,AED C ∠=∠,又AB AC CD =+,

即AE EB AE ED +=+,∴EB ED =,由此得EDB B ∠=∠, ∴2C AED B EDB B ∠=∠=∠+∠=∠.

5.已知直线MN 交线段AB 于点C ,在MN 上求一点,使它看线段AC 和BC 有相等的视角.

分析:如图,设P 为所求的点,则APC BPC ∠=∠,因而APB ∠关于直线MN 对称,故可试作A 关于MN 对称点D ,D 必在PB 上,B 为已知点,D 可作出,故P 也可作出.

作法:作A 关于MN 对称点D ,连BD ,则直线BD 和MN 的交点P 即为所求.

6.已知过同一点O 的三条直线,,x y z 和不在这些直线上的一点P ,求用三角形,使它们以x 、

y 和z 为三条分角线,并且有一边通过点P .

分析:如图,设△ABC 为所求的三角形,它的边CA 通过已知点P ,由于每个内角关于它的分角线对称,所以

可顺次作P 点关于x 的对称点X ,

X 关于y 的对称点Y ,Y 关于z 的对称点Z ,由对称性,顺次推出X 在AB 上,Y 在BC 上,Z 在CA 上,故由已知点P 和辅助点Z 可作

出边AC .

作法:作P 点关于直线x 的对称点X ,再作X 关于y 的对称点Y ,Y 关于z 的对称点Z ,连直线PZ ,交x 于A ,交z 于C ,连直线AX ,交y 于B ,连BC ,则△ABC 就是所求.

法则4:若问题中由于讨论折线而感到困难,可尝试对折线的一节或若干节逐次进行对称变换,化折线为直线.

7.在定直线XY 的同侧有一点A 及一定圆O ,试在直线XY 上求一点P ,使从P 点到圆O 的切线PB 满足

BPY APX ∠=∠.

分析:设P 为符合条件的点,则如图,将AP 绕XY 翻

A B

C

D P M

N P

X

Y Z A B

C

O

x

z

y

转180°至CP 位置,CPB 应成一直线,问题归结为过C 作圆O 的切线.

作法:作A 点关于XY 的对称点C ,由C 作圆O 的切线,交XY 于P ,则P 点即为所求. 本题应有两解.

8.在定底定高的三角形中,等腰三角形财长最短. 分析:有定底BC 和定高h 的三角形,其底点A 的轨迹是在BC 两侧且平行于BC 的两条直线a 和b .由对称性,只须考虑其中一直线a ,如图,问题归结为在直线a 上求一点A ,使折线BAC 最短.熟知连结两点的折线拉直成线段时长度最短.但因B 和C 在a 同侧,折线BAC 不会变成线段,如果将C 点翻转到a 的另一侧就容易解决了.

证明:设△ABC 是具有定底BC 和定高h 的任一三角

形.过A 作直线a ∥BC ,又作C 点关于a 的对称点D ,则DA CA =,且D 与B 分居直线a 两侧,△ABC 的周长等于折线BAC 的长度加上定长BC ,折线BAC 仅当A 点落在线段BD 上时长度最短.又因a 平分线段CD ,a ∥BC ,所以若A 在BD 上,必为BD 中点,即AB AC =,就证明了等腰三角形的周长最小.

9.证明直角三角形中任一内接三角形的半周大于斜边上的高.

分析:要比较一条封闭折线(内接三角形的周界与一条线段的长度大小,有些困难,如能通过变换,将问题化成比较两条具有公共端点的折线长,或比较两条端点分别在平行直线上的折线长,就容易解决些,条件中有一个直角连续绕直角边翻两次可得到一组平行线.

证明:如图,设CK 是Rt ABC 斜边上的高,内接△LMN 的顶点L 、M 、N 分别在AB 、BC 、CA 上,作关于直线BC 的对称变换,将△ABC 变为△

DBC ,△LMN 变为△PMQ ,高CK 变为CG ;再

作关于直线CD 的对称变换,将△BCD 变为△

E C D ,△PMQ 变为△RSQ ,高CG 变为CH ,由

于MQ MN =,QR QP NL ==,所以折线LMQR 的

长度等于内接△LMN 的周长.进而从ACB ∠为直角,可知A 、C 、D 三点共线,B 、C 、E

A

E

D

C

B

a

三点共线,由此推出K 、C 、H 三点共线,并且AB ∥ED ,两平行线AB 和ED 间的距离为

2KH CK =,由于折线LMQR 的长度大于线段LR 的长,并且LR KH ≥,所以得到

2LM MN NL CK ++>

即△LMN 的半周长大于斜边上的高CK .

10.△ABC 的三条高线AD ,BE ,CF 恰好分别是垂足△DEF 的三条内角平分线. 证明:如图,由于AD BC ⊥,BE CA ⊥,所以D 和E 都在以AB 为直径的圆上,因而

ADE ABE ∠=∠,同理从A 、C 、D 、F 共圆

ADF ACF ∠=∠

但90ABE BAC ACF ∠=-∠=∠

所以ADE ADF ∠=∠,同理可证

BEF BED ∠=∠,CFE CFD ∠=∠

法则1:若问题中有一等腰三角形,可尝试绕等腰三角形的顶点旋转,旋转角等于等腰三角形的顶角,特别地,若问题中有正三角形,则可试绕正三角形的某一顶点旋转60°.

11.设△ABC 为正三角形,P 为任意点,求证

PA PB PC ≤+,等号当且仅当P 在△ABC 外接圆的 BC

上时成立.

证明:如图,将△BCP 绕B 点旋转60°,得△BAQ ,则QA PC =,并且△BPQ 中BP BQ =,60PBQ ∠=

,所以△BPQ 是正三角形.因而P Q P B =

,但

P A P Q Q ≤+,所以

PA PB PC ≤+.等号当且仅当Q 点落在线段PA 上时成立,这时60BPA BCA ∠==∠

,且P 与C 在BA 同侧,即P 在△ABC 外

接圆的 BC

上. A

B

C

D

E

F

A

B

P

C

Q

12.在△ABC 的各边上向形外作正△BCX ,△C A Y ,△ABZ ,则在线段AX ,BY 和CZ

彼此相等,并且三线两两交角为60°.

证明:如图,由于△CAY 和△ABZ 是正三角形,所以将,△AYB 绕A 点旋转60°后落在△ACZ 位置,因而对应线段BY CZ =,且两线夹角为60°,同理将△CAX 绕C 点旋转60°到△CYB 位置,得AX YB =,且两线成60°角,∴AX BY CZ ==,且三线两两成60°角.

图1所示为△ABC 为每个内角都小于120°的情形,若有一角大于120°或等于120°,不妨设最大角为B 角,则上列证明过程仍然全部适用,不过图形变为图2或图3.

13.在△ABC 的边上向形外作正三角形BCX ,CAY ,ABZ ,则直线AX ,BY ,CZ 交于同一点(称为△ABC 的正等角中心).

证明:不妨设B ∠为最大角.

①若120B ∠=

,则由60120180CBX CBA ∠+∠=+=

知道A ,B ,X 三点共线,同理C ,B ,Z 三点共线.所以这时AX ,BY ,CZ 三直线都通过B 点.

②若120B ∠>

,设AX 与CZ 的交点为,由第12题知60AOZ ∠=

,因而

AOZ ABZ ∠=∠

18060180AOC AYC ∠=-=-∠

所以O 点在正△ABZ 外接圆的 ZB

上,又在正△CAY 外接圆的 CA 上,由第11题得 OB OZ OA +=,OY OA OC =+

Z

A

B

C Y

X

A B

C

Z

Y

X

A

B

C

Y

Z

X

后式减前式,整理后得OY OB OC OZ -=+,而

OC OZ CZ BY +==

所以OY OB BY -=,因而O ,Y ,B 三点必须在一直线上,否则它们将成为一个三角形的顶点,而与三角形两边之差小于第三边的定理矛盾.

③若120B ∠<

,类似地可证AX 与CZ 的交点O 也在直线BY 上,因为这时从

OB OA OZ +=,OY OA OC =+

可得OB OY OZ OC ZC BY +=+==

总之,在各种可能情形下,AX ,BY ,CZ 三直线都交于同一点.当三角形每个角都小于120°时交点在形内,有一角大于120°时交点在形外,有一角等于120°时,交点即为钝角顶点.

14.等腰△ABC 的顶角30A ∠=

,A 为定点,B 点在定直线b 上移动,求C 点的轨迹.

解:如图,将B 点绕A 点旋转30°就到达C 点位置,所以将动点B 的移动路线绕A 旋转30°就得到C 点的轨迹.B

点沿直线b 移动,将b 绕A 点逆时针旋转30°得直线m ,顺时针旋转30°得直线l ,则C 的轨迹就是一对直线l 和m .

15.求作等腰直角三角形,使其直角顶点为定点B ,而斜边的两端分别在已知MON ∠的两边上.

分析:如图,设△ABC 即为所求,绕B 点旋转90°,C 点将落在A 点位置,而ON 旋转后得直线l ,ON 过C 点,因而l 过A 点,故A 是l 与OM 的交点,因而A 可作出.

作法:将ON 绕B 旋转90°得直线l ,设l 与OM 交于A ,连BA ,作BC BA ⊥交ON 于点C ,连AC ,则△ABC 即为所求.

法则2:若问题中有正方形,则可尝试绕正方形的某一顶点旋转90°. 16.在△ABC 外作正方形ABEF 和ACGH ,求证:BH 与CF 相等且垂直.

证明:如左图,将△AHB 绕A 旋转90°落到△ACF 的位置,故HB CF =,且两线交角为90°.

A

B

C

m

b l

B

A

M O

N

C

D E l

17.如右图,已知ABCD ,PQRS ,DQEF ,CSGH 都是正方形,PR AB ⊥,且

PA PB PR ==,求证:E ,R ,G 共线,且ER RG =.

证明:将△SRG 绕S 旋转90°,则G 点落在C

点位置,而R 落在PS 延长线上的点M ,并且SM SR SP ==,SR PS ⊥

所以RM PR PB ==,290MRP SRP RPB ∠=∠

==∠

,因此,四边形PRMB 是正方形,

BM PB ⊥,这样一来,M 点就是直线PS 与直线CB 的交点,因而45SMC ∠= ,由此推出

45SRG SMC ∠=∠= ,同理45QRC ∠= ,所以

459045180ERQ QRS SRG ∠+∠+∠=++=

因而E ,R ,G 三点在一直线上,又由整个图形关于直线PR 对称,立刻推出ER RG =. 法则3:若问题中有一圆及一定长线,可试将该线段绕圆心O 旋转到便于研究的位置.

18.已知定圆O 及定线段AB ,求作平行四边形

ABCD ,使其顶点C 和D 在圆O 上.

分析:如图,圆O 的弦CD 应等于AB 且平行于AB ,如果将弦CD 旋转到任意位置,只剩下长度等于AB 的要求,就容易作了.

作法:在⊙O 的上任取一点E ,以E 为圆心,AB 为

半径画弧,交⊙O 于F ,连EF ,取其中点G ,以O 为圆心,OG 为半径作圆,再由O 点作AB 的垂线,交所作之圆于H ,过H 作弦CD ∥AB ,连BC ,DA ,则四边形ABCD 即为所求.

19.已知定⊙O 及圆外二定点P 及Q ,求作弦AB ,使它等于定长a ,并且满足PA QB =. 分析:弦AB 的长度既然是定长a ,那么它所对的圆心角就是一个定角θ,将△OAP 绕圆心O 旋转θ角,得到△OBR (如图),问题简化为在⊙O 上求一点B ,使BQ BR =,这就很容易解决了.

作法:连OP ,交圆O 于C ,以C 为圆心,定长为a 为半

径画弧,交圆O 于D ,连OD 并延长至R ,使O R O P =,作QR 的垂直平分线,交⊙O 于B ,在圆周上沿着从D 到C 的劣弧

方向取 BA

DC =,则A 和B 就是所求的两点. 法则4:若问题中涉及某个线段的中点O ,或涉及一个以O 点为对称中心的中心对称图形,可试作关于O 点的中心对称变换(旋转180°).

20.过△ABC 底边BC 的中点M 任作一直线,交AB 边于点D ,交AC 边的延长线于F 点,则△ADF 的面积大于△ABC 的面积.

证明:如图,由于C 点在A 与F 之间,所以过C 作AD 的平行线,必交线段DF 于一点E .△MCE 与△MBD 关于点M 点中心对称,因而面积相等.但△MCE 是△MCF 的一部分,所以△MCF 比△MBD 的面积大,由此,得△

ADF 的面积比△ABC 的面积大.

21.在△ABC 的边上向形外作正方形

ABMN 和ACPQ ,又设AD 是BC 边上的中

线,则2NQ AD =,并且NQ AD ⊥.

证明:如图,将△CDA 绕D 旋转180°至

△BDE ,则2A E A D =,且B E A C =,BE ∥

AC ,因而BE AQ ⊥,再将△ABE

绕正方形

A

B

E

F

C M

D

ABMN 的中心O 旋转90°,使AB 落在NA 的位置,这时BE 将落在AQ 的位置,所以线段NQ

就是由AE 旋转90°得到的,因而NQ AE =,NQ AE ⊥,即2NQ AD =,并且NQ AD ⊥.

22.证明一个五边形由它各边中点的位置完全确定.

分析:每边的中点都是这一边的对称中心,而已知条件只有五条边的中点位置,为了将这些条件全部用上,可试将一顶点顺次关于各边中点作中心对称变换,共变换五次.

证明:设P ,Q ,R ,S ,T 为五个定点,五边形ABCDE 顺次以这五点为边AB ,BC ,CD ,DE 和

EA 的中点.那么如图,将顶点A 关于P 作中心对称变

换,落到B 点位置,再关于Q 作中心对称变换,B 又落到C 点位置;关于R 作中心对称变换,C 变到D ;关于S 作中心对称变换,D 变到E ;关于T 作中心对称变换,E 又变到A .

设11111A B C D E 也是以五个已知点为各边中点的五边表,那么按照上面的方法,将顶点1A 顺次关于各边中点作中心对称变换,结果也将返回1A 点.

现在证明1A 点与A 点必定互相重合.由于在中心对称之下,一双对应线段平行且方向相反,所以若1A 不与

A 重合,则如图,线段1AA 与1B

B 平行且反向,1BB 与1C

C 平行又反向,1CC 与1D

D 平行又反向,1DD 与1E

E 平行又反向,1EE 与2AA 平行且反向.这里2A 是1E 关于T 的对称点,

由此推知2AA 与1BB 平行且同向.但1AA 与1BB 平行且反向,所以1A ,A ,2A 三点共线,且2A 与1A 在A 点异侧,因而1A 与2A 是不同的两点,这就表明T 不是线段1EA 的中点,导致矛盾.所以1A 必与

A 重合.由此推出两个五边形11111A

B

C

D

E 和ABCD 完全重合,即适合条件的五边形只有一个.

如图注意111112AA BB CC DD EE AA =====

我们还顺便得到已知各边中点位置作出五边形的方法:任取一点1A ,作1A 关于点

P

的对称C 1

点1B ,1B 关于点Q 的对称点1C ,1C 关于点R 的对称点1D ,1D 关于点S 的对称点1E ,1E 关于点T 的对称点2A ,连12A A 并取其中点A ,则A 就是所求多边形的一个顶点,顺次作中点对称变换,就得到其余各个顶点.

利用上面的方法可以证明:任意奇数边形由各边中点的位置完全决定. 23.已知一个顶点A 及一双对边中点M 和N 的位置,求作平行四边形.

分析:中点M 和N 分别是它们所在边的对称中心,问题的条件中除去明确提供这两个对称 中心外,还要求所作多边形是平行四边形,因而隐含着另一个重要的对称中心,即平行四边形的对角线交点,它也是MN 的中点.

作法:如图,连MN ,取其中点O ,作A 关于M 的对称点B ,A 关于O 的对称点C ,B 关于O 的对称点D ,则A 、B 、C 、D 即为所求平行四边形的四个顶点.

24.凸四边形A B C D 中,已知A B D C D B ∠>∠,ADB CBD ∠>∠,求证:AB AD CB CD +>+.

证明:将△CBD 绕BD 的中点O 旋转180°至△E D B ,由于ADB CBD ∠>∠,

ABD CDB ∠>∠,所以DE 在ADB ∠内,BE 在ABD ∠内,因而E 点在△ABD 内部(如图).延

长BE 交AD 于F ,则AD AF FD =+,AB AF BF +>

即AB AF BE EF +>+,又因EF FD ED +>,所以

AB AD BE EF FD BE ED +>++>+

而BE DC =,ED CB =,所以AB AD CB CD +>+.

A

B D

O

N

A

B

D

O

E

F

专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc

2016中考数学预测押题--专题22 几何三大变换问题之旋转(中心对称)问题 轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。 把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。 特别地,中心对称也是旋转对称的一种的特别形式。把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。 在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。 中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。 原创模拟预测题1.如图,直线l:y=+y轴交于点A,将直线l绕点A顺时针旋转75o后,所得直线的解析式为【】

A .y = B .y x =+ C .y x =-+ D .y x =- 【答案】B 。 【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。 故选B 。 原创模拟预测题2. 根据要求,解答下列问题: (1)已知直线l 1的函数表达式为y x 1=+,直接写出:①过原点且与l 1垂直的直线l 2的函数表达式;②过点(1,0)且与l 1垂直的直线l 2的函数表达式; (2)如图,过点(1,0)的直线l 4向上的方向与x 轴的正方向所成的角为600,①求直线l 4的函数表达式;②把直线l 4绕点(1,0)按逆时针方向旋转900得到的直线l 5,求直线l 5的函数表达式; (3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x 55 =-垂直的直线l 6的函数表达式。

初中几何变换——平移

初中数学几何变换之 平移 一、知识梳理 1、平移基本要素:平移方向 平移距离 。 2、基本性质: (1)对应点所连的线 段平行且相等 (2)对应线段平行且相等 (3)对应角相等 3、应用: 平行四边形存在性等 二、常考题型 类型一:平移性质 1、如图,矩形OABC 的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n 次(n >1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为 (用含n 的代数式表示) 第1题 第2题 2、如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x 轴正半 轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( ) 3、如图①,在平面直角坐标系中,已知点A (2,0),点B (0,4),点E (0,1),如图②,将△AEO 沿x 轴向左平移得到△A ′E ′O ′,连接A ′B 、BE ′。 (1)设AA ′=m (m >0),试用含m 的式子表示2 2 BE B A 、、+,并求出使2 2 BE B A 、、+取得最小值时点E ′的坐标; (2)当A ′B+BE ′取得最小值时,求点E ′的坐标。

类型二:综合应用 1、在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C 、D 不重合),连接AP ,平移ADP ?,使点D 移动到点C ,得到BCQ ?,过点Q 作QH BD ⊥于H ,连接AH ,PH 。 (1)若点P 在线段CD 上,如图1。 ①依题意补全图1; ②判断AH 与PH 的数量关系与位置关系并加以证明; (2)若点P 在线段CD 的延长线上,且152AHQ ∠=?,正方形ABCD 的边长为1,请写出求DP 长的思路。(可以不写出计算结果) 图1 备用图

2013中考压轴题选讲专题7:几何三大变换问题(排版+答案)

2012年中考数学压轴题分类解析 专题7:几何三大变换相关问题 授课老师:黄立宗 典型例题选讲: 例题1:(2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对 应点A′落在线段BC上,再打开得到折痕EF. (1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长; (2)观察图3和图4,设BA′=x,①当x的取值范围是时,四边形AEA′F是菱形;②在①的 条件下,利用图4证明四边形AEA′F是菱形. 例题2:(2012辽宁丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.(1)如图1,若AB=AC,AD=AE ①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示); (2)如图2,若AB= BC=kAC,AD =ED=kAE 则线段BD与CE的数量关系为,∠BMC= (用α表示); (3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示). 例题3:(2012福建福州)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点. (1) 求抛物线的解析式; (2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D

的坐标; (3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB 的点P的坐标(点P、O、D分别与点N、O、B对应). 例题4:(2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。 (1)求该抛物线的解析式; (2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式; (3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线 OP与该抛物线交点的个数。 巩固练习 1、(2012黑龙江大庆)在直角坐标系中,C(2,3),C′(-4,3), C″(2,1),D(-4,1),A(0,a),B(a,O)( a 0). (1)结合坐标系用坐标填空. 点C与C′关于点对称; 点C与C″关于点对称; 点C与D关于点对称

中考数学专题 几何三大变换问题之对称

2004-2013年浙江11市中考数学选择填空解答压轴题分类解析汇编 专题13:几何三大变换问题之对称 一、选择题 1.(2004年浙江绍兴4分)如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD等于【】 A.108°B.144°C.126°D.129° 【答案】C。 【考点】矩形的性质,折叠对称的性质。 【分析】展开如图:五角星的每个角的度数是: 0 180 36 5 。 ∵∠COD=3600÷10=360,∠ODC=360÷2=180, ∴∠OCD=1800-360-180=1260。故选C。 2.(2004年浙江湖州3分)小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是【】 A. B. C. D. 【答案】D。 【考点】剪纸问题,折叠对称的性质,正方形的性质。 【分析】按照图中的顺序向右下对折,向左下对折,从上方角剪去一个等腰直角三角形,展开得:剪去的为一正方形,且顶点在原正方形的对角线上。故选D。 3.(2007年浙江绍兴4分)如图的方格纸中,左边图形到右边图形的变换是【】

A.向右平移7格 B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称 C.绕AB的中点旋转1800,再以AB为对称轴作轴对称 D.以AB为对称轴作轴对称,再向右平移7格 【答案】D。 【考点】轴对称和平移变换。 【分析】观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格。故选D。 4.(2008年浙江台州4分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移, 我们把这样的图形变换叫做滑动对称变换 .......在自然界和日常生活中,大量地存在这种图形变换(如图1).结 合轴对称变换和平移变换的有关性质,你认为在滑动对称变换 ......过程中,两个对应三角形(如图2)的对应点所具有的性质是【】 A.对应点连线与对称轴垂直B.对应点连线被对称轴平分 C.对应点连线被对称轴垂直平分D.对应点连线互相平行 【答案】B。 【考点】新定义,轴对称变换和平移变换的性质。 【分析】观察图形,因为进行了平移,所以有垂直的一定不正确,A、C是错误的; 对应点连线是不可能平行的,D是错误的; 由对应点的位置关系可得:对应点连线被对称轴平分。故选B。 5.(2011年浙江温州4分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,

初中几何变换思想之翻折

初中几何变换思想之翻 折 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考汇编几何变换之翻折 1.(2016山东省枣庄市)如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一点,则线段BP 的长不可能是( ) A .3 B .4 C . D .10 2.(2015常州)将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( ) A .338cm 2 B .8cm 2 C .33 16cm 2 D .16cm 2 3.(2016江苏省淮安市)如图,在Rt△ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 . 4.(2014年湖北天门学业3分)如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 ▲ . 5.(2014年四川凉山5分)如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为 ▲ . 6.(2014年江苏盐城12分)【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB =AC ,点P 为边BC 上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .求证:PD +PE =CF . 小军的证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD +PE =CF . 小俊的证明思路是:如图2,过点P 作PG ⊥CF ,垂足为G ,可以证得:PD =GF ,PE =CG ,则PD +PE =CF . 【变式探究】如图3,当点P 在BC 延长线上时,其余条件不变,求证:PD ﹣PE =CF ; 请运用上述解答中所积累的经验和方法完成下列两题:

几何三大变换(习题及答案)

几何三大变换(习题) ?例题示范 例1:如图,四边形ABCD 是边长为9 的正方形纸片,将该纸片折叠,使点B 落在CD 边上的点B′处,点A 的对应点为A′,折痕为MN.若B′C=3,则AM 的长为. 【思路分析】 要求AM 的长,设AM=x,则MD=9-x. 思路一:考虑利用折叠为全等变换转条件,得AM=A′M=x, A′B′=AB=9.观察图形,∠A′=∠D=90°,△MA′B′和△MDB′都是 直角三角形,MB′是其公共斜边,则MB′可分别在两个直角三角形中借助勾股定理表达,列方程. 思路一思路二 思路二:MN 是对称轴,考虑利用对称轴上的点到对应点的距离相等转条件,得MB=MB′.观察图形,∠A=∠D=90°,MB,MB′ 可分别放到Rt△ABM 和Rt△DB′M 中借助勾股定理表达,列方程. 例2:如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD 的面积为24,则AC 的长为. 【思路分析】 已知四边形ABCD 的面积,要求AC 的长,考虑借助AC 表达四 边形ABCD 的面积.四边形ABCD 为不规则四边形,考虑割补法或转化法求面积.分析题目中条件AB=AD,存在等线段共端点的 结构,且隐含∠B+∠D=180°,故考虑通过构造旋转解决问题,可把△ABC 绕点A 逆时针旋转90°.

1

?巩固练习 1.如图,将边长为2 的等边三角形ABC 沿BC 方向平移1 个单 位得到△DEF,则四边形ABFD 的周长为. 第1 题图第2 题图 2.如图,已知△ABC 的面积为8,将△ABC 沿BC 方向平移到 △A′B′C′的位置,使点B′和点 C 重合,连接AC′,交A′C 于点D,则△CAC′的面积为. 3.如图,在6 4 的方格纸中,格点三角形甲经过旋转后得到格点 三角形乙,则其旋转中心是() A.格点M B.格点N C.格点P D.格点Q 第3 题图第4 题图 4.如图,已知OA⊥OB,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD=45°,将△CDE 绕点 C 逆时针旋转75°,点 E 的 对应点N 恰好落在OA 上,则OC 的值为.CD 5.如图,E 是正方形ABCD 内一点,连接 AE,BE,CE,将△ABE 绕点B 顺时针 旋转90°至△CBE′的位置.若AE=1, BE=2,CE=3,则∠BE′C= . 6.如图,在□ABCD 中,∠A=70°,将该 平行四边形折叠,使点C,D 分别落 在点E,F 处,折痕为MN.若点E, F 均在直线AB 上,则∠AMF= .

(完整版)初中几何变换——平移

初中数学几何变换之平移 一、知识梳理。1、平移基本要素:平移方向平移距离 2、基本性质:段平行且相等(1)对应点所连的线2)对应线段平行且相等(3)对应角相等( 3、应用:平行四边形存在性等 二、常考题型类型一:平移性质 、如图,矩形OABC的两条边在坐标轴上,OA=11,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n的代数式表示) 2题第1第题 2、如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) 3、如图①,在平面直角坐标系中,已知点A(2,0),点B(0,4),点E(0,1),如图②,将△AEO沿x轴向左平移得到△A′E′O′,连接A′B、BE′。 2、2、2、2、BEA?ABEB?B取的式子表示),试用含(′)设(1AA=mm >0m,并求出使得最小值时点E′的坐标;

(2′取得最小值时,求点′A)当B+BEE′的坐标。 类型二:综合应用 DPCDC1ABCDBD不重合),连在射线、是一条对角线,点、在正方形上(与点中, BCQ?BDQH?ADP?HDAPCQ,连接移动到点,过点,平移,得到于,使点作接AHPH。,1 (1) P CD。在线段若点上,如图①1;依题意补全图②AHPH的数量关系与位置关系并加以证明;判断与?AHQ?152?1ABCDCD(2)P,请写出求的边长为若点,正方形在线段的延长线上,且DP长的思路。(可以不写出计算结果) A BB A CD P DC 1 图备用图 “”.2等邻边四边形、类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做 1 )概念理解(”.“ABCD1ABCD请写出你如图是,在四边形中,添加一个条件使得四边形等邻边四边形. 添加的一个条件 2 )问题探究(.”①“她的猜想正确吗?请说明小红猜想:对角线互相平分的是菱形等邻边四边形理由。ABCRt△ AB=2BC=1=90°②2Rt△ABC∠ABC并将,,如图小红画了一个,其中,,.AABCABCBB∠ABC△小红要是平移后的'','沿'',连结的平分线'方向平移得到“”BBABCA'的长)?等邻边四边形',应平移多少距离(即线段'是四边形 3 )应用拓展(BD==90°ACBAD+∠BCDABCD3“”AB=AD∠为对,如图,,等邻边四边形,中,. BDBCCDAB AC=.!的数量关系,角线,试探究错误未找到引用源。,

【整理】中考几何三大变换(含答案17页)

中考几何变换专题复习(针对几何大题的讲解) 几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形 之间的关系(平行、全等、相似等).基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同 样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样, 和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形, 大多数都有一定的位置关系(或成轴对称关系,或成平移的关系,或成旋转的关 系(包括中心对称).这样,在解决具体的几何图形问题时,如果我们有意识地 从图形的性质或关系中所显示或暗示的“变换特征”出发,来识别、构造基本图 形或图形关系,那么将对问题的解决有着极为重要的启发和引导的作用.下面我们从变换视角以三角形的全等关系为主进行研究. 解决图形问题的能力,核心要素是善于从综合与复杂的图形中识别和构造出基 本图形及基本的图形关系,而“变换视角”正好能提高我们这种识别和构造的能力. 1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请 说明理由; (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

考点:旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方 形的性质。 专题:压轴题。 分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立.还知道EG⊥CG. 解答:(1)证明:在Rt△FCD中, ∵G为DF的中点, ∴CG=FD, 同理,在Rt△DEF中, EG=FD, ∴CG=EG. (2)解:(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中, ∵AD=CD,∠ADG=∠CDG,DG=DG, ∴△DAG≌△DCG, ∴AG=CG; 在△DMG与△FNG中, ∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴△DMG≌△FNG,

中考数学 专题 几何三大变换问题之轴对称(折叠)问题(含解析)

专题20 几何三大变换问题之轴对称(折叠)问题 轴对称、平移、旋转是平面几何的三大变换。由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。 一. 有关三角形的轴对称性问题 1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF . 2. 如图,在Rt △ABC 中,∠C=900 ,∠B=300 , BC=,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。 F D C E A B

【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。 二. 有关四边形的轴对称性问题 3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】 A.4种 B.5种 C.6种 D.7种 【答案】B。 【考点】利用旋转的轴对称设计图案。 【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案: 得到的不同图案有:

初中几何变换-翻折

初中数学几何变换之 轴对称 一、知识梳理 1、轴对称基本要素:对称轴。 2、基本性质: (1)对应线段、对应角相等 (2)对应点所连线段被对称轴垂直平分 (3)对称轴上的点到对应点的距离相等 (4)对称轴两侧的几何图形全等 3、应用 翻折问题、最值问题等 二、常考题型 类型一:轴对称性质 1、如图,在平行四边形ABCD 中,13=AB ,4=AD ,将平行四边形ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为__________. 第1题 第2题 第3题

2、如图,矩形中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE 与CD相交于点O,且OE=OD,则AP的长为__________. 3、如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为。 4、如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’F CD时,CF 的值为。 FD 5、如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则四边形MABN的面积是。 第4题第5题第6题 6、如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF 折叠,使点A落在BC边上的点D的位置,且,则CE的长是。 7、如图1,在矩形纸片ABCD中,AB=83,AD=10,点E是CD的中点.将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落在B′处,折痕为HG,连接HE,则tan∠EHG = .

几何三大变换讲义及答案

几何三大变换(讲义) 一、知识点睛 1.________、________、____________统称为几何三大变换.几 何三大变换都是_______________,只改变图形的________,不改变图形的_________________. 2.三大变换思考层次 三 大 变 换 基本要素基本性质延伸性质应用 平移平移方向 平移距离 1.对应点所连的线 段平行且相等 2.对应线段平行且 相等 3.对应角相等 平移出现 __________ 天桥问题、 平行四边形 存在性等 旋转旋转中心 旋转方向 旋转角度 1.对应点到旋转中 心的距离相等 2.对应点与旋转中 心的连线所成的角 等于旋转角 3.对应线段、角相 等,对应线段的夹 角等于旋转角 4.对应点所连线段 的垂直平分线都经 过旋转中心 旋转出现 __________ 旋转结构 (等腰)等 轴 对称对称轴 1.对应线段、对应 角相等 2.对应点所连线段 被对称轴垂直平分 3.对称轴上的点到 对应点的距离相等 4.对称轴两侧的几 何图形全等 折叠出现 __________ 折叠问题、 最值问题等

二、精讲精练 1. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到 △DEF ,则四边形ABFD 的周长为( ) A .6 B .8 C .10 D .12 F C E D B A B 1 A 1 y x B A O 第1题图 第2题图 2. 如图,在平面直角坐标系xOy 中,已知点A ,B 的坐标分别 为(1,0),(0,2),将线段AB 平移至A 1B 1,若点A 1,B 1的坐标分别为(2,a ),(b ,3),则a b +=___________. 3. 如图,在44?的正方形网格中,△MNP 绕某点旋转一定的角 度得到△M 1N 1P 1,则其旋转中心可能是( ) A .点A B .点B C .点C D .点D D C B A N 1 M 1 P 1N M P 4. 如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90°, ∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路径长为________________.(结果保留π) C B A l …

第7讲 几何三大变换问题及答案

1.如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不 与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AM BN 的值. 类比归纳:在图(1)中,若 13CE CD =,则AM BN 的值等于;若14 CE CD =,则AM BN 的值等于;若1CE CD n =(n 为整数),则AM BN 的值等于.(用含n 的式子表示)联系拓展:如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AM BN 的值等于__.(用含m n ,的式子表示)

2. 2.如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上, 落点记为E,这时折痕与边BC或边CD(含端点)交于点F,然后再展开 铺平,则以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”. 图一图二图三(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF” 是一个_________三角形; (2)如图②,在矩形ABCD中,AB=2,BC=4.当它的“折痕△BEF”的顶 点E位于边AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标; (3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最 大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标;若不存 在,为什么?

3.课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的 有关问题. 实验与论证 设旋转角∠A1A0B1=α(α<∠A1A0A2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. (1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________; (2)图1-图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想 设正n边形A0A1A2…A n-1与正n边形A0B1B2…B n-1重合(其中,A1与B1重合),现将正n边形A0B1B2…B n-1绕顶点A0逆时针旋转α ( n 180 0< < ). (3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数;(4)试猜想在n边形且不添加其他辅助线的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.

中考复习几何三大变换

几何综合——三大变换 【例1】已知△ABC ,AD ∥BE ,若∠CBE =4∠DAC =80°,求∠C 的度数。 C D E B A 【例2】已知在梯形ABCD 中,AD ∥BC ,AB =DC ,且BD =BC ,AC ⊥BD 。求证:AD +BC =2CM 。 M D C B A

【例3】已知:如图,正方形ABCD 中,E 是AB 上一点,FG ⊥DE 于点H 。 ⑴求证:FG =DE 。 ⑵求证:FD EG 。 H G F E D C B A 【例4】如图,△ABC 中,AB =AC ,D 、E 是AB 、AC 上的点且AD =CE 。求证:2DE ≥BC 。 E D C B A 【例5】(2007北京)如图,已知△ABC 。 ⑴请你在BC 边上分别取两点D 、E (BC 的中点除外),连结AD 、AE ,写出使此 图中只存在... 两对.. 面积相等的三角形的相应条件,并表示出面积相等的三角形;

⑵请你根据使⑴成立的相应条件,证明AB +AC >AD +AE 。 板块二 轴对称变换 【例6】把正方形沿着EF 折叠使点B 落在AD 上, B 'C '交CD 于点N ,已知正方形的边长为1,求△DB'N 的周长。 N C' F E B' D C B A 【例7】(2009山西太原)问题解决: 如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D 、重合),压平后得到折痕MN 。当 12CE CD 时,求 AM BN 的值。 图1 N M F E D C B A 【例8】⑴(2009浙江温州)如图,已知正方形纸片ABCD 的边长为8,⊙O 的半径为2,圆心在正方形的中

中考数学 专题21 几何三大变换问题之平移问题(含解析)

专题21几何三大变换问题之平移问题 轴对称、平移、旋转是平面几何的三大变换。平移变换是指在同一平面内,将一个图形(含点、线、面)整体按照某个直线方向移动一定的距离,这样的图形变换叫做图形的平移变换,简称平移。平移由两大要素构成:①平移的方向,②平移的距离。平移有如下性质: 1、经过平移,平移前后图形的形状、大小不变,只是位置发生改变,即平移前后的图形全等; 2、平移前后图形的对应点所连的线段平行且相等; 3、平移前后图形的对应线段平行且相等,对应角相等。 中考压轴题中平移问题,包括直线(线段)的平移问题;曲线的平移问题;三角形的平移问题;四边形的平移问题;其它曲面的平移问题。 一.直线(线段)的平移问题 1.定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点. (1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____, 当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______ (2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式. (3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M. ①求出点M随线段BC运动所围成的封闭图形的周长; ②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.

【答案】(1)2;5(2) () () 2 m8m122m4 d 24m6 < ?-+-≤ ? =? ≤≤ ?? (3)①16+4π②存在,m=1,m=3,m= 14 3 【解析】解:(1)2;5。 (2)∵点B落在圆心为A,半径为2的圆上,∴2≤m≤6。当4≤m≤6时,根据定义, d=AB=2。 当2≤m<4时,如图,过点B作BE⊥OA于点E,则根据定义,d=EB。

九年级数学几何三大变换(旋转)拔高练习

九年级数学几何三大变换(旋转)拔高练习 试卷简介:全卷共20道题,全部为选择题,共100分,整套试卷略有难度,考查学生对知识的灵活综合运用能力,题目短小却又不失难度和知识点的考查,包含了不少中考经常考查的知识点和解题策略。学生在做题过程中可以回顾所学知识,认清自己对知识的掌握及灵活运用程度 学习建议:熟练掌握全等三角形的判定和性质、特殊四边形的性质、一元二次方程等知识点,并学会灵活运用。只有多加练习,才能对较难的题目轻松掌握,快速做题 一、单选题(共2道,每道50分) 1.已知在梯形ABCD中,AD∥BC,AB=DC,且BD=BC,AC⊥BD,下列结论正确的是() A.BC-AD=CM B.AD+BC=2CD C.BC-AD=2AM D.AD+BC=2CM 答案:D 解题思路:由等腰梯形性质可知,AC=BD,AM=DM,BM=CM,△ADM和△BCM都是等腰直角三角形. 设BM=CM=x,则BC=x, DM=BD-BM=BC-BM=(-1)x, AD=DM=(2-)x, 于是AD+BC=(2-)x+x=2x=2CM,故答案选D 易错点:不能灵活运用等腰梯形的性质,并结合题目条件得到梯形中各条线段的数量关系试题难度:四颗星知识点:等腰梯形的性质 2.在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB与P,若四边形ABCD的面积是18,则DP的长为() A.

B. C. D. 答案:C 解题思路:作CE⊥DP于点E,则CE=PB, 在Rt△ADP和Rt△DCE中, AD=DC, ∠APD=∠DEC=90°, 因为∠ADP+∠CDE=90°,∠DCE+∠CDE=90°,所以∠ADP=∠DCE 所以△ADP≌△DCE,AP=DE,DP=CE=BP, 设AP=x,CE=DP=y,则DE=x,PE=y-x,则 18=2S△ADP+S矩形BCEP=2·xy+y(y-x)=y2 所以y=故答案选C 易错点:想不到辅助线的做法,不能把图形中的线段和四边形面积建立起联系试题难度:四颗星知识点:全等三角形的判定与性质

中考数学专题训练-旋转模型几何变换三种模型手拉手-半角-对角互补

几何变换的三种模型手拉手、半角、对角互补 ?? ?? ? ? ? ? ? ? ?? ? ?? ? ? ? ? ?? ?? ? ?? 等腰三角形 手拉手模型等腰直角三角形(包含正方形) 等边三角形(包含费马点) 特殊角 旋转变换对角互补模型 一般角 特殊角 角含半角模型 一般角 等线段变换(与圆相关) 【练1】(2013北京中考)在ABC △中,AB AC =,BACα ∠=(060 α ?<

【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=, ,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60?且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数; (2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜 想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.

例题精讲 考点1:手拉手模型:全等和相似 包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)

图像几何变换

图像几何变换 一、实验目的 (1)学习几种常见的图像几何变换,并通过实验体会几何变换的效果; (2)掌握图像平移、剪切、缩放、旋转、镜像、错切等几何变换的算法原理及编 程实现 (3)掌握matlab编程环境中基本的图像处理函数 (4)掌握图像的复合变换 二、涉及知识点 (1)图像几何变换不改变图像像素的值,只改变像素所在的几何位置 (2)图像裁剪imcrop函数,语法格式为: B=imcrop(A);交互式用鼠标选取区域进行剪切 B=imcrop(A,[left top right bottom]);针对指定的区域[left top right bottom]进行剪切 (3)图像缩放imresize函数,语法格式为: B = imresize(A,m,method) 这里参数method用于指定插值的方法,可选用的值为'nearest'(最邻近法),'bilinear'(双线性插值),'bicubic'(双三次插值),默认为'nearest'。 B = imresize(A,m,method)返回原图A的m倍放大的图像(m小于1时效果是 缩小)。 (4)图像旋转imrotate函数,语法格式为: B = imrot ate(A,angle,’crop’),参数crop用于指定裁剪旋转后超出图像的部分。 三、实验内容 (1)将图像hehua.bmp裁剪成200X200大小,并保存 (2)制作动画,将一幅图像逐渐向左上角平移移出图像区域,空白的地方用白色 填充 (3)利用剪切图像函数制作动画 (4)将图像分别放大1.5倍和缩小0.8倍,插值方法使用最近邻域法和双线性插 值法,对比显示图像。 (5)将图像水平镜像,再顺时针旋转45度,显示旋转后的图像。 (6)将图像分别进行水平方向30度错切,垂直方向45度错切,分别显示结果 具体实现: 1.将图像hehua.bmp裁剪成200X200大小,并保存 I=imread('hehua.bmp'); n=size(I); figure; subplot(1,2,1); imshow(I); title('原图'); I=double(I);

初中数学 中考模拟复习专题21几何三大变换问题之平移问题考试卷及答案

xx学校xx学年xx学期xx试卷 姓名:_____________ 年级:____________ 学号:______________ 题型选择题填空题简答题xx题 xx 题xx 题总分 得分 一、xx题 (每空xx 分,共xx分) 试题1: 定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点. (1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____, 当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______ (2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式. (3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M. ①求出点M随线段BC运动所围成的封闭图形的周长; 评卷人得分

②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由. 试题2: 把直线沿y轴方向平移m个单位后,与直线的交点在第二象限,则m的取值范围是【】A. B. C. D. 试题3: 定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:的图象向左平移2个单位,再向下平移1个单位得到的图象,则是y与x的“反比例平移函数”. (1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.

2二次函数图象的几何变换

一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 ()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函 数2y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2 y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2 y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是 ()2 y a x h k =-+-; 4. 关于顶点对称 2 y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+- ; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+. 5. 关于点()m n , 对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 知识点拨 二次函数图象的几何变换

相关文档
最新文档