动力学的两类基本问题的分析
动力学的两大基本问题

达C点
D.由于两杆的倾角
未知,故无法判断
如图所示,传送带与地面倾角θ=37°,从A→B 长度为16m,传送带以l0m/s的速率逆时针转 动。在传送带上端A无初速度地放一个质量为 0.5kg的物体,它与传送带之间的动摩擦因数为 0.5.求物体从A运动到B需时间是多 少?(sin37°=0.6,cos37°=0.8)
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
【解析】 题中将套有小球的细直杆放在我们比较陌生的风洞实验里,题目
(1)设小球所受的风力为F,小球质量为m 小球在杆上匀速运动时,F=mg, 得 =F/mg=0.5mg/mg=0.5
(2)设杆对小球的支 持力为N,摩擦力为 f,小球受力情况如 图所示,将F、mg沿 杆方向和垂直杆方 向正交分解,根据 牛顿第二定律得
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
牛顿第二定律典型题型归纳(学生) -完整获奖版

牛顿第二定律典型题型归纳一. 重难点解析:1. 动力学两类基本问题应用牛顿运动定律解决的问题主要可分为两类:(1)已知受力情况求运动情况。
(2)已知运动情况求受力情况。
分析解决这两类问题的关键是抓住受力情况和运动情况之间联系的桥梁——加速度。
基本思路流程图:基本公式流程图为:2. 动力学问题的处理方法(1)正确的受力分析。
对物体进行受力分析,是求解力学问题的关键,也是学好力学的基础。
(2)受力分析的依据。
①力的产生条件是否存在,是受力分析的重要依据之一。
②力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析受力情况是不可忽视的。
③由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易。
3. 解题思路及步骤(1)由物体的受力情况求解物体的运动情况的一般方法和步骤。
①确定研究对象,对研究对象进行受力分析,并画出物体的受力图。
②根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向)③根据牛顿第二定律列方程,求出物体的加速度。
④结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量。
(2)由物体的运动情况求解物体的受力情况。
解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆。
②题目中求的力可能是合力,也可能是某一特定的作用力。
即使是后一种情况,也必须先求出合力的大小和方向,再根据力的合成与分解知识求分力。
4. 解题方法牛顿运动定律是解决动力学问题的重要定律,具体应用的方法有好多,高中物理解题常用的方法有以下几种:(1)正交分解法:表示方法为减少矢量的分解,建立坐标系时,确定x轴正方向有两种方法:①分解力而不分解加速度。
分解力而不分解加速度,通常以加速度a的方向为x轴正方向,建立直角坐标系,将物体所受的各个力分解在x轴和y轴上,分别得x轴和y轴的合力。
高三物理 动力学的两类基本问题精华教案

动力学的两类基本问题 ◎知识梳理 应用牛顿运动定律求解的问题主要有两类:一类是已知受力情况求运动情况;另一类是已知运动情况求受力情况.在这两类问题中,加速度是联系力和运动的桥梁,受力分析是解决问题的关键.◎例题评析【例11】 质量为m =2 kg 的木块原来静止在粗糙水平地面上,现在第1、3、5……奇数秒内给物体施加方向向右、大小为F 1=6 N 的水平推力,在第2、4、6……偶数秒内给物体施加方向仍向右、大小为F 2μ=0.1,取g =10 m/s 2,问:(1)木块在奇数秒和偶数秒内各做什么运动?(2)经过多长时间,木块位移的大小等于40.25 m?【分析与解答】:以木块为研究对象,它在竖直方向受力平衡,水平方向仅受推力F 1(或F 2)和摩擦力F f 的作用.由牛顿第二定律可判断出木块在奇数秒内和偶数秒内的运动,结合运动学公式,即可求出运动时间.(1)木块在奇数秒内的加速度为a 1=m F F f -1=m mg F -μ1=21021.06⨯⨯- m/s 2=2 m/s 2 木块在偶数秒内的加速度为a 2=m F F f -2=m mg F -μ2=21021.02⨯⨯- m/s 2=0 所以,木块在奇数秒内做a =a 1=2 m/s 2的匀加速直线运动,在偶数秒内做匀速直线运动.(2)在第1 s 内木块向右的位移为s 1=21at 2=21×2×12 m=1 m 至第1 s 末木块的速度v 1=at =2×1 m/s=2 m/s在第2 s 内,木块以第1 s 末的速度向右做匀速运动,在第2 s 内木块的位移为 s 2=v 1t =2×1 m=2 m至第2 s 末木块的速度v 2=v 1=2 m/s在第3 s 内,木块向右做初速度等于2 m/s 的匀加速运动,在第3 s 内的位移为s 3=v 2t +21at 2=2×1 m+21×2×12 m=3 m 至第3 s 末木块的速度v 3=v 2+at =2 m/s+2×1 m/s=4 m/s在第4 s 内,木块以第3 s 末的速度向右做匀速运动,在第4 s 内木块的位移为s 4=v 2t =4×1 m=4 m至第4 s 末木块的速度v 4=v 2=4 m/s……由此可见,从第1 s 起,连续各秒内木块的位移是从1开始的一个自然数列.因此,在n s 内的总位移为s n =1+2+3+…+n =21)(+n n 当s n =40.25 m 时,n 的值为8<nn =8,则8 s 内木块的位移共为s 8=2188)(+ m=36 m 至第8 s 末,木块的速度为v 8=8 m/s.设第8 s 后,木块还需向右运动的时间为t x ,对应的位移为s x =40.25 m -36 m=4.25 m ,由s x =v 8t x +21at x 2,即4.25=8t x +21×2t x 2 解得t x =0.5 s所以,木块位移大小等于40.25 m 时,需运动的时间T =8 s+0.5 s=8.5 s.[点评]:(1)本题属于已知受力情况求运动情况的问题,解题思路为先根据受力情况由牛顿第二定律求加速度,再根据运动规律求运动情况.(2)根据物体的受力特点,分析物体在各段时间内的运动情况,并找出位移的一般规律,是求解本题的关键.【例12】 如图所示,在倾角θ=37°的足够长的固定的斜面上,有一质量m =1 kg 的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细线的拉力F =9.6 N的作用,从静止开始运动,经2 s 绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s.(sin37°=0.6,g 取10 m/s 2)【分析与解答】:本题为典型的已知物体受力求物体运动情况的动力学问题,物体运动过程较为复杂,应分阶段进行过程分析,并找出各过程的相关量,从而将各过程有机地串接在一起.第一阶段:在最初2 s 内,物体在F =9.6 N 拉力作用下,从静止开始沿斜面做匀加速运动,据受力分析图3-2-4可知:沿斜面方向:F -mg sin θ-F f =ma 1沿垂直斜面方向:F N =mg cos θ且F f =μF N由①②③得:a 1=mmg mg F θμθcos sin --=2 m/s 2 2 s 末绳断时瞬时速度v 1=a 1t 1=4 m/s.第二阶段:从撤去F 到物体继续沿斜面向上运动到达速度为零的过程,设加速度为a 2, 则a 2=mmg mg )(θμθcos sin +-=-7.6 m/s 2 设从断绳到物体到达最高点所需时间为t 2据运动学公式v 2=v 1+a 2t 2所以t 2=210a v -=0.53 s 第三阶段:物体从最高点沿斜面下滑,在第三阶段物体加速度为a 3,所需时间为t 3.由牛顿第二定律可知:a 3=g sin θ-μg cos θ=4.4 m/s 2,速度达到v 3=22 m/s ,所需时间t 3=330a v -=5 s 综上所述:从绳断到速度为22 m/s 所经历的总时间t =t 2+t 3=0.53 s+5 s=5.53 s.【例13】 如图 所示,光滑水平面上静止放着长L =1.6 m 、质量为Mm =1 kg 的小物体放在木板的最右端,m 与M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F .(1)施力F 后,要想把木板从物体m 的下方抽出来,求力F 的大小应满足的条件;(2)如果所施力F =10 N ,为了把木板从m 的下方抽出来,此力的作用时间不得少于多少?(g 取10 m/s 2)【分析与解答】:(1)力F 拉木板运动过程:对木块:μmg =maa =μga =1 m/s 2对木板:F -μmg =Ma 1a 1=Mmg F μ- 只要a 1>a 就能抽出木板,即F >μ(M +m )g 所以F >4 N.(2)当F =10 N ,设拉力作用的最少时间为t 1,加速度为a 1,撤去拉力后木板运动时间为t 2,加速度为a 2,那么:a 1=M mg F μ-=3 m/s 2a 2=M mg μ=31 m/s2 木板从木块下穿出时:木块的速度:v =a (t 1+t 2)木块的位移:s =21a (t 1+t 2)2 木板的速度:v 木板=a 1t 1-a 2t 2木板的位移:s 木板=21a 1t 12+a 1t 1t 2-21a 2t 22 木板刚好从木块下穿出应满足:v 木板=vs 木板-s =L可解得:t 1=0.8 s【例14】 如图所示,传输带与水平面间的倾角为θ=37°,皮带以10 m/s 的速率运行,在传输带上端AA 到B 的长度为16 m ,则物体从A 运动到B 的时间为多少?【分析与解答】:首先判定μ与tan θ的大小关系,μ=0.5,tan θ=0.75,所以物体一定沿传输带对地下滑,不可能对地上滑或对地相对静止.其次皮带运行速度方向未知,而皮带运行速度方向影响物体所受摩擦力方向,所以应分别讨论.当皮带的上表面以10 m/s 的速度向下运行时,刚放上的物体相对皮带有向上的相对速度,物体所受滑动摩擦力方向沿斜坡向下(如图所示),该阶段物体对地加速度a 1=mmg mg θμθcos sin +=10 m/s 2 方向沿斜坡向下物体赶上皮带对地速度需时间t 1=1a v =1 s 在t 1 s 内物体沿斜坡对地位移 s 1=21a 1t 12=5 m 当物体速度超过皮带运行速度时物体所受滑动摩擦力沿斜面向上,物体对地加速度 a 2=mmg mg θμθcos sin -=2 m/s 2 物体以2 m/s 2加速度运行剩下的11 m 位移需时间t 2则s 2=vt 2+21a 2t 22 即11=10t 2+21×2t 22 t 2=1 s (t 2′=-11 s 舍去)所需总时间t =t 1+t 2=2 sa 3则a 3=mmg mg θμθcos sin -=2 m/s 2 物体从传输带顶滑到底所需时间为t '则s =21a 3t '2t '=32a s =2162⨯ s=4 s. [点评]:本题中物体在本身运动的传送带上的运动,因传输带运动方向的双向性而带来解答结果的多重性.物体所受滑动摩擦力的方向与物体相对于传输带的相对速度方向相反,而对物体进行动力学运算时,物体位移、速度、加速度则均需取地面为参考系.◎能力训练41.如图所示,一根轻弹簧的一端系着一个物体,手拉弹簧的另一端,使弹簧和物体一起在光滑水平面上向右做匀加速运动,当手突然停止运动后的短时间内,物体可能2.放在光滑水平面上的物体受三个平行于水平面的共点力作用而处于静止状态,已知F2垂直于F3.若三个力中去掉F1,物体产生的加速度为2.5 m/s2;若去掉F2,物体产生的加速度为1.5 m/s2;若去掉F3,则物体的加速度大小为A.1.5 m/s2B.2.0 m/s2C.2.5 m/s2D.4.0 m/s23.小磁铁A重10 N,吸在一块水平放置的固定铁板BA拉下来,至少要用15 N的力,若A、B间的动摩擦因数为0.3,现用5 N的水平力推A时,A的加速度大小是_______m/s2.(g取10 m/s2)v1F1,汽车整个运动过程所受阻力恒为F2(大小不变),则F1∶F2为∶∶1∶∶45.机车牵引力一定,在平直轨道上以a1=1 m/s2的加速度行驶,因若干节车厢脱钩,加速度变为a2=2 m/s2,设所受阻力为车重的0.1倍,则脱落车厢的质量与原机车总质量之比等于_______.6.据报道,1989年在美国加利福尼亚州发生的6.9级地震,中断了该地尼米兹高速公路的一段,致使公路上高速行驶的约200辆汽车发生了重大的交通事故,车里的人大部分当即死亡,只有部分系安全带的人幸免.假设汽车高速行驶的速度达到108 km/h,乘客的质量为60 kg,当汽车遇到紧急情况时,在2 s内停下来,试通过计算说明系安全带的必要性.2 kg,在水平恒力F推动下开始运动,4 s末它的速度达到4 m/s,此时将F撤去,又经6 s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小.。
第四讲 两类动力学问题 超重和失重

第四讲两类动力学问题超重和失重基础知识归纳1、超重与失重和完全失重(1)实重和视重①实重:物体实际所受的重力,它与物体的运动状态无关.②视重:当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的_示数称为视重,视重的大小等于弹簧测力计所受物体的_ 拉力_或台秤所受物体的压力。
(2)超重、失重和完全失重的比较现象实质超重物体对支持物的压力或对悬挂物的拉力大于自身重力的现象系统具有竖直向上的加速度或加速度有竖直向上的分量失重物体对支持物的压力或对悬挂物的拉力小于自身重力的现象系统具有竖直向下的加速度或加速度有竖直向下的分量完全失重物体对支持物的压力或对悬挂物的拉力等于零的现象系统具有竖直向下的加速度,且a=g①当物体处于超重和失重状态时,物体所受的重力并没有变化.②物体是否处于超重或失重状态,不在于物体向上运动还是向下运动,而是取决于加速度方向是向上还是向下.③当物体处于完全失重状态时,重力只产生使物体具有a=g的加速度效果,不再产生其他效果.④处于超重和失重状态下的液体浮力公式分别为F浮=ρV排(g+a)或F浮=ρV排(g-a),处于完全失重状态下的液体F浮=0,即液体对浸在液体中的物体不再产生浮力.2、连接体问题(1)连接体两个或两个以上存在相互作用或有一定关联的物体系统称为连接体,在我们运用牛顿运动定律解答力学问题中常会遇到.(2)解连接体问题的基本方法整体法:把两个或两个以上相互连接的物体看成一个整体,此时不必考虑物体之间的内力.隔离法:当求物体之间的作用力时,就需要将各个物体隔离出来单独分析.解决实际问题时,将隔离法和整体法交叉使用,有分有合,灵活处理.(3)整体法和隔离法的应用①解答问题时,不能把整体法和隔离法对立起来,而应该把这两种方法结合起来,从具体问题的实际情况出发,灵活选取对象,恰当地选择使用隔离法和整体法.②在使用隔离法解题时,所选取的隔离对象可以是连接体中的某一个物体,也可以是连接体中的某部分物体(包含两个或两个以上的单个物体),而这“某一部分”的选取,也应根据问题的实际情况,灵活处理.③在选用整体法和隔离法时,可依据所求的力进行选择,若为外力则应用整体法;若所求力为内力则用隔离法.但在具体应用时,绝大多数的题目要求两种方法结合应用,且应用顺序也较为固定,即求外力时,先隔离后整体;求内力时,先整体后隔离.先整体或先隔离的目的都是为了求解共同的加速度.3、整体运用牛顿第二定律应用牛顿第二定律时,若研究对象为一物体系统,可将系统的所有外力及系统内每一物体的加速度均沿互相垂直的两个方向分解,则牛顿第二定律的系统表达式为:ΣF x=m1a1x+m2a2x+…+m n a nxΣF y=m1a1y+m2a2y+…+m n a ny应用牛顿第二定律的系统表达式解题时,可不考虑系统内物体间的相互作用力(即内力),这样能达到简化求解的目的,但需把握三个关键点:(1)正确分析系统受到的外力;(2)正确分析系统内各物体加速度的大小和方向;(3)确定正方向,建立直角坐标系,并列方程进行求解.【例1】在升降电梯内的地面上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在这段时间内下列说法中正确的是()A.晓敏同学所受的重力变小了B.晓敏对体重计的压力小于体重计对晓敏的支持力C.电梯一定在竖直向下运动D.电梯的加速度大小为g/5,方向一定竖直向下【练习1】在箱式电梯里的台秤秤盘上放着一物体,在电梯运动过程中,某人在不同时刻拍了甲、乙和丙三张照片,如图所示,乙图为电梯匀速运动的照片。
(完整版)动力学两类基本问题

动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。
高三一轮复习秘籍-第三章专题强化三 动力学两类基本问题和临界极值问题

第三章牛顿运动定律专题强化三动力学两类基本问题和临界极值问题专题解读1.本专题是动力学方法处理动力学两类基本问题、多过程问题和临界极值问题,高考在选择题和计算题中命题频率都很高.2.学好本专题可以培养同学们的分析推理能力,应用数学知识和方法解决物理问题的能力.3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识.过好双基关————回扣基础知识训练基础题目一、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况二、动力学中的临界与极值问题1.临界或极值条件的标志(1)题目中“刚好”“恰好”“正好”等关键词句,明显表明题述的过程存在着临界点.(2)题目中“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态.(3)题目中“最大”“最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点.2.常见临界问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0.(2)相对滑动的临界条件:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子断裂的临界条件是绳中张力等于它所能承受的最大张力;绳子松弛的临界条件是F T=0.(4)最终速度(收尾速度)的临界条件:物体所受合外力为零.研透命题点————细研考纲和真题分析突破命题点1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法(2)正交分解法◆类型1已知物体受力情况,分析物体运动情况【例1】(2021·河北卷)如图,一滑雪道由AB 和BC 两段滑道组成,其中AB 段倾角为θ,BC 段水平,AB 段和BC 段由一小段光滑圆弧连接,一个质量为2kg 的背包在滑道顶端A 处由静止滑下,若1s 后质量为48kg 的滑雪者从顶端以1.5m/s 的初速度、3m/s 2的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为μ=112,重力加速度取g =10m/s 2,sin θ=725,cos θ=2425,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:(1)滑道AB段的长度;(2)滑雪者拎起背包时这一瞬间的速度.答案(1)9m(2)7.44m/s解析(1)A→B过程对背包(m1):受力分析,由牛顿第二定律得m1g sinθ-μm1g cosθ=m1a1解得a1=2m/s2①由运动分析得:l=1a1t2②,v1=a1t③2对滑雪者(m2):由运动分析得l=v0(t-t0)+1a2(t-t0)2④2v2=v0+a2(t-t0),其中t0=1s⑤联立①②③④⑤得t=3s,v1=6m/s,v2=7.5m/s,l=9m(2)滑雪者拎起背包过程水平方向动量守恒,有m1v1+m2v2=(m1+m2)v解得v=7.44m/s滑雪者拎起背包时的速度为7.44m/s【变式1】(多选)如图甲所示,质量为m的小球(可视为质点)放在光滑水平面上,在竖直线MN的左侧受到水平恒力F1作用,在MN的右侧除受F1外还受到与F1在同一直线上的水平恒力F2作用,现小球从A点由静止开始运动,小球运动的v-t图像如图乙所示,下列说法中正确的是()A.小球在MN右侧运动的时间为t1-t2B.F2的大小为m v1t1+2mv1 t3-t1C.小球在MN右侧运动的加速度大小为2v1 t3-t1D.小球在0~t4时间内运动的最大位移为v1t2答案BC解析小球在MN右侧运动的时间为t3~t1,故A错误;小球在MN右侧的加速度大小a2=2v1t3-t1,在MN的左侧,由牛顿第二定律可知F1=ma1=mv1t1,在MN的右侧,由牛顿第二定律可知F2-F1=ma2得F2=2mv1t3-t1+mv1t1,故B、C正确;t2时刻后小球反向运动,所以小球在0~t4时间内运动的最大位移是v1t22,故D错误.◆类型2已知物体运动情况,分析物体受力情况【例2】如图甲所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面平行的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10m/s2.求:(1)物块到达B点时速度和加速度的大小;(2)拉力F的大小;(3)若拉力F与斜面夹角为α,如图乙所示,试写出拉力F的表达式(用题目所给物理量的字母表示).答案(1)8m/s3m/s2(2)5.2N(3)F=mg sinθ+μcosθ+ma cosα+μsinα解析(1)物块做匀加速直线运动,根据运动学公式,有L=v0t+12at2,v=v0+at,联立解得a=3m/s2,v=8m/s(2)对物块受力分析可得,平行斜面方向F cosα-mg sinθ-F f=ma,垂直斜面方向F N=mg cosθ其中F f=μF N解得F=mg(sinθ+μcosθ)+ma=5.2N(3)拉力F与斜面夹角为α时,物块受力如图所示根据牛顿第二定律有F cosα-mg sinθ-F f=ma F N+F sinα-mg cosθ=0其中F f=μF NF=mg sinθ+μcosθ+macosα+μsinα.【变式2】如图所示,粗糙的地面上放着一个质量M=1.5kg的斜面体,斜面部分光滑,底面与地面的动摩擦因数μ=0.2,倾角θ=37°,在固定在斜面的挡板上用轻质弹簧连接一质量m=0.5kg的小球,弹簧劲度系数k=200 N/m,现给斜面施加一水平向右的恒力F,使整体向右以a=1m/s2的加速度匀加速运动(已知sin37°=0.6,cos37°=0.8,g取10m/s2).求:(1)F的大小;(2)弹簧的形变量及斜面对小球的支持力大小.答案(1)6N(2)0.017m 3.7N解析(1)对整体应用牛顿第二定律:F-μ(M+m)g=(M+m)a,解得F=6N.(2)设弹簧的形变量为x,斜面对小球的支持力为F N对小球受力分析:在水平方向:kx cosθ-F N sinθ=ma在竖直方向:kx sinθ+F N cosθ=mg解得x=0.017m,F N=3.7N.多过程问题分析步骤1.将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接.2.对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图.3.根据“子过程”“衔接点”的模型特点选择合理的物理规律列方程.4.分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程.5.联立方程组,分析求解,对结果进行必要的验证或讨论.【例3】如图所示,两滑块A、B用细线跨过定滑轮相连,B距地面一定高度,A可在细线牵引下沿足够长的粗糙斜面向上滑动.已知m A=2kg,m B =4kg,斜面倾角θ=37°.某时刻由静止释放A,测得A沿斜面向上运动的v -t图像如图所示.已知g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)A与斜面间的动摩擦因数;(2)A沿斜面向上滑动的最大位移;(3)滑动过程中细线对A拉力所做的功.答案(1)0.25(2)0.75m(3)12J解析(1)在0~0.5s内,根据图像,A、B系统的加速度为a1=vt =20.5m/s2=4m/s2对A、B系统受力分析,由牛顿第二定律有m B g-m A g sinθ-μm A g cosθ=(m A+m B)a1得:μ=0.25(2)B落地后,A减速上滑.由牛顿第二定律有m A g sinθ+μm A g cosθ=m A a2将已知量代入,可得a2=8m/s2故A减速向上滑动的位移为x2=v22a2=0.25m0~0.5s内A加速向上滑动的位移x1=v22a1=0.5m所以,A上滑的最大位移为x=x1+x2=0.75m(3)A加速上滑过程中,由动能定理:W-m A gx1sinθ-μm A gx1cosθ=12m A v2-0得W=12J.【变式3】如图所示,一足够长斜面上铺有动物毛皮,毛皮表面具有一定的特殊性,物体上滑时顺着毛的生长方向,毛皮此时的阻力可以忽略;下滑时逆着毛的生长方向,会受到来自毛皮的滑动摩擦力,现有一物体自斜面底端以初速度v0=6m/s冲上斜面,斜面的倾角θ=37°,经过2.5s物体刚好回到出发点,(g=10m/s2,sin37°=0.6,cos37°=0.8).求:(1)物体上滑的最大位移;(2)若物体下滑时,物体与毛皮间的动摩擦因数μ为定值,试计算μ的数值.(结果保留两位有效数字)答案(1)3m(2)0.42解析(1)物体向上滑时不受摩擦力作用,设最大位移为x.由牛顿第二定律可得:mg sin37°=ma1代入数据得:a1=6m/s2由运动学公式有:v20=2a1x联立解得物体上滑的最大位移为:x=3m(2)物体沿斜面上滑的时间为:t1=v0a1=66s=1s物体沿斜面下滑的时间为:t2=t-t1=1.5s下滑过程中,由运动学公式有:x=12a2t22由牛顿第二定律可得:mg sin37°-μmg cos37°=ma2联立解得:μ≈0.421.基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.2.思维方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学法将物理过程转化为数学表达式,根据数学表达式解出临界条件【例4】如图所示,一弹簧一端固定在倾角为θ=37°的光滑固定斜面的底端,另一端拴住质量为m1=6kg的物体P,Q为一质量为m2=10kg的物体,弹簧的质量不计,劲度系数k=600N/m,系统处于静止状态.现给物体Q施加一个方向沿斜面向上的力F ,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2s 时间内,F 为变力,0.2s 以后F 为恒力,sin 37°=0.6,cos 37°=0.8,g 取10m/s 2.求:(1)系统处于静止状态时,弹簧的压缩量x 0;(2)物体Q 从静止开始沿斜面向上做匀加速运动的加速度大小a ;(3)力F 的最大值与最小值.答案(1)0.16m (2)103m/s 2(3)2803N 1603N 解析(1)设开始时弹簧的压缩量为x 0对整体受力分析,平行斜面方向有(m 1+m 2)g sin θ=kx 0解得x 0=0.16m(2)前0.2s 时间内F 为变力,之后为恒力,则0.2s 时刻两物体分离,此时P 、Q 之间的弹力为零且加速度大小相等,设此时弹簧的压缩量为x 1对物体P ,由牛顿第二定律得kx 1-m 1g sin θ=m 1a前0.2s 时间内两物体的位移x 0-x 1=12at 2联立解得a =103m/s 2(3)对两物体受力分析知,开始运动时拉力最小,分离时拉力最大NF min=(m1+m2)a=1603对Q应用牛顿第二定律得F max-m2g sinθ=m2aN.解得F max=m2(g sinθ+a)=2803【变式4】两物体A、B并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F作用在物体A上,使A、B由静止开始一起向右做匀加速运动,如图a所示,在A、B的速度达到6m/s时,撤去推力F.已知A、B 质量分别为m A=1kg、m B=3kg,A与地面间的动摩擦因数μ=0.3,B与地面间没有摩擦,B物体运动的v-t图像如图b所示.g取10m/s2,求:(1)推力F的大小;(2)A刚停止运动时,物体A、B之间的距离.答案(1)15N(2)6m解析(1)在水平推力F作用下,设物体A、B一起做匀加速运动的加速度为a,由B的v-t图象得:a=3m/s2对于A、B组成的整体,由牛顿第二定律得:F-μm A g=(m A+m B)a代入数据解得:F=15N.(2)撤去推力F后,A、B两物体分离.A在摩擦力作用下做匀减速直线运动,B做匀速运动,设A匀减速运动的时间为t,对于A有:μm A g=m A a A解得:a A=μg=3m/s2根据匀变速直线运动规律有:0=v0-a A t解得:t=2s撤去力F后,A的位移为x A=v0t-1a A t2=6m2B的位移为x B=v0t=12m所以,A刚停止运动时,物体A、B之间的距离为Δx=x B-x A=6m.。
3.2牛二应用一:动力学的两类问题
3.2牛二应用一:动力学的两类基本问题一、学习目标会用牛顿第二定律分析和解决两类基本问题:已知受力情况求解运动情况,已知运动情况求解受力情况。
二、知识梳理1.已知力求运动:知道物体受到的作用力,应用牛顿第二定律求加速度,如果再知道物体的初始运动状态,应用运动学公式就可以求出物体的运动情况——任意时刻的位置和速度,以及运动轨迹。
2.已知运动求力:知道物体的运动情况,应用运动学公式求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况。
3.两类基本问题的解题步骤:(1)确定研究对象,明确物理过程;(2)分析研究对象的受力情况和运动情况,必要时画好受力图和运动过程示意图;(3)根据牛顿第二定律和运动学公式列方程;合力的求解常用合成法或正交分解法;要特别注意公式中各矢量的方向及正负号的选择,最好在受力图上标出研究对象的加速度的方向;(4)求解、检验,必要时需要讨论。
三、典型例题1.有三个光滑斜轨道1、2、3,它们的倾角依次是60°,45°,30°,这些轨道交于O点.现有位于同一竖直线上的三个小物体甲、乙、丙分别沿这三个轨道同时从静止自由下滑,如图所示,物体滑到O点的先后顺序是()A.甲最先,乙稍后,丙最后B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达D.乙最先,甲稍后,丙最后2.如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x与斜面倾角θ的关系,将某一物体每次以不变的初速率v0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x与斜面倾角θ的关系如图乙所示,g取10 m/s2,根据图象可求出()A.物体的初速率v0=3 m/sB.物体与斜面间的动摩擦因数μ=0.75C.取不同的倾角θ,物体在斜面上能达到的位移x的最小值x min=1.44 mD.当θ=45°时,物体达到最大位移后将停在斜面上3.我国歼-15舰载战斗机首次在“辽宁舰”上成功降落,有关资料表明,该战斗机的质量m=2.0v=80 m/s减小到零所用时间t=2.5 ×104 kg,降落时在水平甲板上受阻拦索的拦阻,速度从s.若将上述运动视为匀减速直线运动,求:该战斗机在此过程中(1)加速度的大小a;(2)滑行的距离x;(3)所受合力的大小F.4.如图所示,一质量为m =2kg 的物体静止在水平地面上,物体与水平地面间的动摩擦因数μ=0.2,现对物体施加一水平向右的恒定拉力F =12N ,取g =10m/s 2。
专题04 动力学经典问题(Word版,含答案)
2020年高三物理寒假攻关---备战一模第一部分考向精练专题04 动力学经典问题1.已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿第二定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况.2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的某个力.可用程序图表示如下:3.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁。
4.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变量最大时,两端连接体的速率相等.【例1】(2019·四川雅安一模)如图所示,质量为1 kg的物体静止于水平地面上,用大小为6.5 N的水平恒力F作用在物体上,使物体由静止开始运动50 m后撤去拉力F,此时物体的速度为20 m/s,物体继续向前滑行直至停止,g取10 m/s2。
求:(1)物体与地面间的动摩擦因数;(2)物体运动的总位移;(3)物体运动的总时间。
【思路点拨】(1)先做初速度为零的匀加速直线运动,再做匀减速直线运动直到速度为零。
(2)两段运动过程衔接处的速度相同。
【答案】(1)0.25(2)130 m(3)13 s【解析】(1)在拉力F作用下,物体的加速度大小为:a1=v2 2x1对物体,由牛顿第二定律有:F-μmg=ma1,联立解得:μ=0.25。
(2)撤掉拉力F后的加速度大小为:a2=μg=2.5 m/s2撤掉拉力F后的位移为:x2=v22a2=80 m全程总位移为:x =x 1+x 2=50 m +80 m =130 m 。
动力学的两类基本问题
动力学的两类基本问题、基础知识1、动力学有两类问题:⑴是已知物体的受力情况分析运动情况;⑵是已知运动情况分析受力情况,程序如下图所示。
v = v o+atx= v o t + — at22v 2—V o2 =2ax2、根据受力情况确定运动情况,先对物体受力分析,求出合力,再利用__________________ 求出________ ,然后利用_______________ 确定物体的运动情况(如位移、速度、时间等).3 •根据运动情况确定受力情况,先分析物体的运动情况,根据___________________ 求出加速度,再利用______________ 确定物体所受的力(求合力或其他力).其中,受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是桥梁。
解题步骤(1) 确定研究对象;(2) 分析受力情况和运动情况,画示意图(受力和运动过程);(3) 用牛顿第二定律或运动学公式求加速度;(4) 用运动学公式或牛顿第二定律求所求量。
例1. 一个静止在水平面上的物体,质量是2kg,在8N的水平拉力作用下沿水平面向右运动,物体与水平地面间的动摩擦因数为0.25。
求物体4s末的速度和4s内的位移。
例2.滑雪者以v o=20m/s的初速度沿直线冲上一倾角为30°的山坡,从刚上坡即开始计时,至 3.8s末,滑雪者速度变为0。
如果雪橇与人的总质量为m=80kg,求雪橇与山坡之间的摩擦力为多少?g=10m/s .、练习1、如图所示,木块的质量m= 2 kg,与地面间的动摩擦因数尸0.2,木块在拉力F = 10 N作用下,在水平地面上从静止开始向右运动,运动 5.2 m后撤去外力F.已知力F与水平方向的夹角0= 37°(sin 37°= 0.6, cos 37°=20.8, g取10 m/s ).求:(1)撤去外力前,木块受到的摩擦力大小;⑵冈撅去外力时,木块运动的速度;⑶撤去外力后,木块还能滑行的距离为多少?(1) 2.8N (2) 5.2m/s ( 3) 6.76m2、如图所示,一个放置在水平台面上的木块,其质量为 2 kg,受到一个斜向下的、与水平方向成37°角的推力F= 10 N的作用,使木块从静止开始运动,4 s后撤去推力,若木块与水平面间的动摩擦因数为0.1.(取g= 10 m/s )求:(1) 撤去推力时木块的速度为多大?(2) 撤去推力到停止运动过程中木块的加速度为多大?(3) 木块在水平面上运动的总位移为多少?3、如图5所示,在倾角0= 37。
高二物理必修一必学必背知识点总结(3篇)
高二物理必修一必学必背知识点总结牛顿运动定律的应用1、动力学的两类基本问题:(1)已知物体的受力情况,确定物体的运动情况.基本解题思路是:①根据受力情况,利用牛顿第二定律求出物体的加速度.②根据题意,选择恰当的运动学公式求解相关的速度、位移等.(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度.②根据牛顿第二定律确定物体所受的合外力,从而求出未知力.(3)注意点:①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键.②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.2、关于超重和失重:在平衡状态时,物体对水平支持物的压力大小等于物体的重力.当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力.当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象.当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象.对其理解应注意以下三点:(1)当物体处于超重和失重状态时,物体的重力并没有变化.(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向.(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.易错现象:(1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。
(2)些同学在解比较复杂的问题时不认真审清题意,不注意题目条件的变化,不能正确分析物理过程,导致解题错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学两类基本问题的分析
上海师范大学附属中学 李树祥
一、根据运动情况确定物体的受力
1、解题步骤:
(1)确定研究对象,并将研究对象从周围环境中隔离出来。
分析研究对象的受力,并画出受力图(注意:研究对象有时也可以选几个物体组成的整体,但上海市高中物理学科教学基本要求中,对用牛顿第二定律的计算,仅限于受到恒力作用的单个物体,且质量不变)。
(2)受力较为复杂时,要建立坐标系。
物体做变速直线运动时:建立的坐标系以保证列式、计算方便。
一般以运动方向为一个坐标轴,以垂直运动方向为另一个轴。
物体做曲线运动时:一般沿半径和切线方向建立坐标系。
(3)考察物体的运动情况。
若题中没有明确给出加速度,则要根据运动学公式求出加速度(如是匀变速直线运动,则要使用匀变速公式;如是匀速圆周运动,则要利用向心加速度公式求加速度)。
(4)列牛顿第二定律方程,求出某个力。
2、运用牛顿定律解题的常规做法:
⑴物体只受一个力作用时,物体所受合外力就是此力,则此力就等于ma 。
⑵物体受两个力时,通常用作图法。
即物体受这两个力的合力必与加速度a 同方向,据此推知合力的方向,并作出力合成的平行四边形,利用三角形知识求解有关量。
⑶物体受三个力或超过三个力时,通常建立坐标系,应用正交分解法列出牛顿定律的分量表达式:
∑F x =ma x
∑F y =ma y
应用正交分解法要注意:①坐标系的选取以计算方便为原则,一般选定加速度方向为坐标轴方向(有时也以少分解矢量为原则)。
②加速度的分解仅限于在两个正交方向上分解,不要在任意方向上分解。
③列分量表达式时,代入公式的合外力、加速度都必须是该方向上的分量,不要张冠李戴。
④运用牛顿第二定律进行计算时,各物理量单位都必须取国际制单位。
3、充分发挥数学公式的三个作用:⑴确定各个物理量之间的数值关系; ⑵确定各个物理量之间的单位关系;⑶若公式是矢量表达式,则可以确定矢量的方向。
例如,需要求某物理量的大小和方向时,可事先假定该物理量沿某方向,然后列出数学矢量式,若求出的结果。
为正值时,则事先假定的方向是正确的;为负值时,则实际方向与事先假定的方向相反。
例1、一个质量为2kg 的物体,在竖直下落时作匀加速直线运动,且在1.5s 内速度增加59.4km/h ,那么这个物体除了受到重力外,还受到多大的力F ?这个力的方向如何?(空
气阻力不计,g 取10m/s 2)。
解析:首先要把速度单位变成国际制单位,即59.4km/h=16.5m/s ,根据加速度公式,物体下落的加速度为:
22/11/5
.15.16s m s m t v
a ==∆=………(1) >g s m a 2/11=Θ,∴物体除受到重力外,一定受到另一个竖直向下的力F 。
根据牛顿第二定律,ma mg F F =+=合得:N s m kg g a m F 2/)1011(2)(2=⋅-⨯=-= (2)
例2、如图1所示,质量为m 的人站在自动扶梯上,扶梯与水平面的倾角是
θ.如果人随同扶梯一起以加速度a 做斜向上的加速运动,求人对扶梯的摩擦力
和压力。
解析:解法1、以人为研究对象,分析受力情况:重力mg 、扶梯的
支持力N 和摩擦力f .将加速度分解如图2,根据牛顿第二定律得
竖直方向:N-mg=masin θ
水平方向:f=macos θ
得到N=m (g+asin θ),f=macos θ
根据牛顿第三定律得:人对扶梯的压力N ′═N=m (g+asin θ),人对扶
梯的摩擦力f ′=f= macos θ
解法2:将支持力和重力合成一个力F 1=N-mg ,则此三力合成问题
就变成了二力合成问题了,此二力的合力方向就是加速度方向,如图3,
则Fsin θ=N-mg ,Fcos θ=f ,而F=ma ,由此可得N=m (g+asin θ),
f=macos θ;根据牛顿第三定律得:人对扶梯的压力 N ′═N=m (g+asin θ),人对扶梯的摩擦力f ′=f= macos θ
例3、一个质量为0.2kg 的小球用细线吊在倾角θ=53°的斜面顶
端,如图4,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,
当斜面以10m/s 2的加速度向右做加速运动时,求绳的拉力及斜面对小球
的弹力。
解析:当加速度a 较小时,小球与斜面体一起运动,此时小球受重
力、绳拉力和斜面的支持力作用,绳平行于斜面,当加速度a 足够大时,
小球将“飞离”斜面,此时小球受重力和绳的拉力作用,绳与水平方向的
夹角未知,题目中要求a =10m/s 2时绳的拉力及斜面的支持力,必须先求出
小球离开斜面的临界加速度a 0。
(此时,小球所受斜面支持力恰好为零)
由mg cot θ=ma 0
所以a 0=g cot θ=7.5m/s 2
因为a =10m/s 2>a 0
所以小球离开斜面N =0,小球受力情况如图5,则Tc os α=ma ,
T sin α=mg 所以T =22)()(mg ma +=2.83 N,N =0.
二、已知受力确定运动情况:
解题步骤: 1、确定研究对象,并将研究对象从周围环境中隔离出来(分析受力时注意:
只分析研究对象受到的外力,而不分析内力;物体的受力作用点可以集中到物体的重心)。
2、分析研究对象的受力,并画出受力图(分析受力时注意:只分析对象受到的外力,而不分析内力;物体的受力作用点可以集中到物体的重心)。
3、受力较为复杂时,要建立坐标系。
物体做变速直线运动时:建立的坐标系以保证列式、计算方便。
一般以运动方向为一个坐标轴,以垂直运动方向为另一个轴。
图5
θ a 图1 F f N-mg θ 图3 图2 图4
物体做曲线运动时:一般沿半径和切线方向建立坐标系。
4、列牛顿第二定律方程,求出加速度。
对变速直线运动,垂直运动方向上合外力为零,运动方向上的合外力就是物体所受的合外力,等于ma 。
5、若求出的加速度恒定不变,再使用匀变速直线运动公式求出相关量。
若求出的加速度是一个变量函数,则要根据加速度表达式进行讨论。
显然,无论是何种题型,加速度始终是联系运动情况和物体受力的桥梁。
例4、将质量为m 的物体以初速度v 0从地面竖直向上抛出,设在上升和下降过程中所受的空气阻力大小均为f ,求上升的最大高度和落回地面时的速度大小。
解析:上升过程:物体做匀减速直线运动,其受力如图6所示,由牛顿第二定律得: mg +f =ma 上, ① 设上升的最大高度为h ,由运动学公式得: h =v 02/2a 上, ②
下降过程:物体做匀加速直线运动,其受力如图7所示,由牛顿第二定律得:mg -f =ma 下, ③ 设物体落回地面的速度为v t ,根据运动学公式得:
h =v t 2/2a 下, ④ 由①②得:h =mv 02/2(mg +f), ⑤ 由③④⑤得:v t =v 0√(mg -f)/(mg +f)
例5、一个质量为4kg 的物体静止在水平地面上,物体与地面间的动摩擦因数μ=0.2,现对它施加一个水平方向大小12N 的恒力F ,物体作匀加速直线运动,4s 后撤去力F 作用,物体作匀减速运动直到停止,试求物体运动的总路程。
解析:原来物体受四个力作用:重力、地面对物体的支持力、水平恒力F 和地面对物体摩擦力。
物体在这四个力作用下,从静止开始作匀加速直线运动,设此时的加速度为a 1。
撤去F 后,物体受到三个力作用:重力、地面对物体的支持力和地面对物体的摩擦力。
物体在这三个力的作用下作匀减速直线运动,设加速度为a 2。
根据牛顿第二定律ma F =合可得:
有F 作用时,1ma f F =-
221/1/4
1042.012s m s m m mg F m f F a =⨯⨯-=-=-=μ m m t a s 84121212211=⨯⨯==
, s m t a V /41== 撤去F 后,物体作匀减速直线运动,根据牛顿第二定律,可得:
,2ma f = 22/2s m g m
mg m f a ====μμ 42
2422
222=⨯==m a v s m 所以,物体运动的总路程m m s s s 12)48(21=+=+=
v a 图
7
v a 图6。