41线段、射线、直线2
四年级上册数学教案-3.1 线段、射线、直线西师大版

线段、射线、直线教学内容:小学数学西师版四年级上册《线段、直线、射线》41页、42页。
知识和技能目标:1、联系生活实际,认识线段、直线、射线。
2、能正确区分线段、直线、射线,掌握它们的联系和区别。
3、会用作图工具画出射线、直线和线段。
过程与方法目标:通过学生观察、讨论、操作等认识线段、直线、射线并发现生活中的线段、射线。
情感、态度与价值观目标:1、通过操作活动培养学生的动手能力,以及良好的空间观念。
2、向学生渗透事物之间相互联系,发展变化的观点。
教学重点:认识线段、直线、射线,掌握三者的联系和区别。
教学难点:掌握线段、直线、射线三者的联系和区别。
教具准备:课件直尺两段细铁丝学具准备:铅笔、尺子教学过程:一、谈话引入新课用变魔术的形式将一根铁丝变成两根,变成一根是直的,一根弯曲的;再利用直的这根引出课题。
二、师生共同探究新知1、认识线段教师首先课件出示一张课桌的实物图,由量课桌边的长度,从一端到另一端抽象出线段,并直接告知这是线段,小圆点叫做端点。
(1)师:你能向大家描述一下线段的样子吗?指名学生回答,教师板书:直直的,有两个端点。
(2)找出生活中的线段。
(3)生自由画线段。
(4)展示不同角度的线段。
(5)体会线段的长度是有限的。
(6)联系生活实例,并结合课件演示。
认识到在两点之间可以画出很多条线,感知线段最短,线段的长度就是这两点间的距离。
2、认识射线师:线段的两个端点把它的长度固定了,所以线段就不能自由变长,变短了。
不过线段的两个小圆点也有贪玩的时候,大家看……这根线段的一个小圆点就不知道跑到哪儿贪玩去了。
引导学生猜想只有一个端点后,这条线会发生怎样的变化呢?教师课件演示加强感知。
(1)这样的一条线还能叫线段吗?我们跟它另外取一个名字吧!(2)引导学生说一说射线的特征。
教师板书:直的,只有一个端点,无限长。
(3)画射线。
思考:射线无限长,我们可以把它画在纸上吗?该怎样画呢?(学生尝试画射线,教师示范画并强调只有一端打上小圆点。
人教版2020-2021学年七年级数学上册4.2直线、射线、线段(第一课时)课件

小试牛刀
2.下列写法正确的是( A.直线A,B相交于点M C.直线a,b相交于点M
C) B.过a,b两点画直线l D.直线a,b相交于点n
3.按下列语句画出图形:
(1) 直线 EF 经过点C; (2) 点 A 在直线 l 外.
解: (1)
E
F (2)
A
l
C
合作探究
探究1. 射线和线段都是直线的一部分,类比直
这醉人春芬去芳春的又季回节,,新愿桃你换生旧活符像。春在天那一桃样花阳盛光开,的心地情方像,桃在 54、少海不壮内要不存为努知它力已的,结老天束大涯而徒若哭伤比,悲邻应。当为Su它nd的ay开, J始u而ly 笑12。, 270.2102J.2u0ly20270.S1u2n.2d0a2y0, 0J9u:l0y51029,:200520097:0/152:0/230290:05:03 这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃 65、莫吾愁生生前命也路的有无成涯知长,已而,需知天要也下吃无谁饭涯人,。不还识需9时君要5。吃分苦99时时,55吃分分亏91时2。-5JSu分ul-n12d20a-7Jy.u1,l2J-2.u20ly0721.1022,.2020July 20Sunday, July 12, 20207/12/2020
A B
F
E
D
C
七年级上册数学教案设计4.2第1课时直线、射线、线段2

4.2 直线、射线、线段第1课时直线、射线、线段教学目标:1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用这一性质表述点与直线的关系.3.会画一条等于已知线段的线段.4.能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.教学重点:认识直线、射线、线段的区别与联系;学会正确表示直线、射线、线段,能够判断点与直线的关系,逐步使学生懂得几何语句的意义,并能建立几何语句与图形之间的联系.教学难点:能够把几何图形与语句表示、符号书写很好地联系起来.教学过程:一、创设情境1.观察课本P125图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?二、探索实践,自主归纳学生利用打好小洞的10 cm长,1 cm宽的硬纸条和撒扣进行实践活动.小组之间交流实践成果,相互补充完善,并解决课本P127思考,得到直线性质:两点确定一条直线.由直线性质推导出表示直线的方法,进而引出点与直线的位置关系,如课本P125图4.2-3,同时提出交点的概念.你画我说要求学生分别画一条直线、射线、线段,教师给出规范表示方法.要求一组学生随意画出一点与一条直线,另一组学生判断点与直线的关系,教师加以指正.三、议一议结合自己所画图形,寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.四、我说你画完成课本P128练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.五、数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.设计意图:慢慢让学生读清题意,并学会按照要求正确画出图形,并让学生自己说出想法,培养学生独立操作、自主探索的数学实践能力.六、课时小结七、课堂作业课本P129习题4.2第2、3、4题.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,∠1=15︒,∠AOC=90︒,点O、D在同一直线上,则∠2的度数为()A.5°B.15°C.105°D.165°2.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD的度数为( )A.45°B.120°C.135°D.150°3.如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是( )A B.C.D.54.如果x=m是方程12x-m=1的根,那么m的值是( )A.0 B.2 C.-2 D.-65.某校七年级所有学生参加元旦联欢晚会,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是( )A.30x-8=31x+26 B.30x+8=31x+26C.30x-8=31x-26 D.30x+8=31x-266.如图所示,a、b是有理数,则式子a b a b b a++++-化简的结果为()A.3a+bB.3a-bC.3b+aD.3b-a7.已知整式25 2x x-的值为6,则整式2x2-5x+6的值为()A.9 B.12 C.18 D.248.下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(-a2)3=a6D.-2a3b÷ab=-2a2b9.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q 从点A 以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在( )A.点 AB.点BC.点CD.点D10.用“☆”定义一种新运算:对于任意有理数 a 和 b ,规定 a ☆b=ab2+a .如:1☆3=1×32+1=10.则(﹣2)☆3 的值为( )A .10B .﹣15C .﹣16D .﹣2011,0,12π-13-,0.3131131113…(相邻两个3之间依次多一个1),其中有理数的个数是( )A.4B.3C.2D.1 12.若实数a 、b 互为相反数,则下列等式中成立的是( )A .a ﹣b =0B .a+b =0C .ab =1D .ab =﹣1二、填空题13.如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.14.若一个角比它的补角大36°48',则这个角为______°_____'.15.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.16.如图,在第1个1ABA ∆中,B ∠=40°,11BAA BA A ∠=∠,在1A B 上取一点C ,延长1AA 到2A ,使得在第2个12A CA ∆中,1212A CA A A C ∠=∠;在2A C 上取一点D ,延长12A A 到3A ,使得在第3个23A DA ∆中,2323A DA A A D ∠=∠;…,按此做法进行下去,第3个三角形中以3A 为顶点的内角的度数为_____; 第n 个三角形中以n A 为顶点的内角的度数为_____度.17.如果x m+1与x n是同类项,那么m ﹣n =_____.18.如图,A 点的初始位置位于数轴上表示1的点,现对A 点做如下移动:第1次向左移动3个单位长度至B 点,第2次从B 点向右移动6个单位长度至C 点,第3次从C 点向左移动9个单位长度至D 点,第4次从D 点向右移动12个单位长度至E 点,…,依此类推.这样第_____次移动到的点到原点的距离为2018.19.方程8x=16两边同时________ 得到另一个方程4x=8,8x=16与4x=8的解________ .像这样,两个方程的解相同,我们称这两个方程为________ .20.2的相反数是______.三、解答题21.如图,OA ⊥OB ,引射线OC (点C 在∠AOB 外),OD 平分∠BOC ,OE 平分∠AOD .(1)若∠BOC=40°,请依题意补全图,并求∠BOE 的度数;(2)若∠BOC=α(0°<α<180°),请直接写出∠BOE 的度数(用含α的代数式表示).22.按要求画图:直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,线段AP .23.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?24.在一列车上的乘客中,47是成年男性,13是成年女性,剩余的是儿童,若儿童的人数的52,求: (1)乘客的总人数.(2)乘客中成年男性比成年女性多少人.25.先化简下式,再求值: 22113122323x x y x y ⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭,其中3x =,2y =. 26.先化简再求值:(3x 2﹣xy+y)﹣2(5xy ﹣4x 2+y),其中x=2,y=﹣1.27.已知|x+1|+(y+2)2=0,求x+y 的值.(1)|-3|-5×(-35)+(-4); (2)(-2)2-4÷(-23)+(-1)2017.【参考答案】***一、选择题1.C2.C3.C4.C5.D6.D7.C8.B9.D10.D11.B12.B二、填空题13.65°14.2415.1516. SKIPIF 1 < 0 SKIPIF 1 < 0解析:017.51702n 17.-118.134519.除以2 x=2 同解方程20.﹣2.三、解答题21.(1)∠BOE=35°;(2)∠BOE=45°-14α. 22.见解析.23.1024.(1)乘客总人数为546人;(2)成年男性比成年女性多130人.25.-526.11x 2-11xy-y ;67.28.(1)2;(2)9.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形个数共有( )A.4个B.3个C.2个D.1个2.题目文件丢失!3.如图,数轴上A 、B 、C 三点所表示的数分别是a 、6、c.已知AB =8,a +c =0,且c 是关于x 的方程(m -4)x +16=0的一个解,则m 的值为( )A.-4B.2C.4D.64.若关于x 的方程(m ﹣2)x |m ﹣1|+5m+1=0是一元一次方程,则m 的值是( )A.0B.1C.2D.2或05.下列计算正确的是( )A.x 3·x 2=x 6B.(2x)2=2x 2C.()23x =x 6D.5x -x =46.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ).A.-7B.-6C.6D.77.下列计算正确的是( )A .x 2﹣2xy 2=﹣x 2yB .2a ﹣3b =﹣abC .a 2+a 3=a 5D .﹣3ab ﹣3ab =﹣6ab8.若x 1=时,3ax bx 7++式子的值为2033,则当x 1=-时,式子3ax bx 7++的值为( )A .2018B .2019C .2019-D .2018-9.下列各式从左到右的变形错误的是( )A .(y ﹣x )2=(x ﹣y )2B .﹣a ﹣b=﹣(a+b )C .(a ﹣b )3=﹣(b ﹣a )3D .﹣m+n=﹣(m+n )10.下列说法:①任何有理数都可以用数轴上的点表示;②|-5|与-(-5)互为相反数;③m+1一定比m 大;④近似数1.21×104精确到百分位.其中正确的有( )A.4个B.3个C.2个D.1个 11.实数a ,b 在数轴上对应的点的位置如图所示,计算||-a b 的结果为( )A.+a bB.-a bC. b a -D.a b -- 12.如图是一个正方体的表面展开图,则这个正方体是( )A. B. C. D.二、填空题13.两根直木条,一根长60cm ,另一根长100cm ,将他们的一端重合,顺才放在同一条直线上,则两根木条的中点间的距离是_____14.如图,是的平分线,是内的一条射线,已知比大,则的度数为__________.15.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是______元.16.已知关于x 的一元一次方程2019x +5=2019x+m 的解为x =2018,那么关于y 的一元一次方程52019y -﹣5=2019(5﹣y )﹣m 的解为_____.17.已知a ,b ,c 在数轴上的位置如图所示,化简:|a ﹣b|+|b+c|+|c ﹣a|=_____.18.把四张大小相同的长方形卡片(如图①)按图②、图③两种放法放在一个底面为长方形(长比宽多6)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C 2,图③中阴影部分的周长为C 3,则C 2-C 3=______.19.22015×(12)2016=________ 20.已知a=-2,b=1,则 a b +-的值为________.三、解答题21.如图,O 为直线AB 上一点,∠AOC =50°20′,OD 平分∠AOC ,∠DOE =90°.(1)求∠DOB 的度数;(2)请你通过计算说明OE 是否平分∠COB .22.为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?23.学校准确添置一批课桌椅原订购60套,每套72元,店方表示:如果多购可以优惠,结果校方购了72套,每套减价3元,但商店获得同样多的利润,求每套课桌椅成本.24.如图,∠AOC 与∠BOC 互余,OD 平分∠BOC ,∠EOC =2∠AOE .(1)若∠AOD =75°,求∠AOE 的度数.(2)若∠DOE =54°,求∠EOC 的度数.25.化简求值:(1)3(2x+1)+(3﹣x),其中x =﹣1;(2)(2a 2﹣ab+4)﹣2(5ab ﹣4a 2+2),其中a =﹣1,b =﹣2.26.先化简,再求值.()()22222a b ab 3a b l 2ab 1---++,其中a 1=,b 2=.27.(-357)+(15.5)+(-627)+(-512) 28.计算: (1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】***一、选择题1.B2.B3.A4.A5.C6.B7.D8.C9.D10.C11.C12.C二、填空题13.80cm或20cm14.15°15.6416.202317.-2a18.1219. SKIPIF 1 < 0解析:1 220.3三、解答题21.(1) 154°50′;(2)见解析22.4423.每套课桌椅成本54元.24.(1)20°;(2)36°.25.(1)5x+6, 1;(2)10a2﹣11ab,﹣12. 26.227.028.(1)﹣212;(2)52.。
人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。
沪科版七年级上册 4.2直线、射线、线段(共26张PPT)

2、建筑工人在砌墙时,这样拉出的参照线就 是直的;木工师傅用墨盒弹出的墨线也是直的,你 能用刚才学过的知识来解释他们这样做的道理吗?
探究与思考
图中直线 l与直线m相交,得到一个交点A,
它们会不会还有另外的交点?为什么?
l
m
A
直线的性质:
注意:
O
A
射线OA
其中一个是射线的端点,另一 个是射线上的任意一点
(1)表示端点的字母要写在前面;
(2)同一条射线有不同的表示方法;
(3)端点相同的射线不一定是同一条射线,端点不同的射 线一定不是同一条射线。
(4)两条射线为同一条射线必须具备的条件:
a.端点相同; b.延伸的方向相同。
直线的表示:
You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
直线、射线、线段的联系和区别:
名称
线段
射线
直线
概念
连结两个端点之 将线段向一个方向无 将线段向两个方向无
间的笔直的线
限延长就得到了射线 限延长就形成了直线
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/272021/8/27Friday, August 27, 2021 10、阅读一切好书如同和过去最杰出的人谈话。2021/8/272021/8/272021/8/278/27/2021 12:12:21 AM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/272021/8/272021/8/27Aug-2127-Aug-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/272021/8/272021/8/27Friday, August 27, 2021
4.2.1 直线、射线、线段的概念

移动的项要变号 (3)移项:
例:方程3X+20=4X-25+5 • 移项正确的是:A、3X--4X=-5-25-20 • B、 3X-4X=-25+5-20
× √
知识归纳:
步骤
去分母
相信你能行
依据 注意事项
具体做法
在方程两边都乘 以各分母的最小 公倍数 一般先去小括号, 再去中括号,最后 去大括号 把含有未知数的
去括号后的符号变化,并且不要漏乘括号中的每一项 (2)去括号:
例:去括号 2X- 5 A、+(2X- 5)= ___________
- 2X+5 B、- (2X- 5)=__________
9X+3 C、3(3X+1)=___________
- 6X+10 D、-2(3X- 5)= _________
成的情况给予评价,并请学生作出自我评价.
活动4:课堂小结 1.提问:直线的性质是什么?如何表示直线、射线、 线段? 2.本节课还学习了根据语句画图,知道了每一个语句 都对应着一个几何图形. 活动5:布置作业 习题4.2第1,2,3,4题.
直线、射线、线段是最简单、最基本的图形,是研究复杂 图形的基础.这节课对于几何的学习起着奠基的作用.通 过学生动手操作,反复比较,总结提炼.让他们经历由感 性到理性,由具体到抽象的思维过程
4.2
直线、射线、线段(3课时)
直线、射线、线段的概念
第1课时
1 . 认识直线、射线、线段的联系和区别 , 逐步掌握它
们的表示方法. 2 . 结合实例 , 了解两点确定一条直线的性质 , 并能初 步应用. 3 . 能根据语句画出相应的图形 , 会用语句描述简单的
4.2 直线、射线、线段
事例四 射击的时候,你知道 是如何瞄准目标的吗?
二 直线、射线、线段的表示方法
A•
• ι B
ι (1)直线AB(或直线BA)
(2)直线
射线、线段的表示方法
A•
B•
ι (1)直线AB(或直线BA)
ι (2)直线
O•
A•
m (1)射线OA
(2)射线m
• ●
●
A aB
(1)线段AB(或线段BA) (2)线段a
5、(1)如图,共有几条射线、几条线段?
●
A
2
0
(2)如图,共有几条射线、几条线段?
●
●
A
B
4
1
(3)如图,共有几条射线、几条线段?
●
●
●
A
B
C
6
3
课堂留白 答疑解惑
基本事实
两点确定一条直线
直线 、射 线、 线段
表示方法
用一个小写字母表示 用两个大写字母表示
联系与区别
射线OA与射线AO 是不同的两条射线
有始有终—— 有始无终—— 无始无终—— 打一线的名称 打一线的名称 打一线的名称
线段
射线
直线
导入新课
情境引入
伸向远方的火车铁轨
激光灯
我们在小学已经学过线段、
射线和直线,它们可以分别和图
中的哪个事物相对应?结合图片
你能回忆起线段、射线和直线的
铁棒
哪些特征?
合作探究 精讲点拨
一 直线
问题1 过一点O可以画几条直线?过两 点A,B可以画几条直线?
练一练
按下列语句画出图形: (1) 经过点 O 的三条线段 a,b,c; (2) 线段 AB,CD 相交于点 B.
4.2线段射线直线 (2)
.. A B
. C
解:直线有( 1 )条;射线有( 6 )条 线段有( 3 )条。 2、指出下图中直线、射线、线段分别有多少条? B . . A . C 解:直线有( 1 )条; 射线有( 4 )条; 线段有( 3 )条。
Page 17
衷心感谢各位老师 光临指导
作业:练习册72、 73页
O
A
B
A、点O在直线AB上
B、点B是直线AB的一个端点
C、点O 在射线AB上
D、射线AO和射线OA是同一条射线
2、植树时,只要定出 2 个树坑的位置,就能够
使同一行树坑在一条直线上了。其中的道理 是 两点确定一条直线 。
Page 13
谈谈你的收获:
在生活中,像直线一样 自由自在,无拘无束;
在遇到困难时,向射线一 样,一经出发就勇往直前; 在做事情时,像线段一样 有始有终。
4.2 线段、射线和直线
Pageቤተ መጻሕፍቲ ባይዱ1
湘潭凤凰实验中学: 冯雅文
通过课前预习课本,请认真解答下 列问题:
1、分别画下列图形,并说说你是如何区分 它们的;再用字母表示它们。 (1)线段 (2)射线 (3)直线
2、(1)分别画出点O和直线m的两种位 置关系。 (2)画出两条直线a、b相交于点O。
Page 2
Page 7
名
称
端点数 两个
延伸方向 不无限延 伸
长
度
线 段
有限长,可度量
射 线
一个
向 一 个 方 向 无限长,不可度 无限延伸 量 向两个方向 无限长,不可度 无限延伸 量
Page 8
直 线
没有
下列说法是否正确? (1)延长直线AB (2)延长射线OP (3)延长线段AB
人教版七年级数学上册4.2:直线、射线、线段
(2)连接线段AC,并将其延长;
(3)连接线段AD,并将其反向延长; (4)作射线BC.
练习
1.下列给线段取名正确的是( C)
A.线段M B.线段Mm
C.线段m D.线段mn
2.用适当的语句表述图中 点与直线的关系
P A
l B
3.下面图形的表示方法是否正确?
若错误,请改正.
①a
在同一平面内有三个点 A,B,C,过其中任意两个点画直线,可以画出
条直线.
(3)点与直线的位置关系
②要准备多少种车票? 如图,其中线段有 条,
线段向一端无限延长形成射线,向两端无限延长形成直线
下面图形的表示方法是否正确?
解:画出示意图如下: 例2 如图,平面上有四个点A,B,C,D,根据下列语句画图:
直线、射线、线段的区别与联系:
射线、线段都是直线的一部分.
类型 端点数 延伸
度量
线段 2个
可度量
射线 直线
1个 无端点
向一个方 向无限延
不可度量
向两个伸方向无 限延伸
不可度量
联系:线段向一端无限延长形成射线,向两端无限延长形成直线
想一想
生活中有哪些物体可以近似 地看成线段、射线、直线?
直线
线段
掌握“两点确定一条直线”的基本事实,了解点和直线的位置关系. (4)直线与直线的位置关系
联系与区别吗? (2)如何由一条线段得到一条射线或一条直线?
认真看课本第125页、126页. (3)点与直线的位置关系 联系:
理解直线、射线、线段的区别与联系. 经过一个点能画几条直线?经过两个点呢?动手试一试. 认真看课本第125页、126页. 记作:射线PO ( ) (2)连接线段AC,并将其延长; 记作:线段BA ( ) 怎么样能保证我种的树都在一条直线上?
线段、射线、直线知识点总结及习题
M O a线段、射线、直线【知识要点】知识点1、线段、直线、射线的概念:线段:一段拉直的棉线可近似地看作线段,线段有两个端点。
线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段.射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
如手电筒、探照灯射出的光线等。
射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况.直线:将线段向两个方向无限延长就形成了直线,直线没有端点。
如笔直的铁轨等。
直线的画法:用直尺画直线,但只能画出一部分,不能画端点。
知识点2、线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面如图:记作射线OM,但不能记作射线MO(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。
此时要在图中标出此小写字母知识点3、线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。
区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:BA BAlB AaMOBAkB A名称图形表示方法界限端点长度线段线段AB(或线段BA)(字母无序)线段a 两方有界两个有射线射线AB(字母有序) 一方有界,一方无限一个无直线直线AB(或直线BA)(字母无序)直线l 两方无限无无知识点4、直线的基本性质(重点)(1)经过一点可以画无数条直线(2)经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线)注:“确定”体现了“有”,又体现了“只有”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习(一)
1.已知O是线段AB上的点,以下不能确定O是AB中
点的式子为( )
1
A. AO=BO
B. AO= 2AB
C.AB=2BO D.AO+BO=AB
2.已知线段AB,C是AB的中点,D是BC的中点,下 列等式不正确的是( )
A.CD=AC-DB
1
C.CD= AB-BD
2
B.CD=AD-BC
1 D.CD= 3 AB
BC
●
●
(2)当C点在线段AB上时
A CB
●
●●
如图:从A地到B地有四条道路,除它们外能否 再修一条从A地到B地的最短道路?如果能,请 你联系以前所学的知识,在图上画出最短路线.
怎样走最 近
• A
• B
线段的
性质
生活常识告诉我们:两点之间的所有连线中, 线段最短.简单说成:两点之间,线段最短.
连接两点间的线段的长度,叫做这两点的距离
练一练
(1) 判 断 : 两 点 之 间 的 距 离 是 指 两 点 之 间 的 线 段 。
( 错)
(2)如图:这是A、B两地之间的公路,在公路工程改造 计划时,为使A、B两地行程最短,应如何设计线路? 在图中画出。你的理由是
B.
A
两点之间线段最短
. 四、点和直线的位置关系 A A
C
B 0
D
m n
回顾:一.直线的性质(公理)
练习:1.在墙上要拉直线至少要在墙上订__两_个__钉 子,道理是:___两__点__确__定_一__条__直__线__.
2.判断(1)直线、射线、线段中线段最短 × ( (24))直作线直线A、ABB=相C交D于×点(C3)×延长射线OM × (5)线段是直线的一部分 √
在一张透明
的纸上画一条线 段,折叠纸片, 使线段的端点重 合,折痕与线段 的交点就是线段 的中点。动手试 一试!
A
M N BA M N
PB
AM MN NB 1 AB AM MN NP PB 1 AB
3
4
练习 如图,已知线段a,b。画一条线段,使它等于2a-b。 a
解:
b
ι
A
BD
C
线段AD就是所求的线段。
3.已知A、B、C三点,过其中每两点画直线,
一共可画___1__或__3___条。
4一.已共知可A画、__B_、_1_C、_、__D4_四、_条点6。,过其中每两点画直线,
画一条线段等于已知线段a
a
A
B
C
也可以先量出线段a的长度,再画一条等于这个长度的线段。
怎样比较两条线段的长短 呢?你能从比较身高上得 到一些启发吗? 你能再举出一些比较线段 长短的实例吗?
5.(1)如图,已知线段AB=12cm,BC=8cm,点M、N分别
是线段AB、BC的中点,求MN的长度。
A●
●
M
●
B
●
N
●C
(2)若AB=8cm,BC=6cm,则MN的长度呢?
(3)若AC=16cm,求MN的长度
6.直线l上有A、B、C三点,且AB=8cm, BC=5cm,求线段AC的长。
(1)当C点在线段AB的延长线上时 A ●
●
oA
且点A既不在直线m上也不在直线n上。 n
3.点P、Q是直线m同侧的两点,直线
●
P
Q
●
PQ交直线m于点K。
K
4.三条直线a、b、c两两相交于
m C
三点C、B、A。
aB
bAc
2.按下列语句画图
(1)连接BC、AB;
(2)画直线AB、CD相交于E;
. 点在直线外
A
点在直线上
(1)点C在直线__外___.
(2)点O在直线BC_上__,点O是直线B__C__和__直__线__A__D__的交点。 (3)过点A的直线共有_4_条,它们分别是____________.
五、直线、射线、线段的画法
1.直线AB经过点D
AD
●●
B
●
m
2.射线OA的端点O是直线m与n的交点,
(2)AB= AC + CB = AD + DB = AC +CD +DB ; (3)CD= AD - AC = CB - DB ,
= AB - AC - DB.
1.如图,若AB=CD,则AC与BD的大小关系是( )
A. AC>BD B. AC<BD C. AC=BD
D. 不能确定
●
●
A
B
●
●
C
D
例:如图AB=6cm,点C是线段AB的中
点,点D是线段CB的中点,那么线段AD是
多长呢? A
CDB
解:∵C点是AB的中点
∴AC=CB= 1 AB = 3cm ∵D点是BC的中2 点 ∴CD= 1 CB = 1.5cm
2
∴AD= AC + CD= 3 + 1.5= 4.5cm
针对练习
1、如图 AB=8cm,点C是AB的中点,点D
比较线段的长短
A
B
C(A) B
D
点A与点C重合,点B落在C、D之间,这时我们说线段AB小
于CD,记作AB<CD。
想一想,什么情况下线段AB大于线段CD,线段AB等
于线段CD? 线段的和与差
a
A
B Cι
a
b
ห้องสมุดไป่ตู้
AC=a+b
b
A DbB
ι AD=a-b
a
线段的和、差
根据图形填空:
D
(1)AB= AC + CB ;
4.已知线段AB=80cm,M为AB的中点,P在 MB上,N为PB的中点,且NB=14cm。
A●
●●
MP
●
N
●B
线段PB=___2_8_c_m__.AM=__4_0_c_m__.BM=__4_0_c_m__ 线段PM=___1_2_c_m__.AP=__5_2_c_m__.AN=_6_6_c_m___
一起画一画
3.在一条直线上顺次取A、B、C三点,使AB=5cm, BC=2cm,并且取线段AC的中点O,求线段OB的长。
解: A
OB
C
AC=AB+BC=5+2=7cm
AO=OC= 1 AC=3.5cm 2
OB=AB-AO=5-3.5=1.5cm (或OB=OC-BC=3.5-2=1.5cm)
答:线段OB的长等于1.5cm.
是CB的中点,则AD=__6__cm
2.关于线段AB的中点 M的说法正确的是( ) A.AB中间的任一点M叫做线段AB的中点 B.如果AM=MB,M就是线段AB的中点 C.如果A,M,B三点共线,且AM= 0.5AB,则 M是线段AB的中点 D.如果M在线段AB上,且AM=BM,则M是线段 AB的中点
2.如图,填空: (1) AC=BC+( ) ; (3) CD=( )-BC;
●
●
A
B
(2) CD=AD-( ); (4) AB+BC=( )-CD.
●
●
C
D
线段的中点
点M把线段AB分成相等的两条线段AM 与MB,点M叫做线段AB的中点。
A
MB
1
AM=MB= AB
2
类似地,还有线段的三等分点、四等分点等。