矩阵论线性空间题目

矩阵论线性空间题目
矩阵论线性空间题目

1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕

对于任意的数R k ∈,定义k 与x 的数乘为

k x x k =?

问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由.

2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为

),(112211y x y x y x y x +++=⊕

对于任意的数R k ∈,定义k 与x 的数乘为

)2

)1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由.

3.在22R ?中求由基(I) 12101A ??= ??? 20122A ??= ??? 32112A -??= ??? 41312A ??= ???

到基(II) 11210B ??= ?-?? 21111B -??= ??? 31211B -??= ???

41101B --??= ???的过渡矩阵. 并求矩阵???

? ??-=2102A 在基(I)下的坐标.

4.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S

的一组基和S dim .

5.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,

)}()(,0)0(|)({R P x f f x f S n ∈='=

证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim .

线性空间与欧几里得空间

线性空间与欧几里得空间 自测题 一、填空题 1、对欧几里得空间V 中的任意向量βα,,有()βαβα≤ ,,而且等号成立当且仅当 。 2、设1W 与2W 是V 的两个线性子空间,如果1W +2W 中的每个向量α都可唯一的被表示成21ααα+=,2211W W ∈∈αα,,则称1W +1W 为这两个子空间的 。 3、两个同构的线性空间的维数 。 4、第二类正交变换的行列式的值等于 。 5、如果A 是正交矩阵。若k 为实数,使kA 为正交矩阵,则k 等于 。 二、选择题 6、下列n R 的子集是n R 的子空间的为( ) A :(){}n i Z a a a a a i n ...,3,2,1,.....,,,321=∈ B :(){}0.....,,,21321=a a a a a a n C :(){}R a a a a n ∈211,,0,...,0, C :{} 1..)...,,(2222121≤+++n n a a a a a a 7、全体正实数的集合+R 对于下面定义的加法与标量乘法:k a a k a b b a ==⊕ ,构成R 上的线性空间,则+R 的零元素为( ) A :0 B: 1 C: 2 D: 3 8、若A 是正交矩阵,则下列矩阵中仍为正交矩阵的是(多重选择,其中k 是1±≠的整数) A:kA B:k A C:交换A 的任两行所得的矩阵 D :把A 的某行k 倍加到另一行所得的矩阵 9、设A 是欧几里得空间V 关于基n ααα,,,...21的度量矩阵,则A 满足以下哪个条件时,n ααα,,,...21是规范正交基? ( ) A: A 是正交矩阵 B :A 为对称矩阵 C :1-A 为正交矩阵 D :A 为单位矩阵 10、以下哪个结论不是两个线性子空间1W 与2W 的和21W W +为直和的等价命题:( ) A :dim ()()()()221121dim dim dim dim W W W W W W >+>+且

机器学习数学基础-矩阵论

1.矩阵和线性变换: 线性变换的定义: 线性映射(linear mapping)是从一个 向量空间V到另一个向量空间W的映射 且保持加法运算和数量乘法运算,而线性 变换(linear transformation)是线性空间V 到其自身的线性映射。 一个矩阵对应了一个线性变换这个说法, 就可以知道这个说法并不严谨。(基) 矩阵是对线性变换的表示;确定了定义域空间与目标空间的两组基,就可以很自然地得到该线性变换的矩阵表示。 两个矩阵相乘,表示了三个线性空间的变换。要想从第一个空间转换到第三个空间,则第一个变换的定义域空间U到目标空间 V1,第二个变换的定义域空间V2到目标 空间W,必须满足V1和V2是一个空间。 矩阵把v'i换成vi的换基矩阵与把vi 换成v'i的换基矩阵这两个矩阵是互逆的.

2恒等变换与伸缩变换 3矩阵对角化 条件: n个线性无关的特征向量;每个特征值的线性无关的特征向量的个数恰好等于该特征值的代数重数;充分条件n个特征值互不相等(充分条件); 代数重数:特征多项式的次数;几何重数:与某一个特征值λ相关联的线性无关的特征向量的最大个数。 所以对角化其实就是要用特征向量组成的基来代替标准基,描述线性变换,使得多个耦合的变量尽可能的解耦。 如果A为实对称阵,则其必可以正交相似对角化。其中U内的每个向量互相正交。即:u1.T=u1.I. 线性变换: 可以发现里面并不涉及矩阵维度的变化。其中中间的对角矩阵相当于对矩阵的每一列(t 特征向量)进行拉伸。两边的同维方阵使用的是同一组基,即上述的线性变换始终在一组基

里面,所以相当于在同一空间内做旋转。在一个n维空间里,标准正交基是唯一存在的,该n维空间里面所有的向量都可由该组正交基线性变换得到。 所以矩阵的对角化涉及到的运动包括:旋转和缩放。 A矩阵将一个向量从x这组基的空间旋转到x这组基的空间,并在每个方向进行了缩放。 4.SVD 证明:AA.T的特征向量组就是P矩阵: 2 ∑∑∑∑∑ T T T T T T T =?=?== A P V A V P AA P V V P P P 得证对A进行矩阵分解得到的P矩阵就是AA.T的特征向量组成的P矩阵。 SVD的一些应用 1.降维 左奇用于行数的压缩。右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。 2.PCA使用SVD求解 PCA求解过程中的协方差矩阵为特征之间(列之间)的关系矩阵(m*m)。而SVD的右奇异矩阵也是关于特征之间(矩阵列之间)的关系,所以PCA里面的协方差矩阵可以通过SVD得到。 SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵,也能求出我们的右奇异矩阵。 3.奇异(乱入的) 若n阶方阵A的行列式不为零,即|A|≠0,则称A为非奇异矩阵或满秩矩阵 4.几何意义: 奇异值分解把线性变换清晰地分解为旋转、缩放、投影这三种基本线性变换。 其中,P为m*m矩阵,Q为n*n矩阵。 =∑。A矩阵的作用是将一个向量从Q 这组正交基向量的其中涉及的变换:AQ P 空间旋转到P这组正交基向量空间,并对每个方向进行了一定的缩放,缩放因子就是各个奇异值。如果Q维度比P大,则表示还进行了投影。

线性代数的起源发展及其意义

线性代数的起源发展及其意义 线性代数是处理矩阵和向量空间的数学分支,在现代科学的各个领域都有应用。由于费马和笛卡尔的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因当时对其充分的研究和探索而使其达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在中国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善男才将它翻译成为“代数学”,之后一直沿用。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现。

线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位 在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; 该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数,非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。 现代线性代数已经扩展到研究任意或无限维空间。作

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

线性空间和欧式空间

第六章 线性空间和欧式空间 §1 线性空间及其同构 一 线性空间的定义 设V 是一个非空集合,K 是一个数域,在集合V 的元素之间定义了一种代数运算, 叫做加法;这就是说,给出了一个法则,对于V 中任意两个元素α和β,在V 中都有唯一的一个元素γ与他们对应,成为α与β的和,记为βαγ+=。在数域K 与集合V 的元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一的一个元素δ与他们对应,称为k 与α的数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上的线性空间。 加法满足下面四条规则: 1)αββα+=+;交换律 2))()(γβαγβα++=++;结合律 3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质的元 素0称为V 的零元素); 存在零元 4)对于V 中每一个元素α,都有V 中的元素,使得0=+βα(β称为α的负元素). 存在负元 数量乘法满足下面两条规则: 5)αα=1; 存在1元 6)αα)()(kl l k =. 数的结合律 数量乘法与加法满足下面两条规则: 7)αααl k l k +=+)(; 数的分配律 8)βαβαk k k +=+)(. 元的分配律 在以上规则中,l k ,表示数域中的任意数;γβα,,等表示集合V 中任意元素。 例1. 元素属于数域K 的n m ?矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成 数域K 上的一个线性空间,记为,()m n M K 。 例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实 数域上的线性空间。 例3. n 维向量空间n K 是线性空间。

矩阵论习题一

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()|0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 4.设111213315A ?? ? = ? ??? ,讨论向量(2,3,4)T α=是否在R (A )中。 5.讨论线性空间 P 4[x ]中向量3 2 11P x x x =+++,3 2 223P x x x =-+,323452P x x x =+++的线性相关性。 6.设m n A R ?∈,证明dim R (A )+dim N (A )=n 。 7.设113021211152A -?? ? =-- ? ?--?? ,求矩阵A 的列空间R (A )和零空间N (A )。 8.在22 R ?中,已知两组基 11000E ??= ???,20100E ??= ???,30010E ??= ???,40001E ?? = ??? 10111G ?? = ? ?? ,21011G ??= ???,31101G ??= ???,41110G ??= ???

第一章 线性空间与线性变换概述

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

线性代数发展史

线性代数发展史 一行列式 行列式的出现已有300余年,1683年日本数学家关孝和在<解伏题之法)中首先引人此概念。 1693年,莱布尼兹(G.W.工ezbniz)著作中亦有行列式叙述,世人们仍认为此概念在西方源于数学家柯西(A.L CaMchy) 1750年,克莱姆(G cramer)出版的(线性代数分析导言>一书中已给出行列式的今日形式。 1841年,雅谷比(c.G JaMM在(论行列式形成与性质)一书中对行列式及其性质、计算作了较系统的阐述 此后.范德蒙(A.T vandeMondl)、裴蜀(E.Be肋Mt)、拉普拉斯(P.s M de I品PLace)等人在行列式研究中也作了许多工作, 但行列式在当今线性代数中似已被淡化,原因是:首先它的大多数功能已被矩阵运算取代,而矩阵(代数)理论与计算已相当成熟;再者是电子计算机的出现与飞速发展,已省去人们许多机械而繁琐的计算.然而行列式也有其自身的魅力:技巧性强、形式漂亮,因而它在历年考研中不断出现. 行列式的主要应用是:求矩阵(或向量组)的秩;解线性方程组;求矩阵特征多项式等行列式与矩阵有着密不可分的连带关系,尽管它们本质上不是一回事(短阵是数表,而行列式是数). 二矩阵代数 矩阵一词系1850年英国数学家薛尔维斯特(J—J sylves贮r)首先倡用,它原指组成行列式的数字阵列。 矩阵的性质研究是在行列式理论研究中逐渐发展的. 凯莱(A cayley)于1858年定义了矩阵的某些运算,发表<矩阵论研究报告>,因而他成了矩阵论的创始人。德国数学家弗罗伯尼(F.G.Fmbenius)于1879年引进矩阵秩的概念,且做了较丰富的工作(发表在(克雷尔杂志>上) 尔后矩阵作为一种独立的数学分支迅速发展起来. 20世纪40年代,为响应电子计算机出现而诞生厂短阵数值分析,1947年冯·纽曼(Ven Neumann)等人提出分析误差的条件数,1948年图灵(A.Turing)给出厂矩阵的Lu分解,矩阵的另一种分解QR分解的实际应用在上世纪50年代末得以实现.这一切使矩阵计算得以迅猛发展。 如今,矩阵已成为一种重要的数学工具,它的理论和方法在数学和其他科技领域(如数值分析、优化理论、微分方程、概率统计、运筹学、控制论、系统工程、数量经济等)都有广泛应用,甚至经济管理、社会科学等方而亦然。 三向量 向量概念是由复数概念扩张而来。1843年哈密顿(w.R Hsmil仍n)的“四元数”概念引入的同时,引入了向量概念,从而开创它的计算与理论研究 1844年,德国数学家格拉斯(G.H.Grassmann)发表<线性扩张论>,提出“n维超复数”概念.即n元有序数组,相当于今天的向量概念.此外他还定义了超复数的运算,且将Euclid几何的许多概念拓广至高维空间.

线性代数发展史

线性代数发展史 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 行列式 行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。 1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其着作《解伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆 ,1704-1752) 在其着作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝 祖 ,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。 总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德 蒙 ,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。 1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。 1815 年,柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。

欧式空间中线性变换和正交变换的关系

欧氏空间中线性变换和正交变换的关系 摘要 对欧式空间中的线性变换与正交变换之间的关系进行讨论 关键词:欧式空间 线性变换 正交变换 线性变换和正交变换是欧氏空间的两种重要变换。本文首先引入线性变换和正交变换在欧氏空间中的定义,然后讨论两者之间的关系。为了阅读方便,本文从最基本的概念谈起,即先定义线性空间、内积、欧氏空间、线性变换和正交变换。 定义1 设V 不是空集,P 为一个数域,在V 中定义加法和数量乘法(简称数乘),若对P l k V ∈?∈?,,,,γβα,满足: (1)V ∈+βα,(关于加法封闭) (2)αββα+=+,(交换律) (3)) ()(γβαγβα++=++,(结合律) (4)V V ∈?=+∈?ααα,使0,0,(零元) (5)0=-+∈-?∈?)(,使)(,ααααV V ,(负元) (6)V k ∈?α(关于数乘封闭) (7)αα=?1 (8)αα)()(kl l k = (9)αααl k l k +=+)( (10)βαβαk k k +=+)( 则称V 为数域P 上的线性空间。 定义2 设V 是R 上的一个线性空间,在V 上定义了一个二元实函数,称为内积,记为),(βα,它具有以下性质(R k V ∈∈,,,γβα): (1)),(),(αββα= (2)),(),(βαβαk k = (3)),(),(),(γβγαγβα+=+ (4)0),(≥αα,当且仅当0=α时,0),(=αα。 定义3 定义2中的线性空间V 就称为欧几里得空间,简称欧氏空间。 定义4 设V 是一个线性空间,P 为一个数域,对于P k V ∈?∈?,,βα,有 (1)()()()A A A αβαβ+=+ (2)()()A k kA αα?= 则称A 为V 上的线性变换。 定义5 设A 是欧氏空间V 的一个变换,如果对于任意的,,V ∈βα即保持内积不变,

08矩阵论

2008年硕士生《矩阵论》试卷 任课教师 . 学院专业 学号 姓名 . 一、填空题(共20分) 1. (4分) n 阶实对称矩阵的全体按通常的矩阵加法和数乘运算构成一线性空间, 其维数等于 ,其一组基为 。 n 阶实反对称矩阵的全体按通常的矩阵加法和数乘运算构成一线性空间, 其维数等于 ,其一组基为 。 2.(3分) 设A 是线性空间n V 到线性空间m V 的线性算子,则A 在不同基偶下对应的矩阵是 关系;B 为线性空间n V 上的线性变换,则B 在不同基下对应的矩阵是 关系;设n V 是欧氏空间,则两组不同基的度量矩阵是 关系。 3. (3分) 如果n 阶矩阵A 的特征多项式和最小多项式相同,则A 的Smith 标准形 为 。 4. (3分)设(1,,0,1)T X i =-,则1||||X = ,2||||X = , ||||X ∞= 。 5. (4分)设122212221A ?? ?= ? ??? ,1||||A = ,||||A ∞= , ()A ρ= ,2()cond A = 。 6. (3分) 设A=0.10.30.70.6?? ??? ,则矩阵幂级数2k E A A A +++++ 是否绝对收敛? 。若是,其级数的和是 。 二、是否题(每题2分,共10分) 1.所有n 阶实对称矩阵与反对称矩阵的全体构成线性空间。 ( ) 2.线性变换A 是正交变换的充要条件是保持任意两个向量的夹角不变。 ( )

3.设(),()[]m n A B P λλλ?∈,则()A B λλ和() 相抵的充分必要条件是它们有相同的初等因子。 ( ) 4. 单位矩阵的算子范数是所有与向量范数||||x 相容的矩阵范数||||I 中值最小的一个。 ( ) 5.设矩阵序列{()k A }:2,,,,k I A A A ,则lim 0k k A →∞ =的充要条件为()1A ρ<。 三、计算题(共50分) 1. (10分) 在22R ?中, 求由基(I) : 11000A ??= ???, 20100A ??= ???,30010A ??= ???,40 00 1A ??= ??? 到基(II): 11100B ??= ???, 20110B ??= ???, 30011B ??= ???, 42001B ?? = ??? 的过渡矩阵及 1234x x x x α?? = ??? 在基(II ):1B , 2B , 3B , 4B 下的坐标. 2.(10分)在3R 中,设α=123向量(x ,x ,x ),线性变换定义为 A 23123123()(22,23,23)x x x x x x x x α=---+---+。 求3R 中的一组基,使A 在该基下的矩阵为对角阵。

数学家与线性代数

数学家与线性代数 在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而—、二次方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。1683年关孝和(日本人)最早引入行列式概念(一说为莱布尼兹)。关于行列式理论最系统的论述,则是雅可比1841年的《论行列式的形成与性质》一书。在逻辑上,矩阵的概念先于行列式的概念;而在历史上,次序正相反。凯莱在1855年引入了矩阵的概念,定义了矩阵的运算,零矩阵和单位矩阵,逆矩阵等等,在1858年发表了关于这个课题的第一篇重要文章《矩阵论的研究报告》。19世纪,行列式和矩阵受到人们极大的关注,出现了千余篇关于这两个课题的文章。但是,它们在数学上并不是大的改革,而是速记的一种表达式。不过已经证明它们是高度有用的工具。 莱布尼兹(Gottfriend Wilhelm Leibniz,德国数学家、物理学家和哲学家,1646~1716) 莱布尼兹1646年7月1日,出生于德国东部莱比锡的一个书香之家,是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。 1661年,15岁的莱布尼兹进入莱比锡大学学习法律,在听了教授讲授的欧几里得的《几何原本》的课程后,莱布尼茨对数学产生了浓厚的兴趣。 1667年,莱布尼兹发表了他的第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学的才华,后来的一系列工作使他成为数理逻辑的创始人。 1672年,莱布尼茨深受惠更斯的启发,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作,开始创造性的工作。 莱布尼兹一生没有结婚,没有在大学当教授。他平时从不进教堂,因此他有一个绰号Lovenix,即什么也不信的人。1793年,汉诺威人为他建立了纪念碑;1883年,在莱比锡的一座教堂附近竖起了他的一座立式雕像;1983年,汉诺威市政府照原样重修了被毁于第二次世界大战中的“莱布尼兹故居”,供人们瞻仰。

线性空间和欧式空间

第六章 线性空间与欧式空间 §1 线性空间及其同构 一 线性空间得定义 设V 就是一个非空集合,K 就是一个数域,在集合V 得元素之间定义了一种代数运算, 叫做加法;这就就是说,给出了一个法则,对于V 中任意两个元素α与β,在V 中都有唯一得一个元素γ与她们对应,成为α与β得与,记为βαγ+=。在数域K 与集合V 得元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一得一个元素δ与她们对应,称为k 与α得数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上得线性空间。 加法满足下面四条规则: 1)αββα+=+;交换律 2))()(γβαγβα++=++;结合律 3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质得元素0 称为V 得零元素); 存在零元 4)对于V 中每一个元素α,都有V 中得元素,使得0=+βα(β称为α得负元素)、存 在负元 数量乘法满足下面两条规则: 5)αα=1; 存在1元 6)αα)()(kl l k =、 数得结合律 数量乘法与加法满足下面两条规则: 7)αααl k l k +=+)(; 数得分配律 8)βαβαk k k +=+)(、 元得分配律 在以上规则中,l k ,表示数域中得任意数;γβα,,等表示集合V 中任意元素。 例1. 元素属于数域K 得n m ?矩阵,按矩阵得加法与矩阵得与数得数量乘法,构成数 域K 上得一个线性空间,记为,()m n M K 。 例2. 全体实函数(连续实函数),按函数得加法与数与函数得数量乘法,构成一个实数 域上得线性空间。 例3. n 维向量空间n K 就是线性空间。 例4. 向量空间得线性映射得集合(,)m n K Hom K K 就是线性空间。 二.简单性质 1.零元素就是唯一得。 2.负元素唯一。 3.00=α,00=k ,αα-=-)1(。 4.若0=αk ,则0=k 或者0=α。 三、同构映射 定义:设,V V '就是数域K 上得线性空间、 (,)K A Hom V V '∈就是一个线性映射、如果A 就 是一一映射,则称A 就是线性空间得同构映射,简称同构。线性空间V 与'V 称为同构 得线性空间。 定理 数域P 上两个有限维线性空间同构得充分必要条件就是她们有相同得维数。 同构映射得逆映射以及两个同构映射得乘积还就是同构映射。 ?同构 线性空间分类?维数

线性代数之理解矩阵

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。 比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数 的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的 范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一 代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知 的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中 发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本 质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算

线性代数的基本概念

《线性代数》根据“卓越工程师教育培养计划”的基本要求,突出基本概念、基本理论、基本技能,注重培养学生数学素质。教材在满足教学要求的前提下,适当降低理论推导的要求,但重视阐明基本理论的脉络。习题配置 中也突出基本题、概念题和与工程相关的实际应用题等。 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这 个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促 成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线 性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数 学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 矩阵和行列式行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常 有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。 1693 年4 月,莱布尼茨在写给洛比达的一封 信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解 伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆 (G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学 家贝祖 (E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具 使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相 分离的人,是法国数学家范德蒙 (A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开 行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。 1772 年,拉普拉斯在一篇论文中证明 了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。 1815 年, 柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。另外,他第一个把行列式的元素排成方阵,采用双足标记法;引进了行列式特征方程的术语;给出了相似行列 式概念;改进了拉普拉斯的行列式展开定理并给出了一个证明等。 19 世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士?西尔维斯特 (J.Sylvester,1814-1894) 。他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学 的不平等对待。西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个次和一个次的多项式中消去 x 的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要 条件这一结果,但没有给出证明。 继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可比 (J.Jacobi,1804-1851) ,他引进了函数 行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成。由于行列式在数学分析、几 何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。整个19 世纪都有行列式的新结果。除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。 矩阵矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重 要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个 述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为 了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列 式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。 英国数学家凯莱 (A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先 引进矩阵以简化记号。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了 关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念, 指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩

线性代数基础学习书单

线性代数基础学习书单 线性代数是很传统的课程,国内还比较喜欢叫做高等代数,这就更加传统了。一般地,在我们的高等代数里,除了线性空间外,还有大量的矩阵论,一点点多项式理论。大致来说,线性代数可以从两个角度去看它,一是它的几何理论,即线性空间以及线性空间里的线性变换;二是代数方法,那就是矩阵论了。“所谓线性代数学,就是或者直接研究线性空间的几何问题,或者将线性空间的一些几何问题化为化为矩阵问题。所以线性空间理论和矩阵论实际上是相伴而生的。”(许以超,线性代数与矩阵论(第二版)·序言,p.ii) 至于多项式,在这里主要是一个将平面上的几何问题化为代数多项式问题来解决的方案,这是平面解析几何的问题。那么,多项式要不要学,光是看看那么多线性代数教科书里都要包含一章来讲多项式,就知道答案是肯定的。几何问题其实都可以是线性问题,这样,间接地,多项式也就跟线性代数挂上了钩。 不过,是否可以把多项式分出去就是一个值得考虑的问题了。我觉得多项式还是不要放在线性代数课程中为好,一则费时,二则也讲不透。事实上,很多老师会把本来放在前头的多项式挪到后面来讲,甚至干脆就不讲。有一门课叫做“整数与多项式”,不过现在很少在大学课堂里出现了。整数理论是属于数论的,但加减乘除跟多项式是一样的,比较一下算术基本定理和代数基本定理就知道了。另外,多项式其实也不是一个简单的问题,更不只限于跟整数挂钩。在多项式环中,我们有带余除法,若表示为分式,就扩展到有理域了,更进一步,我们去求根的话,那就有实根甚至复根,再则,还有多元多项式的问题。这显然不是在一本线性代数教科书的一章之内就可以交代清楚的。 当代线性代数课是比较注重空间理论的。这是符合线性代数本质的,因为在线性空间里,毕竟都是几何对象。首先得弄清楚这门课的对象,这一点是毫无疑义的。所以,刚开始学习线性代数时,应该把注意力集中在这方面。等到对此有了一个比较透彻的理解时,就该开始苦练矩阵计算的功夫了。矩阵是一种代数方法,虽然它看起来比线性空间理论要古老些,但现代数学的发展却是越来越重代数了,要想把线性代数的水平从本科程度上提高一下的话,代数基本功是重要的——以后可能不一定要用到矩阵论,但作为大一基础课,矩阵论是一个最好的也是最初的代数训练。另外,矩阵论已经相当成熟,有着一整套标准计算技巧和方法,很有实用价值。 还有两个问题要引起注意。一是要看到线性代数与其他课程的关系。比如,很多学校不是从一年级上学期就开这门课的,而是从下学期开,美国有些极端的做法甚至在大三才开课。这种情况其实就暗示了学习线性代数是需要一点其他知识的,尤其是微积分或者说数学分析的知识;另外,当微积分学到多元的时候,在高维空间里说话,也就需要一点线性代数的支持了。线性代数不跟其他东西联系起来,那是没有用的。 第二个问题是,线性代数仍在快速发展中,新的结果很多,要在基础课中追时髦是不太现实的。而且,实际上在本科阶段把它学好了,就已经可以在这个领域里开始做研究了(这一点比其他课都要划算)。所以,我认为在学这门课时,还是把眼睛紧盯着基础为上。 补充一点:线性代数是一门很基础的课程,但是,它不容易学。我觉得比较好的办法是,在学过一本基础教材后,那些“语言”不再是问题的时候,再去读一本高级一点的教材,然后再回头看过来。美国是有第二课程的,可以在这里面找找,或者读一本研究生水平的书。对于初学者,还是从容易入手的开始—— 1. 李尚志,线性代数(数学专业用),高等教育出版社,2006 这本书是我觉得比较适合作为初学者入门的教材的。它不算是一本有分量的书,但绝对是一本很好的引论。这是对它的评论:“1.不是从定义出发,而是从问题出发来展开课程内容,

线性空间的性质

学院数学与信息科学学院 专业信息与计算科学 年级2011级 姓名魏云 论文题目线性空间的性质 指导教师韩英波职称副教授成绩 2013年3月16日

学年论文成绩评定表

目录 摘要 (1) 关键字 (1) Abstract (1) Key words (1) 前言 (1) 1 线性空间的概念 (2) 2 线性空间的相关理论 (3) 2.1 线性空间的一些简单性质 (3) 2.2 向量的线性关系 (3) 2.3 基、维数、坐标 (6) 3 两个特殊的子空间 (7) 3.1 欧几里得空间的定义与性质 (7) 3.2 酉空间的介绍 (8) 4 线性空间的同构 (8) 4.1 同构映射与线性空间同构的定义 (8) 4.2 同构映射的性质 (9) 参考文献 (10)

线性空间的性质 摘要:本文首先介绍了与线性空间相关的一系列基本概念,然后归纳总结了线性空间的一些相关性质,包括线性空间的维数、基及坐标;同构映射以及性质等,还包括了向量的线性关系,同时介绍了一些特殊的线性空间,以及它们的简单性质. 关键词:线性空间;基;维数;同构 The properties of linear vector space Abstract: In thesis, we introduce a series of basic concepts of the linear vector space firstly, and then summarized some properties of the linear space, including linear vector space definition, linear vector space, the nature of the linear vector space dimension, base and coordinates, isomorphism mapping and judgments. The thesis also includes linear vector space relationship, some special linear spaces and their simple properties. Key words: Linear space; Base ; Dimension; Isomorphism 前言:线性空间是线性代数最基本的数学概念之一,是线性代数的主要研究对象,它用公理化的方法引入了一个代数系统.同时线性空间与线性变换也是学习现代矩阵论时经常用到的两个极其重要的概念,线性空间的理论和方法在自然科学和工程技术领域中都有广泛的应用.下面我们主要研究线性空间及、向量的线性关系、基、维数、坐标、特殊的线性空间以及线性空间的同构问题. 1.线性空间的概念

相关文档
最新文档