小专题12__二次函数与几何图形综合-特殊图形相关问题
二次函数与几何综合(讲义和习题)含答案

二次函数与几何综合(讲义)➢ 课前预习1. 如图,直线112y x =+经过点A (1,m ),B (4,n ),点C 的坐标为(2,5),则△ABC 的面积为__________.提示:利用点坐标求面积,需要将点坐标转化为横平竖直的线段长,常考虑作横平竖直的线来对图形进行割补. 具体操作:①过点C 作CD ∥y 轴,交AB 于点D ; ②借助C ,D 坐标求解CD 长;③以CD 为底,则A ,B 两点间的水平距离为高,即1()2ABC ADC DBC B A S S S CD x x =+=⋅⋅-△△△2. 如图,在平面直角坐标系xOy 中,直线334y x =-+与x 轴,y 轴分别交于点A ,B ,点C 的坐标为(0,-2).若点D 在直线AB 上运动,点E 在直线AC 上运动,当以O ,A ,D ,E 为顶点的四边形是平行四边形时,点D 的坐标为__________.y xCB AO提示:(1)分析定点(A ,O ),动点(D ,E ),属于两定两动的平行四边形存在性问题.(2)连接两定点得定线段,考虑:①若定线段作为平行四边形的边,则通过平移确定点的坐标;②若定线段作为平行四边形的对角线,则绕定线段中点旋转,利用中点坐标公式确定点的坐标. (3)利用函数特征和几何特征求解后,结合图形进行验证.➢ 知识点睛1. “函数与几何综合”问题的处理原则:_________________,_____________________. 2. 研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.②___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3. 二次函数之面积问题的常见模型①割补法——铅垂法求面积:1()2APB B A S PM x x =⋅⋅-△ 1()2APB B A S PM x x =⋅⋅-△②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ , 当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时, PQ ∥AB .AB 平分PQ .➢ 精讲精练1. 如图,抛物线y =-x 2+2x +3经过A ,B ,C 三点.点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,连接MB ,MC .(1)若设点M 的横坐标为m ,四边形OBMC 的面积为S ,则S 与m 的函数关系式为________________.(2)四边形OBMC 的最大面积为________,此时点M 的坐标为____________.2.如图,在平面直角坐标系中,抛物线y=-x2+2x+3经过A,B,C三点,点D的坐标为(0,1),直线AD与抛物线交于另一点E.(1)若M是直线AD上方抛物线上的一个动点,则△AME面积的最大值为__________.=6时,点G的坐标为_______________.(2)在直线AD下方的抛物线上有一动点G,当S△AEG3.如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A,B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC,CD,∠ACD=90°.(1)直接写出抛物线的解析式;(2)若点M在抛物线上,且以点M,A,C以及另一点N为顶点的平行四边形ACNM的面积为12,设M的横坐标为m,求m的值.4.如图,已知二次函数y=x2-3x-4的图象与x轴交于点A,B,且经过点C(2,-6),连接AC,二次函数图象的对称轴记为l.(1)点D(m,n)(-1<m<2)是二次函数图象上一动点,当△ACD关于l的对称点为E,求点E的坐标.(2)在(1)的条件下,能否在二次函数图象和直线l上分别找到点P,Q,使得以点D,E,P,Q为顶点的四边形为平行四边形.若能,求出点P的坐标;若不能,请说明理由.5. 如图,抛物线y =ax 2-5ax+4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式;(2)已知点D 在抛物线对称轴上,点E 在抛物线上,且以A ,B ,D ,E 为顶点的四边形是平行四边形,求点E 的坐标;(3)已知点F 是抛物线上的动点,点G 是直线y =-x 上的动点,且以O ,C ,F ,G 为顶点的四边形是平行四边形,求点G 的横坐标.【参考答案】➢课前预习1.9 22.1126 () 55D,,2286 () 55D,➢知识点睛1.利用横平竖直的线段长,函数特征与几何特征互转2.①四点一线;k,b②坐标转线段长➢精讲精练(2)(3,0)或(-2,-5)3.(1)y=x2-2x-3;(2)m=4或m=-1.二次函数与几何综合(习题)➢例题示范例1:如图,抛物线y=ax2+2ax-3a与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且OA=OC,连接AC.(1)求抛物线的解析式.(2)若点P是直线AC下方抛物线上一动点,求△ACP面积的最大值.(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3)析式.再结合所求线段长来观察几何图形,发现△AOC 【过程示范】解:(1)由y=ax2+2ax-3a=a(x+3)(x-1)可知A(-3,0),B(1,0),∵OA=OC,∴C(0,-3),将C(0,-3)代入y=ax2+2ax-3a,解得,a=1,∴y=x2+2x-3.(2+2x-3第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即 -3<x P <0; (2)设计方案:注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP . 【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q , 易得l AC :y =-x -3设点P 的横坐标为t ,则P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3),∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴2139()222ACP C A S PQ x x t t =⋅-=--△(-3<t <0) ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-,∴当32t =-时,S △ACP 最大,为278.第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素:要使这个四边形为平行四边形.首先考虑AB在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB既可以作边,也可以作对角线.画图求解:先根据平行四边形的判定来确定EF和AB之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB作为边时,依据平行四边形的判定,需满足EF∥AB且EF=AB,要找EF,可借助平移.点E在对称轴上,沿直线容易平移,故将线段AB拿出来沿对称轴上下方向平移,确保点E在对称轴上,来找抛物线上的点F.注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E点坐标,利用平行且相等表达抛物线上F点坐标,代入抛物线解析式求解.②AB作为对角线时,依据平行四边形的判定,需满足AB,EF互相平分,先找到定线段AB的中点,在旋转过程中找到EF恰好被AB中点平分的位置,因为E和AB中点都在抛物线对称轴上,说明EF所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形.【过程示范】(3)①当AB为边时,AB∥EF且AB=EF,如图所示,设E点坐标为(-1,m),当四边形是□ABFE时,由A(-3,0),B(1,0)可知,F1(3,m),代入抛物线解析式,可得,m=12,∴F1(3,12);当四边形是□ABEF时,由A(-3,0),B(1,0)可知,F2(-5,m),代入抛物线解析式,可得,m=12,∴F2(-5,12).②当AB为对角线时,AB与EF互相平分,AB的中点D(-1,0),设E(-1,m),则F(-1,-m),代入抛物线解析式,可得,m=4,∴F3(-1,-4).综上:F1(3,12),F2(-5,12),F3(-1,-4).➢巩固练习1.如图,直线12y x=-与抛物线2164y x=-+交于A,B两点,C是抛物线的顶点.(1)在直线AB上方的抛物线上有一动点P,当△ABP的面积最大时,点P的坐标为__________________.(2)若点M在抛物线上,且以点M,A,B以及另一点N为顶点的平行四边形ABNM的面积为240,则M,N两点的坐标为_______________.2.已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0),B(β,0),且112αβ+=-.抛物线的对称轴为直线l,与y轴的交点为点C,顶点为点D,点C关于l的对称点为点E.(1)抛物线的解析式为_________.(2)连接CD,在直线CD下方的抛物线上有一动点G,当S△CDG=3,点G的坐标为______________.(3)若点P在抛物线上,点Q在x轴上,当以点D,E,P,Q为顶点的四边形是平行四边形时,点Q的坐标为_______.3.已知抛物线y=ax2-4ax+b的对称轴为直线x=2,顶点为P,与x轴交于A,B两点,与y轴交于点C,其中A(1,0),连接BC,PB,得到∠PBC=90°.(1)求抛物线的解析式.(2)抛物线上是否存在异于点P的一点Q,使△BCQ与△BCP的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.(3)若点E是抛物线上一动点,点F是x轴上一动点,是否存在以B,C,E,F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2).抛物线y=ax2-ax-b与y轴交于点D,且经过点C,连接AD,可得AB=AD.(1)求抛物线的解析式.(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,点Q是抛物线对称轴l上一动点,是否存在点P,使以P,Q,A,B为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.【参考答案】1.(1)23 (1)4,;(2)M1(-10,-19),N1(-20,-14);M2(12,-30),N2(2,-25) 2.(1)y=-x2+4x+2;(2)G1(-1,-3),G2(3,5);(3)1(40)Q,2(40)Q,3(0)Q,40)Q3.(1)y=-x2+4x-3;(2)存在,Q1(1,0),237 (22Q --,,337(22Q+-+,;(3)存在,F1(7,0),F2(-1,0).4. (1)211222y x x =--;(2)3x =(3)存在,1313()28P -,,2113()28P --,,3117()28P -,.。
二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
专题12 二次函数(解析版)

专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2 +bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=- (2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c )(4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大;当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式。
(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式 2()y a x h k =-+ 224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式 12()()y a x x x x =--专题知识回顾y x O已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c )5.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
2021年二次函数与特殊图形的存在性问题(学生版+解析版)

二次函数与特殊图形的存在性问题类型一二次函数与等腰三角形利用抛物线探求等腰三角形分三步:先分类,按腰相等分为三种情况;再根据两点间的距离公式列方程,后解方程并检验。
1.如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.类型二二次函数与直角三角形利用抛物线探求直角三角形,逐次选择顶角进行讨论,一般运用勾股定理建立方程,然后解方程并检验。
2.如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N 的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.类型三二次函数与等腰直角三角形3.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.4.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.类型四二次函数与平行四边形一般是两定点,一个半自由点(比如直线上的点)一个函数动点(所求点),可以根据平行四边形的性质计算,分类讨论的时候可以按照所对顶点来分类,注意以A,B,C,D为顶点的平行四边形和平行四边形ABCD两种说法的不同,5.如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.类型五二次函数与矩形、菱形、正方形菱形可以看做由等腰三角形翻折产生(或旋转180度),矩形可以看做由直角三角形旋转得到,正方形也可以看做两个全等的直角三角形,一般出题形式是,两定点一个半自由点一个全自由点或者三个半自由点(总之一共1.5个自由度).菱形的三个点确定之后第四个点也就确定了(可以利用性质算出第四个点),矩形同理。
专题12二次函数的应用综合问题

专题12二次函数函数的应用综合问题[例1]据统计每年由于汽车超速行驶而造成的交通事故是造成人员伤亡的主要原因之一,行驶中的汽车,在刹车后由于惯性,还要继续向前滑行一段距离才能停住,这段距离称为刹车距离,为了测定某种型号汽车的刹车性能(车速不超过140km/h ),对这种汽车的刹车距离进行了测试,测得的数据如下表:刹车时车速()km/h 0510********刹车距离()m 00.10.30.61 1.52.1(1)在如图所示的平面直角坐标系中以刹车时的速度为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用光滑的曲线连接这些点,得到某函数的大致图象.(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式.(3)一辆该型号的汽车在福银高速上发生了交通事故,现场测得刹车距离为32.5m ,请推测该汽车的刹车时的速度是多少?请问在事故发生时,汽车是否超速行驶?(假定该路段最高限速110km/h )[例2](2021·全国·九年级专题练习)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t 个月该原料药的月销售量为P (单位:吨),P 与t 之间存在如图所示的函数关系,其图像是函数P =1204t +(0<t ≤8)的图像与线段AB 的组合;设第t 个月销售该原料药每吨的毛利润为Q (单位:万元),Q 与t 之间满足如下关系:Q =28,01244,1224t t t t +<≤⎧⎨-+<≤⎩(1)当8<t ≤24时,求P 关于t 的函数解析式;(2)设第t 个月销售该原料药的月毛利润为w (单位:万元)经典例题①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.[例3](2021·江苏·无锡市港下中学九年级阶段练习)某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y(件)是售价x(元/件)的一次函数,其售价、销售量的二组对应值如下表:售价x(元/件)5565销售量y(件/天)9070(1)若某天销售利润为800元,求该天的售价为多少元/件?(2)设该商店销售商品每天获得的利润为W(元),求W与x之间的函数关系式,并求出当销售单价定为多少时,该商店销售这种商品每天获得的利润最大?(3)由于某种原因,该商品进价提高了a元/件(a>0),该商店在今后的销售中,日销售量与售价仍然满足原来的函数关系.规定商店售价不低于进价,售价不得超过70元/件,若今后每天能获得的销售最大利润是960元,求a的值.[例4](2021·江苏·常熟市第一中学九年级阶段练习)如图①,在矩形ABCD中,已知BC=8cm,点G为BC边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF⊥AE,交线段CD于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图②所示.(1)图①中,CG=______cm,图②中,m=______;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分△AEF的面积,求此时t的值.[例5].(2021·全国·九年级专题练习)“宿松家乐福超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销售量y(件)与售价x(元/件)之间的函数关系如图(20≤x≤60):(1)求每天销售量y(件)与售价x(元/件)之间的函数表达式;(2)若该商品每天的利润为w(元),试确定w(元)与售价x(元/件)的函数表达式,并求售价x为多少时,每天的利润w最大?最大利润是多少?【例6】某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN 的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?培优训练1.(2021·湖南郴州·九年级阶段练习)为满足市场需求,郴州某超市在“中秋节”来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可以卖出700盒,每盒售价提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种月饼的每盒售价不得高于57元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售月饼多少盒?2.(2021·云南·云大附中九年级阶段练习)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线).(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是元;(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大,最大收益是多少?说明理由.3.(2021·湖北·武汉第三寄宿中学九年级阶段练习)近年来我国无人机设备发展迅猛,新型号无人机不断面世,科研单位为保障无人机设备能安全投产,现针对某种型号的无人机的降落情况进行测试,该型号无人机在跑道起点处着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间满足二次函数关系,其部分函数图象如图所示.(1)求y关于x的函数关系式;(2)若跑道长度为900(m),是否够此无人机安全着陆?请说明理由;(3)现对该无人机使用减速伞进行短距离着陆实验,要求无人机触地同时打开减速伞(开伞时间忽略不计),若减速伞的制动效果为开伞后每秒钟减少滑行距离20a(单位:m),无人机必须在200(单位:m)的短距跑道降落,请直接写出a的取值范围为.4.(2021·江西·九年级阶段练习)2021年新冠肺炎依然在肆虐,“江西加油!中国加油!”每个人都在为抗击疫情而努力市场对口罩的需求依然很大,某公司销售一种进价为20元/袋的口罩,其销售量y(万袋)与销售价格x(元/袋)的变化如下表:价格x(元…30405060…/袋)销售量y…5432…万袋)同时,销售过程中的其他开支(不含进价)总计50万元.(1)观察并分析表中的y与x之间的对应关系,写出y(万袋)与x(元/袋)之间的一次函数解析式;(2)求出该公司销售这种口罩的净得利润(万元)与销售价格x(元/袋)之间的函数解析式,当销售价格定为多少元时净利润最大,最大值是多少?5.(2021·贵州·遵义市第十二中学九年级期中)疫情从未远去,据云南省卫健委通报,连续3天,云南省的本土日新增确诊病例均超过10例,从3月30日到4月6日,短短一周时间,本轮疫情中的本土确诊病例累计已达65例,为了抗击“新冠”疫情后期输入,我省的医疗物资供给正常,某药店销售每瓶进价为40元的消毒液,市场调查发现,每天的销售量(y瓶)与每瓶的售价(x元)之间满足如图所示的函数关系.(1)求y与x之间的函数关系式;(2)政府部门规定每瓶消毒液售价不得超过55元,当每瓶的销售单价定为多少元时,药店可获得最大利润?最大利润是多少?6.(2021·福建闽侯·九年级期中)如图,四边形ABCD 是一块边长为6米的正方形花圃,现将它改造为矩形AEFG 的形状,其中点E 在AB 边上(不与点B 重合),点G 在AD 的延长线上,3DG BE =,设BE 的长为x 米,改造后花圃AEFG 的面积为y 平方米.(1)当改造后花圃AEFG 的面积与原正方形ABCD 花圃的面积相等时,求BE 的长;(2)当x 为何值时,改造后的花圃AEFG 的面积最大?并求出最大面积.7.(2021·甘肃·临泽二中九年级期中)如图,在直角坐标系中,Rt OAB V 的直角顶点A 在x 轴上,4OA =,3AB =.动点M 从点A 出发,以每秒1个单位长度的速度,沿AO 向终点O 移动;同时点N 从点O 出发,以每秒1.25个单位长度的速度,沿OB 向终点B 移动,当两个动点运动了x 秒(04)x <<时,解答下列问题:(1)求点N 的坐标(用含x 的代数式表示)(2)设OMN 的面积为S ,求S 与x 之间的函数表达式;(3)在两个动点运动的过程中,是否存在某一时刻,使OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.8.(2021·四川·南部县第二中学九年级阶段练习)如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球于点C,P、A两点相移动的水平距离PD为9米.已知山坡PA与水平方向PC的夹角为30°,AC PC距P为原点,直线PC为x轴建立适当的平面直角坐标系解决下列问题.(1)求水平距离PC的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P点直接打入球洞A,并说明理由.9.(2021·湖南凤凰·九年级期中)凤凰县某超市销售一种大米,每千克大米的成本为5元,经试销发现,该大米每天的销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:销售单价x(元6 6.577.5/斤千克)销售量y(千1000900800700克)(1)求y(千克)与x(元/千克)之间的函数表达式(不要求写出自变量取值范围).(2)为保证某天获得1600元的销售利润,且要惠及客户,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?10.(2021·浙江·九年级期中)中国小将杨倩在2021东京奥运会射击比赛中,拿下中国第一枚金牌.某网店顺势推出纪念T恤衫,成本为30元/件,经市场调查发现每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)直接写出y与x之间的函数关系式.(2)当销售单价为多少时,每天获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出160元给希望工程,为了保证捐款后每天利润不低于3800元,求该纪念T恤衫的销售单价x的取值范围.11.(2021·湖北·荆州市荆南中学九年级期中)在荆州市“创建国家文明城市”活动中,好邻居超市购进一批“创文”用的劳动工具,每件成本价6元,每件销售单价x(元)与每天的销售量y(件)的关系如下表:x(元)...78910...y(件)...150140130120...(1)若每天的销售量y(件)与单价x(元)成一次函数关系:求y与x的关系式;(2)设超市销售这种劳动工具每天获得的利润为W(元),当销售单价x为何值时,超市每天可获得最大利润?最大利润是多少?(3)若超市销售这种劳动工具每天获得的利润最多不超过600元,最低不低于480元,那么超市该如何确定销售单价的波动范围?画出草图,结合图像直接写出销售单价x的取值范围.12.(2021·山西孝义·九年级期中)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA =60米,在水面的跨度BC=80米,桥面距水面的垂直距离OE=7米,以桥面所在水平线为x轴,OE所在直线为y轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?13.(2021·河南·南阳市第十三中学校九年级阶段练习)南阳某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?14.(2022·全国·九年级专题练习)已知:如图,在矩形ABCD和等腰Rt ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列问题:(1)当PQ⊥BD时,求t的值;(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式;(3)当PQ=PM时,求t的值;(4)若PM与AD相交于点W,分别连接QW和EW.在运动过程中,是否存在某一时刻t,使∠AWE=∠QWD?若存在,求出t的值;若不存在,请说明理由.15.(2021·浙江·杭州外国语学校九年级阶段练习)某产品每件成本为25元,经过市场调研发现,这种产品在未来20天内的日销售量m (单位:件)是关于时间t (单位:天)的一次函数,调研所获的部分数据如表:时间t /天231020日销售量m /件96948060这20天中,该产品每天的价格y (单位:元/件)与时间t 的函数关系式为:y =14t +30(t 为整数),根据以上提供的条件解决下列问题:(1)求出m 关于t 的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(a <6)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t 的增大而增大,求a 的取值范围.16.(2021·福建省南平第一中学九年级期中)经调查某商品在某月30天内的第x 天的销售数量y (单位:件)关于x 的函数解析式为48(020)5216(2030)5x x y x x ⎧+<≤⎪⎪=⎨⎪-+<≤⎪⎩,销售价格p (单位:元/件)关于x 的函数关系如图所示,设第x 天的销售额为w (单位:元),回答下列问题:(1)第20天的销售量为________件,销售价格为________元/件,销售额为________元;(2)求p与x之间的函数解析式;(3)这个月第几天,该商品的销售额w最大,最大销售额为多少?17.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.18.某种食品的销售价格y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是部分抛物线).(1)已知6月份这种食品的成本最低,求当月出售这种食品每千克的利润(利润=售价﹣成本)是多少?(2)求出售这种食品的每千克利润P与销售月份x之间的函数关系式;(3)哪个月出售这种食品,每千克的利润最大?最大利润是多少?简单说明理由.19.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.20.为了探索函数y=x+1(x>0)的图象与性质,我们参照学习函数的过程与方法.列表:x…14131212345…y…17410352252103174265…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图1所示:(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;(2)已知点(x1,y1),(x2,y2)在函数图象上,结合表格和函数图象,回答下列问题:若0<x1<x2≤1,则y1>y2;若1<x1<x2,则y1<y2;若x1•x2=1,则y1=y2(填“>”,“=”或“<”).(3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为0.5千元/平方米.设水池底面一边的长为x米,水池总造价为y千元.①请写出y与x的函数关系式;②若该农户预算不超过3.5千元,则水池底面一边的长x应控制在什么范围内?。
二次函数在几何图形中的应用

15 7 r r 1 1 设窗户的面积为 S,则 S= π r2+2ry= π r2+2r× =-3.5r2+7.5r, 2 2 4
因为-3.5<0,所以 S 有最大值。 -(7.5)2 7.5 当 r=- ≈1.07(m)时,S 最大值= ≈4.02(m2)。 2×(-3.5) 4×(-3.5) 即当半径约为 1.07m 时,窗户通过的光线最多,此时窗户的面积约为 4.02m2。 点拨:二次函数与几何图形相结合时,往往题目并未明确表示二次函数的关系式,二 次函数的关系式可能隐藏在几何图形中,这时我们需要根据题中所给的信息设出自变量和 函数,推导出函数关系式,再求出相应最值。 三、 二次函数与几何图形的实际应用 首先,能够根据几何图形的特点建立二次函数模型。其次,会利用二次函数解决与几 何图形相关的实际应用问题。建立三角形或四边形的面积与边长之间的二次函数关系时, 关键是找出三角形或四边形的高,用面积公式建立二次函数关系,当所给几何图形的边长 与高之间的关系不明显时,常常把几何图形分割成三角形或四边形,或利用等积式将问题 转化。 例题 3 某水渠的横截面呈抛物线形,水面的宽度为 AB(单位:米),现以 AB 所在
二次函数在几何图形中的应用 一、 二次函数与三角形的综合应用 在三角形或一般四边形中,通常设一边为自变量,用自变量表示这条边上的高,则其 面积是这一边长的二次函数。 例题 1 如图所示,有一块直角三角形的铁板,要在其内部作一个长方形 ABCD,其中 ) B. 3m C. 2m D. 5 m 2
AB 和 BC 分别在两直角边上, 设 AB=x m, 长方形的面积为 y m2, 要使长方形的面积最大, 其边长 x 应为( A. 4m
料总长(图中所有黑线的长度和)为 15m.当半圆的半径等于多少时,窗户通过的光线最 多?(结果精确到 0.01m)此时,窗户的面积是多少?(精确到 0.01m2)
2024中考备考重难点01 二次函数与几何的综合训练(9大题型+限时分层检测)

重难点01 二次函数与几何图形的综合练习中考数学中《二次函数与几何图形的综合练习》部分主要考向分为九类:一、二次函数与几何变换的综合(选择性考,10~12分)二、二次函数与直角三角形的综合(选择性考,10~12分)三、二次函数与等腰三角形的综合(选择性考,10~12分)四、二次函数与相似三角形的综合(选择性考,10~12分)五、二次函数与四边形的综合(选择性考,10~12分)六、二次函数与最值的综合(选择性考,10~12分)七、二次函数与新定义的综合(选择性考,10~12分)八、二次函数与圆的综合(选择性考,10~12分)九、二次函数与角的综合(选择性考,10~12分)因为二次函数是大多数中考压轴题的几何背景,所以,训练二次函数与其他几何图形的综合问题非常必要,只要自己见过一定量的题型,才能再遇到对应类型的压轴题时不至于新生畏惧。
所以,本专题就常见的中考数学中二次函数的几种结合类型的压轴题进行训练,希望大家在训练中摸索方法,掌握技能,练就心态!考向一:二次函数与几何变换的综合1.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.2.在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图1,当的值最大时,求点P 的坐标及的最大值;(3)过点P作x轴的垂线交直线AC于点M,连结PC,将△PCM沿直线PC翻折,当点M的对应点M′恰好落在y轴上时,请直接写出此时点M的坐标.考向二:二次函数与直角三角形的综合1.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.2.(2023•内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于B(4,0),C(﹣2,0)两点,与y轴交于点A(0,﹣2).(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平行线交x轴于点D,求的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△MAB是以AB为一条直角边的直角三角形;若存在,请求出点M的坐标,若不存在,请说明理由.考向三:二次函数与等腰三角形的综合1.(2023•青海)如图,二次函数y=﹣x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P,对称轴与x轴交于点Q,求四边形AOBP的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).2.(2023•娄底)如图,抛物线y=x2+bx+c过点A(﹣1,0)、点B(5,0),交y轴于点C.(1)求b,c的值.(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考向四:二次函数与相似三角形的综合1.(2023•乐至县)如图,直线与x轴、y轴分别交于A、B两点,抛物线经过A、B两点.(1)求抛物线的表达式;(2)点D是抛物线在第二象限内的点,过点D作x轴的平行线与直线AB交于点C,求DC的长的最大值;(3)点Q是线段AO上的动点,点P是抛物线在第一象限内的动点,连结PQ交y轴于点N.是否存在点P,使△ABQ与△BQN相似,若存在,求出点P的坐标;若不存在,说明理由.2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C (0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.考向五:二次函数与四边形的综合1.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①y=x2﹣1;②y=x2﹣x,其中,为函数y=x﹣1的轴点函数.(填序号)【尝试应用】(2)函数y=x+c(c为常数,c>0)的图象与x轴交于点A,其轴点函数y=ax2+bx+c与x轴的另一交点为点B.若OB=OA,求b的值.【拓展延伸】(3)如图,函数y=x+t(t为常数,t>0)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得ON=OC.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数y=x+t(t为常数,t>0)的轴点函数y=mx2+nx+t的顶点P在矩形MNDE的边上,求n的值.3.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.考向六:二次函数与最值的综合1.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠P AQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.2.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.考向七:二次函数与新定义的综合1.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k 为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;(2)动点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.2.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是(填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是、;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.考向八:二次函数与圆的综合1.(2023•湘西州)如图(1),二次函数y=ax2﹣5x+c的图象与x轴交于A(﹣4,0),B(b,0)两点,与y轴交于点C(0,﹣4).(1)求二次函数的解析式和b的值.(2)在二次函数位于x轴上方的图象上是否存在点M,使?若存在,请求出点M的坐标;若不存在,请说明理由.(3)如图(2),作点A关于原点O的对称点E,连接CE,作以CE为直径的圆.点E′是圆在x轴上方圆弧上的动点(点E′不与圆弧的端点E重合,但与圆弧的另一个端点可以重合),平移线段AE,使点E移动到点E′,线段AE的对应线段为A′E′,连接E′C,A′A,A′A的延长线交直线E′C于点N,求的值.2.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.考向九:二次函数与角的综合1.(2023•无锡)已知二次函数y=(x2+bx+c)的图象与y轴交于点A,且经过点B(4,)和点C (﹣1,).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=(x2+bx+c)图象上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.2.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.(建议用时:150分钟)1.(2023•宜兴市一模)如图,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,则∠ACB=°;M是二次函数在第四象限内图象上一点,作MQ∥y轴交BC 于Q,若△NQM是以NQ为腰的等腰三角形,则线段NC的长为.2.(2023•越秀区一模)如图,抛物线与H:交于点B(1,﹣2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是.(填写正确的序号)3.(2023•晋州市模拟)如图所示,已知在平面直角坐标系xOy中,点A(15,8),点M是横轴正半轴上的一个动点,⊙P经过原点O,且与AM相切于点M.(1)当AM⊥x轴时,点P的坐标为;(2)若点P在第一象限,设点P的坐标为(x,y),则y关于x的函数关系式为(不用写出自变量x的取值范围);(3)当射线OP与直线AM相交时,点M的横坐标t的取值范围是.4.(2024•道里区模拟)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2当最大值时,求点D的坐标;(3)如图3,在(2)的条件下,连接CD、BD,将△BCD沿BC翻折,得到△BCF(点D和点F为对应点),直线BF交y轴于点P,点S为BC中点,连接PS,过点S作SP的垂线交x轴于点R,在对称轴TH上有一点Q,使得△PQB是以PB为直角边的直角三角形,求直线RQ的解析式.5.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.6.(2023•东莞市一模)抛物线y=ax2+bx﹣2与x轴交于A、B两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C.连结BC,以BC为边,点O为中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)求该抛物线对应的函数表达式;(2)x轴上是否存在一点P,使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;(3)当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.7.(2024•碑林区校级二模)二次函数y=ax2+bx+4(a≠0)的图象与x轴交于A(﹣4,0),B(1,0)两点,点M为y轴负半轴上一点,且OM=2.(1)求二次函数表达式;(2)点E是线段AB(包含A,B)上的动点,过点E作x轴的垂线,交二次函数图象于点P,交直线AM于点N,若以点P,N,A为顶点的三角形与△AOM相似,若存在,请求出点P的坐标;若不存在,请说明理由.8.(2024•镇海区校级模拟)若二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2的图象关于点P(1,0)成中心对称图形,我们称y1与y2互为“中心对称”函数.(1)求二次函数y=x2+6x+3的“中心对称”函数的解析式;(2)若二次函数y=ax2+2ax+c(a>0)的顶点在它的“中心对称”函数图象上,且当时,y最大值为2,求此二次函数解析式;(3)二次函数y1=ax2+bx+c(a<0)的图象顶点为M,与x轴负半轴的交点为A、B,它的“中心对称”函数y2的顶点为N,与x轴的交点为C、D,从左往右依次是A、B、C、D,若AB=2BP,且四边形AMDN 为矩形,求b2﹣4ac的值.9.(2024•雁塔区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴分别交于A,B两点,点A的坐标是(﹣4,0),点B的坐标是(1,0),与y轴交于点C,P是抛物线上一动点,且位于第二象限,过点P作PD⊥x轴,垂足为D,线段PD与直线AC相交于点E.(1)求该抛物线的解析式;(2)连接OP,是否存在点P,使得∠OPD=2∠CAO?若存在,求出点P的横坐标;若不存在,请说明理由.10.(2024•长沙模拟)若两条抛物线相交于A(x1,y1),B(x2,y2)两点,并满足y1﹣kx1=y2﹣kx2,其中k为常数,我们不妨把k叫做这两条抛物线的“依赖系数”.(1)若两条抛物线相交于A(﹣2,2),B(﹣4,4)两点,求这两条抛物线的“依赖系数”;(2)若抛物线1:y=2ax2+x+m与抛物线2:y=ax2﹣x﹣n相交于A(x1,y1),B(x2,y2)两点,其中a>0,求抛物线1与抛物线2的“依赖系数”;(3)如图,在(2)的条件下,设抛物线1和2分别与y轴交于C,D两点,AB所在的直线与y轴交于E点,若点A在x轴上,m≠0,DA=DC,抛物线2与x轴的另一个交点为点F,以D为圆心,CD为半径画圆,连接EF,与圆相交于G点,求tan∠ECG.11.(2023•嘉善县一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.12.(2023•任城区二模)如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,当△PCM和△ABC相似时,求此时点P的坐标;(3)若点P是直线BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;13.(2023•姑苏区校级二模)探究阅读题:【阅读】在大自然里,有很多数学的奥秘,一片美丽的心形叶片,一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.(如图1和图2)【探究任务1】确定心形叶片的形状如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分,且过原点,求抛物线的解析式和顶点D的坐标.【探究任务2】研究心形叶片的尺寸如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A、B两点,直线x=6分别交抛物线和直线AB于点E、F点,点E、E′是叶片上的一对对称点,EE′交直线AB与点G,求叶片此处的宽度EE′.【探究任务3】研究幼苗叶片的生长小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分.如图4,幼苗叶片下方轮廓线正好对应探究任务1中的二次函数,已知直线PD与水平线的夹角为45°,三天后,点D长到与点P同一水平位置的点D′时,叶尖Q落在射线OP上,如图5所示,求此时幼苗叶子的长度和最大宽度.。
二次函数与几何综合类存在性问题课件

03
注意答案的完整性和规 范性;
04
在解答过程中,注意逻 辑的严密性和推理的准 确性。
02
二次函数与几何综合类存在
性问题的类型
以二次函数为背景的存在性问题
总结词
这类问题主要考察二次函数的性质,如开口方向、对称轴、顶点等,以及这些 性质在几何图形中的应用。
详细描述
这类问题通常会给出二次函数的一般形式,如$f(x) = ax^2 + bx + c$,然后要 求求解满足某些条件的点或线。例如,求函数$f(x) = x^2 - 2x$在$x$轴上的交 点,或求函数$f(x) = x^2 - 2x$的对称轴等。
3. 将代数结果和几何结果相互印证,得出最终结论。
04
二次函数与几何综合类存在
性问题的实例分析
实例一
总结词
利用抛物线的性质和点到直线距离公式,求出最小值。
详细描述
设抛物线方程为 $y = ax^2 + bx + c$,直线方程为 $y = mx + n$。首先,将抛线上的点 $(x, y)$ 到直线的距离表示为 $d = frac{|ax^2 + bx + c - mx - n|}{sqrt{m^2 + 1}}$。然后,利用抛物线的 性质和极值定理,求出 $d$ 的最小值。
实例三
总结词
利用双曲线的性质和点到直线距离公 式,求出最小值。
详细描述
设双曲线方程为 $frac{x^2}{a^2} frac{y^2}{b^2} = 1$,直线方程为 $y = mx + n$。首先,将双曲线上的点 $(x, y)$ 到直线的 距离表示为 $d = frac{|mx - y + n|}{sqrt{m^2 + 1}}$。然后,利用双曲线的性质和极值定理 ,求出 $d$ 的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《小专题12 二次函数与几何图形综合——特殊图形相关问题》
类型I 特殊三角形问题
1. 如图,已知抛物线与x轴交于A,B两点,并与直线
交于B,C两点,其中点C是直线与y轴的交点,连接AC.
(1)求B,C两点的坐标以及抛物线的解析式;
(2)求证:△ABC为直角三角形.
2. 如图,已知抛物线与x轴交于A,B两点(点A在点B的右
边),与y轴交于点C.
(1)求点A,B,C的坐标;
(2)此抛物线的对称轴上是否存在点P,使得△ACP是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
类型2 特殊四边形问题
3. 如图,已知抛物线y=-x2-2x+3与x轴交于点A,B,与y轴交于点C,顶点为P.若以A,C,P,M为顶点的四边形是平行四边形,求点M的坐标.
参考答案
1.解:(1)直线分别交x轴、y轴于B,C两点,B(4,0),C
(0,-2)过B,C两点,
抛物线的解析式为.
(2)证明:与x轴负半轴交于A点,
.在Rt△AOC中,在Rt△AOC中,
2,. 在Rt△BOC中,
.
形。
2. 解:(1)令y=0,得.解得A(4,0),B(-2,0).令x=0,得y=-2.
(2)存在点P,使得△ACP是等腰三角形,设P(1,a),则
. ①当AP=CP时,即
+5,解得a=1.;②当CP=AC时,即,
解得;③当AP=AC时,
即,解得综上所述,满足
条件的点P的坐标为,,
2.解:中,当x=0时,
中,令y=0,即,解得,
顶点P的坐标为(-1,4). 如图,分别
过△PAC的三个顶点作对边的平行线,三条直线两两相交,产生3个符合条件的点
.,且
. 综上所述,点M的坐标为(-4,1)或
(-2,-1)或(2,7).。