换热器性能综合测试实验

合集下载

空气-水换热器换热性能的测试实验

空气-水换热器换热性能的测试实验

空气-水换热器换热性能的测试实验一、实验目的1.本实验属于设计型实验,要求学生根据实验目标,给定实验设备,对整个实验方案、实验过程等进行全部实验设计;2.熟悉气-水换热器性能的测试方法;3.掌握气-水翅片管、光管换热器,在顺排、叉排、逆流、顺流各种情况下换热器的结构特点及其性能的差别。

二、实验装置简介(参见实验装置示意图)图一、实验装置示意图1.循环水泵2.转子流量计3.过冷器4.换热器5.实验台支架6.吸入段7.整流栅8.加热前空气温度9. 换热器前静压10.U形差压计11. 换热器后静压12.加热后空气温度13.流量测试段14笛形管15. 笛形管校正安装孔16.风量调节盘17.引风机18.风机支架19.倾斜管压力计20.控制测试仪表盘21.水箱气-水换热器实验装置由水箱、电加热器、循环水泵、水流量测量、水温度控制调节阀、压差测量、阀门、换热器、风管、整流栅、热电偶测温装置、空气流量测量、空气阻力测量、.风量调节盘、引风机等组成。

换热器型式有翅片管、光管两种,有顺流、逆流两种流动方式、布置方式有顺排、叉排两种。

1.换热器为表冷器,表冷器几何尺寸如下表:2.水箱电加热器总功率为9KW,分六档控制,六档功率分别为1.5KW。

3.空气温度、热水温度用铜—康铜热电偶测量。

4.空气流量用笛形管配倾斜式微压计测量。

5.空气通过换热器的流通阻力,在换热器前后的风管上设静压测嘴,配倾斜式微压计测量;热水通过换热器的流通阻力,在换热器进出口处设测阻力测嘴,配用压差计测量。

6.热水流量用转子流量计测量。

三、实验目标通过气--水换热器性能测试试验,测定并计算出换热器的总传热系数,对数平均传热温差和热平衡误差等,绘制传热性能曲线,并作比较:(1)以传热系数为纵坐标,热水流量或空气流量为横坐标绘制传热性能曲线;并就不同换热器,两种不同流动方式、两种不同布置方式,不同工况的传热情况和性能进行比较和分析。

四、实验设计内容:1.根据实验目标和气--水换热器实验装置,编写出实验工作原理和实验数据计算处理公式;2.实验方案设计,包括实验思路、实验方法、实验工况点的选择、热水进口温度大小选取(建议取60-80℃);3验操作步骤设计,将整个实验操作过程步骤、注意事项编写出来。

换热器综合实验报告

换热器综合实验报告

换热器综合实验报告引言:换热器是一种常用的热交换设备,用于在流体之间传递热量。

本实验旨在通过对换热器的综合实验研究,了解换热器的工作原理、性能参数和影响因素,进一步加深对换热器的理解。

一、实验目的:1. 理解换热器的基本工作原理;2. 掌握换热器的性能参数测量方法;3. 研究换热器的传热特性和影响因素。

二、实验原理:换热器是通过流体之间的热传递实现热能转移的设备。

实验中使用的换热器是热交换管式换热器,其主要由壳体、管束和管板等组成。

热能通过壳体内外流体的对流传热和管内外流体的对流传热实现。

三、实验步骤:1. 准备工作,检查实验设备和仪器的完好性,准备实验所需的流体和试样;2. 流量测量,通过流量计测量进出口流体的流量;3. 温度测量,使用温度计或热电偶测量进出口流体的温度;4. 压力测量,使用压力计测量进出口流体的压力;5. 数据记录,记录实验过程中的各项数据,包括流量、温度和压力等;6. 分析数据,根据实验数据进行计算和分析,得出换热器的性能参数和传热特性;7. 结果总结,总结实验结果,分析影响换热器性能的因素。

四、实验结果与讨论:根据实验数据计算得出的换热器性能参数包括传热系数、热效率和压降等。

通过对这些参数的分析,可以评估换热器的性能和效果。

同时,还可以研究不同操作条件对换热器性能的影响,如流体流量、温度差和管束结构等。

五、实验结论:通过本次实验,我们对换热器的工作原理、性能参数和影响因素有了更深入的了解。

换热器是一种常用的热交换设备,广泛应用于工业生产和能源领域。

在实际应用中,我们需要根据具体的工艺要求和条件选择合适的换热器,并优化其操作参数,以达到最佳的热传递效果。

六、实验总结:本次实验通过对换热器的综合研究,加深了我们对换热器的理解。

同时,实验过程中我们掌握了换热器性能参数的测量方法和数据分析技巧。

这些知识和技能对于我们今后在工程实践中的应用具有重要意义。

七、参考文献:[1] 换热器的基本原理与设计. 机械工业出版社, 2012.[2] 热传递与换热器. 高等教育出版社, 2008.以上是对换热器综合实验的报告,希望能对你有所帮助。

冷热空气列管换热器传热综合实验

冷热空气列管换热器传热综合实验

冷热空气列管换热器传热综合实验冷热空气列管换热器是一种常见的传热设备,广泛应用于空调、暖通、工业制冷等领域。

其工作原理是利用冷热空气在列管内流动,通过壁面传热的方式实现热量的传递。

本文将从实验角度介绍冷热空气列管换热器的传热综合实验。

实验器材本实验需要的器材包括:冷热空气列管换热器,热电偶、数字温度计、风速仪、水泵、水箱、冷热水流量计、波形发生器、示波器等。

实验步骤1. 将冷水泵水箱与热水泵水箱分别连接到冷热空气列管换热器上,保证水流畅通。

2. 将风速仪插入冷热空气列管换热器进气口处,测量进口风速,并调节波形发生器输出频率和幅值,控制风速在一定范围内。

3. 在冷热空气列管换热器进口处安装热电偶,并使用数字温度计测量进口温度。

4. 在冷热空气列管换热器出口处安装热电偶,并使用数字温度计测量出口温度。

5. 同时,在冷热水流量计进口处和出口处分别安装热电偶,并使用数字温度计测量进口温度和出口温度。

6. 开始实验,记录进口风速、进口温度、出口温度、冷水进口温度、冷水出口温度、热水进口温度、热水出口温度等数据,并计算冷热空气列管换热器的传热效率。

实验分析通过实验数据的分析,我们可以得到冷热空气列管换热器的传热效率,进而评估其传热性能。

一般来说,传热效率与进口温度、出口温度、风速等因素有关。

当进口温度较高、出口温度较低、风速较大时,传热效率较高。

反之,传热效率较低。

我们还可以根据实验数据确定冷热空气列管换热器的最佳工作参数,以提高传热效率。

例如,可以通过调节风速、进口温度、水流量等因素,优化冷热空气列管换热器的传热性能。

总结冷热空气列管换热器是一种重要的传热设备,其传热性能直接影响到空调、暖通、工业制冷等领域的使用效果。

通过本文介绍的实验,我们可以深入了解冷热空气列管换热器的传热过程,评估其传热性能,并确定最佳工作参数,以提高传热效率。

【实验报告1-4】换热器换热性能实验

【实验报告1-4】换热器换热性能实验

【实验报告1-4】换热器换热性能实验实验目的:1、通过实验,了解不同传热面积、传热流量等因素对换热器的换热性能的影响;2、掌握换热器的使用方法和注意事项;3、了解热力制冷冷水机组换热器的工作原理及性能特点。

实验原理:热力制冷冷水机组换热器是将制冷剂从低温区域吸收热量后,通过空气或水对流将热量传递到环境中,从而实现制冷的过程。

其中,传递热量的部分即为换热器。

换热器的换热性能主要由以下因素影响:1、传热面积:换热器传热面积越大,换热器的传热性能越好;2、传热流量:换热器传热流量越大,换热器的传热性能越好;3、换热介质:换热介质的热传导率越大,换热器的传热性能越好;4、壳体结构:壳体结构越紧密,换热器的传热性能越好;5、流体流速:流体流速越大,换热器的传热性能越好。

实验设备:本实验采用的设备有:1、热力制冷冷水机组换热器;2、流量计、压力表等实验配套设备;3、水、空气等流体介质。

实验步骤:1、按照实验要求设置流量和传热面积;2、开启冷水机组和换热器,保证介质在流动状态;3、测量水、空气介质的压力和流量,记录数据;4、根据记录的数据,计算换热器的传热效率。

实验数据处理:测量完成后,需要对收集到的数据进行处理。

首先,计算出实验中所涉及的有关数据,如传热系数、传热效率等。

其次,对实验结果进行分析,找出影响换热器换热性能的因素,并进行总结。

实验注意事项:1、在使用换热器时,需要事先清洗干净;2、在设定流量和传热面积时,应注意范围不能超过实验设备的最大限度;3、实验过程中,应注意观察实验设备是否正常运行,防止出现故障;4、测量时应精确记录实验数据,避免误差;5、实验完成后,应及时清理实验设备并做好记录。

实验结论:通过实验,我们得到了不同传热面积、传热流量等因素对换热器换热性能的影响。

在实验中,我们发现流量和传热面积是影响换热效率的两个重要因素,其对于换热效率产生的影响较大。

同时,我们也了解了热力制冷冷水机组换热器的工作原理及性能特点。

换热器综合实验报告

换热器综合实验报告

机械换热综合实验报告换热器性能测试试验,主要对应用较广的间壁式换热器中的三种换热:套管式换热器、板式换热器和列管式换热器进行其性能的测试。

其中,对套管式换热器和、板式换热器可以进行顺流和逆流两种流动方式的性能测试,而列管式换热器只能作一种流动方式的性能测试。

实验装置控制面板如图1:换热器性能试验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡误差等,并就不同换热器,不同两种流动方式,不同工况的传热情况和性能进行比较和分析。

一、 实验目的1、熟悉换热器性能的测试方法;2、了解套管式换热器,板式换热器和列管式换热器的结构特点及其性能的差别;3、加深对顺流和逆流两种流动方式换热器换热能力差别的认识;二、 实验装置本实验装置采用冷水可用阀门换向进行顺逆流实验;如工作原理图2所示。

换热形式为热水—冷水换热式。

T2加热水箱1500W=3个排水阀流量调节阀板式加自来水冷水箱T45路冷水出温度T34路冷水进温度列管换热器板式换热器列管排水阀流量调节阀列管板式1路热水进温度T13路涡轮流量计流量套管出水压力进水压力套管换热器开逆流开顺流开顺流开逆流进水压力套管T5热水箱温度控制出水压力图2 换热器综合实验台原理图本实验台的热水加热采用电加热方式,冷—热流体的进出口温度采用巡检仪,采用温控仪控制和保护加热温度。

实验台参数:1、换热器换热面积{F}:(1)套管式换热器2×3.14×0.006×0.748=0.02818464×8=0.225477122×3.14×0.006×0.095=0.0035796×7=0.02505720.22547712+0.0250572=0.25053432m2(2)板式换热器换热面积:0.028 m2×24片=0.672 m2(3)列管式换热器 1.0 m22、电加热器总功率:1.5KW×3 =4.5KW。

换热器性能综合测试实验

换热器性能综合测试实验

第一章实验装置说明第一节系统概述一、装置概述目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。

本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。

二、系统特点1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。

2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。

3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。

三、技术性能1.输入电源:三相五线制 AC380V±10% 50Hz2.工作环境:温度-10℃~+40℃;相对湿度<85%(25℃);海拔<4000m3.装置容量:<4kVA4.套管式换热器:换热面积0.14m25.螺旋板式换换热器:换热面积1m26.列管式换热器:换热面积0.5m27.钎焊板式换热器:0.144m28.电加热器总功率:<3.5kW9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。

四、系统配置1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。

2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。

第二节换热器的认识一、换热器的形式能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。

换热器的形式有很多,用途也很广泛。

诸如为高炉炼铁提供热风的热风炉,就是一座大型蓄热式陶土换热器;热电厂锅炉上的高温过热器是以辐射为主的高温换热器,而省煤器是以对流为主的交叉流换热器;冶金工厂安装在高温烟道中的热回收装置常用片状管式、波纹管式、插件式等型式换热器;制冷系统上的冷凝器、蒸发器属于有相变流体的换热器,这类换热器无所谓顺流或逆流;内燃机的冷却水箱属于交叉流间壁式换热器的一种。

热管换热器实验报告

热管换热器实验报告

热管换热器实验报告热管换热器实验报告摘要:本实验通过对热管换热器的性能进行测试和分析,探究其在热传导中的应用潜力。

实验结果表明,热管换热器具有高效、节能、可靠的特点,适用于多种工业领域。

引言:热管换热器是一种利用热管传导热量的换热设备,其原理基于热管内工作流体在高温端吸热、低温端释热的特性。

热管换热器由热管、外壳、冷却介质等组成,广泛应用于空调、电子设备、航天器等领域。

实验方法:本实验使用了一台自行设计的热管换热器实验装置,主要包括一个加热器、一个冷却器和一个观测仪器。

首先,将热管换热器装置连接好,并确保无漏气现象。

然后,通过控制加热器的电压和电流,提供一定的热源。

同时,通过调节冷却器的温度,模拟不同的冷却条件。

最后,利用观测仪器记录热管换热器的温度变化情况。

实验结果与分析:在实验过程中,我们改变了不同的加热功率和冷却温度,记录了热管换热器的温度分布。

实验结果显示,随着加热功率的增加,热管的温度逐渐升高,而冷却端的温度则相应下降。

这表明热管换热器能够有效地将热量从高温端传导到低温端。

此外,我们还发现热管换热器的性能受冷却温度的影响。

当冷却温度较低时,热管换热器的传热效果更好,温度差也更大。

而当冷却温度较高时,热管换热器的传热效果会受到一定的限制,温度差较小。

这说明在实际应用中,选择合适的冷却温度对于热管换热器的性能至关重要。

讨论与展望:热管换热器作为一种高效、节能的换热设备,具有广泛的应用前景。

在空调领域,热管换热器能够提高空调系统的能效,减少能源消耗。

在电子设备领域,热管换热器能够有效地降低电子元件的工作温度,提高设备的稳定性和寿命。

在航天器领域,热管换热器能够应对极端的温度环境,确保航天器的正常运行。

然而,热管换热器仍然存在一些挑战和待解决的问题。

例如,热管换热器的制造成本较高,需要进一步降低生产成本。

同时,热管换热器的可靠性和耐久性也需要进一步提高,以满足长期使用的要求。

结论:通过本次实验,我们对热管换热器的性能进行了测试和分析,发现其具有高效、节能、可靠的特点。

传热综合实验测定列管换热器总传热系数

传热综合实验测定列管换热器总传热系数

实验名称: 传热综合实验测定列管换热器一、实验内容测定列管式换热器的对流传热系数K。

二、实验目的通过测定列管换热器传热数据计算总传热系数K,加深对其概念的理解。

三、实验基本原理(1)传热过程基本原理传热是指由于温度差引起的能量转移,又称热传递。

由热力学第二定律可知,凡是有温度差存在时,热量就必然发生从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。

总传热系数K是评价换热器性能的一个重要参数,也是对换热器进行传热计算的依据。

对于已有的换热器,可以通过测定有关数据,如设备尺寸、流体的流量和温度等,然后由传热速率方程式(1-1)计算K值。

传热速率方程式是换热器传热计算的基本关系。

在该方程式中,冷、热流体的温度差△T是传热过程的推动力,它随传热过程冷热流体的温度变化而改变。

传热速率方程式Q=K×S×ΔTm (1-1)所以对于总传热系数K=Cp×W×(T2-T1)/(S×ΔTm)T2(1-2)式中:Q----热量(W);S----传热面积(m2);△Tm----冷热流体的平均对数温差(℃);K----总传热系数(W/(m2·℃));C P----比热容(J/(Kg·℃));W----冷流体质量流量(Kg/s);T2-T1----冷流体进出口温差(℃)。

(2)换热器简介列管式换热器:是固定管板式换热器,它是列管换热器的一种。

它由壳体、管束、管箱、管板、折流挡板、接管件等部分组成。

其结构特点是,两块管板分别焊于壳体的两端,管束两端固定在管板上。

它具有结构简单和造价低廉的优点。

开车前首先检查管路、各种换热器、管件、仪表、流体输送设备是否完好,检查阀门、分析测量点是否灵活好用。

四、实验方法及步骤1.实验准备:检查实验装置处在开车前的准备状态。

2.换热器实验:1)打开总电源开关。

2)打开列管式换热器热流体进口阀和列管式换热器冷流体进口阀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章实验装置说明第一节系统概述一、装置概述目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。

本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。

二、系统特点1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。

2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。

3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。

三、技术性能1.输入电源:三相五线制 AC380V±10% 50Hz2.工作环境:温度-10℃~+40℃;相对湿度<85%(25℃);海拔<4000m3.装置容量:<4kVA4.套管式换热器:换热面积0.14m25.螺旋板式换换热器:换热面积1m26.列管式换热器:换热面积0.5m27.钎焊板式换热器:0.144m28.电加热器总功率:<3.5kW9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。

四、系统配置1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。

2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。

第二节换热器的认识一、换热器的形式能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。

换热器的形式有很多,用途也很广泛。

诸如为高炉炼铁提供热风的热风炉,就是一座大型蓄热式陶土换热器;热电厂锅炉上的高温过热器是以辐射为主的高温换热器,而省煤器是以对流为主的交叉流换热器;冶金工厂安装在高温烟道中的热回收装置常用片状管式、波纹管式、插件式等型式换热器;制冷系统上的冷凝器、蒸发器属于有相变流体的换热器,这类换热器无所谓顺流或逆流;内燃机的冷却水箱属于交叉流间壁式换热器的一种。

二、几种主要的换热器1.列管式换热器(图1)列管式换热器是目前化工及酒精生产上应用最广的一种换热器。

它主要由壳体、管板、换热管、封头、折流挡板等组成。

列管式换热器可以采用普通碳钢、紫铜或不锈钢进行制作。

在进行换热时,一种流体由封头的连结管处进入,在管道中流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。

列管式换热器有多种结构形式,常见的有固定管板式换热器、浮头式换热器、填料函式换热器及U型管式换热器。

2.螺旋板式换热器(图2)螺旋板式换热器(SHE)结构简单而精密,它由两块或四块长金属薄板绕同一个中心卷制而成,板与板之间焊有定距柱,形成了两条或四条间距相同又各自完全独立的螺旋形流道。

螺旋板式换热器的流道呈同心状,同时具有一定数量的定距柱。

流体在雷诺数较低时,也可以产生湍流。

通过这种优化的流动方式,流体的热交换能力得到了提高,颗粒沉积的可能性下降。

由于流道的几何形状具有很大的灵活性,因此,螺旋板式换热器可以根据已有的条件和需求进行适当的调整。

同时,螺旋板式换热器具有比较长的单独流道,可以为许多不易处理的流体提供足够长的热交换距离,这样,流体可以在一个设备中进行完全处理,并且避免了由于流体的突然转向而产生的堵塞问题。

螺旋板式换热器采用单流道结构设计,因此采用化学方法对流道内部进行清洗具有很好的效果。

有盖板的螺旋板式换热器,盖板一般都配有钩头螺栓,以便于打开盖板,用机械方式对流道内部进行清洗。

而在处理污泥和泥浆的设备上,盖板一般都安装有脚轮或者吊架,这样可以更快捷的打开盖板。

3.套管式换热器(图3)套管式换热器以同心套管中的内管作为传热元件的换热器。

两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。

热量通过内管管壁由一种流体传递给另一种流体。

通常,热流体由上部引入,而冷流体则由下部引入。

套管中外管的两端与内管采用焊接或法兰连接。

内管与U形肘管多用法兰连接,便于传热管的清洗和增减。

每程传热管的有效长度取4~7m,这种换热器传热面积最高达18m2,故适用于小容量换热。

当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。

管子可用钢、铸铁、陶瓷和玻璃等制成,若选材得当,它可用于腐蚀性介质的换热。

这种换热器具有若干突出的优点,所以至今仍被广泛用于石油、石油化工等工业部门。

4.板式换热器(图4)板式换热器属于高效换热设备。

在实际应用中有两种,一种是旋压法制造的伞板式换热器,另一种是冲压法制造的平板换热器。

其结构特点如下:1、体积小、占地面积少;2、传热效率高;3、组装灵活;4、金属消耗量低;5、热损失小;6、拆卸、清洗、检修方便;7、使用安全可靠;8、有利于低温热源的利用;9、冷却水量小;10、阻力损失少;11、投资效率高。

图1 列管式换热器原理图图2 螺旋板式换热器图3 套管式换热器原理图4板式换热器原理第二章 换热器性能综合测试实验一 、 实验目的1.熟悉板式、套管式、螺旋板式、列管式换热器的结构,掌握其传热性能及测量计算方法; 2.了解和掌握套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能的差别。

3.了解和认识顺流和逆流两种流动方式换热器换热能力的产别。

4.学会换热器的操作方法,掌握换热器主要性能指标的测定方法。

二、 实验原理换热器性能测试试验,主要对应用较广的间壁式换热器中的四种换热:套管式换热器、板式换热器、螺旋板式换热器和列管式换热器进行其性能的测试。

其中,对套管式换热器、板式换热器和螺旋板式换热器可以进行顺流和逆流两种流动方式的性能测试,而列管式换热器只能作一种流动方式的性能测试。

装置上的板式、套管式、螺旋板式、列管式换热器都属于间壁式金属换热器,热交换介质为冷热水。

通过换热器性能测试试验,测定并计算出换热器的总传热系数,对数平均传热温差和热平衡误差等,绘制传热性能曲线,并作比较:(1)以传热系数为纵坐标,冷水(热水)流速(或流量)为横坐标绘制传热性能曲线;并就不同换热器,两种不同流动方式,不同工况的传热情况和性能进行比较和分析。

(1) 换热器的传热方程为m t KF Q ∆=(2)热水和冷水热交换平衡方程式为cold heat Q Q =即 ,12,21()()h p h h h c p c c c G c t t G c t t -=- 式中 Q ―换热器整个传热面上的热流量 W K ―总传热系数 )/(2C m W⋅ F ―总传热面积 2mm t ∆―换热器的平均温差或平均温压 ℃ heat Q ―热水放热量 W cold Q ―冷水放热量 Wheat G 、cold G -热、冷水的质量流量 s kg / h p c ,、c p c ,―热、冷水的定压比热 )/(C kg kJ⋅ 1h t 、2h t ―热水的进、出口温度 ℃ 1c t 、2c t ―冷水的进、出口温度 ℃(3)换热器的平均温差,不论顺流、逆流都可以采用对数平均温差的形式 minmax minmax lnt t t t t m ∆∆∆∆=∆-(e=2.71828) 式中m ax t ∆―冷、热水在换热器某一端最大的温差 ℃min t ∆―冷、热水在换热器某一端最小的温差 ℃(4)以热水放热量为基准,设热水放热量和冷水吸热量之和的平均值为换热器的整个传热面上的热流量,则有2coldheat Q Q Q +=(5)热平衡误差Q Q Q coldheat -=δ⨯100%(6)总传热系数 mt F QK ∆=(7)热、冷流体的质量流量heat G 、cold G 是根据浮子流量计读数转换而来的,可以按照以下公式换算s kg h l 000278.0=三 、 实验设备本实验装置采用冷水可用阀门换向进行顺逆流实验;如工作原理图5所示。

换热形式为热水—冷水换热式。

图5 换热器综合实验台原理图1.热水泵2.热水泵3.热水流量计4.冷水箱5.冷水泵6.冷水流量计7.冷水顺逆流换向阀门组8.列管式换热器9. 套管式换热器 10.板式换热器 11.螺旋板式换热器换热器实验台有关结构参数见表1。

表1 换热器的结构参数换热器总传热面积(m2)电加热器功率(kW)热水泵板式列管式螺旋管式套管式自动功率W 允许水温℃0.1440.510.14390<100四、实验设计内容:1.根据实验目标和换热器综合实验台,编写出实验工作原理和实验数据计算处理公式。

2.实验方案设计,包括实验思路、实验工况点的选择、热水进口温度大小选取、冷热水流量大小选择等。

3.实验操作步骤设计,将整个实验操作过程步骤、注意事项编写出来。

4.设计出实验数据记录表格,记录实验数据,实验数据的处理计算,并对实验结果进行分析,得出实验结论。

5.提交实验设计报告书。

五、实验步骤及记录1.实验前的准备工作(1) 熟悉实验台的工作流程和各个仪表的工作原理、使用方法,(2) 更换并安装好需要测量的换热器;(3) 按顺流或逆流方式调整好冷水换向阀门;(4) 热水箱充水至水箱容积的3/4左右,冷水箱充满,或连接好自来水进水管。

2.实验步骤(1) 接通电源,将热水箱的手动和自动电加热器全部投入使用;(2) 调整控温仪,使加热水温被控制在75℃以下的某一指定温度;(3) 当自动电加热器第一次动作以后,可切断手动电加热器开关。

这时水箱加热系统就进入自动控制温度的状态;(4) 启动冷水泵,并调整到合适流量。

经过一段时间,冷热水热交换达到相对稳定状态。

所谓稳定状态,是指利用琴键开关和温度数字显示表观测换热器冷热水的进出口温度,其不随时间变化的状态。

注意测定传热性能曲线时要改变几个冷热水的流量参数。

3.原始数据记录当状态稳定后,参考表2的模式记录相关参数。

表2 实验数据记录1.以换热器入口和出口位置为横坐标,以温度为纵坐标,绘制换热器顺逆流温度分布简图;2.以冷水流量为横坐标,以传热系数为纵坐标,绘制换热器传热性能曲线;3.以热水流量为横坐标,以传热系数为纵坐标,绘制换热器传热性能曲线。

七、测量校核曲线1.换热器热水进出口温度曲线121620242832364044485256606468121620242832364044485256606468121620242832364044485256606468Y 实际摄氏温度 (℃)X 测量摄氏温度 (℃)010203040506070809001020304050607080900102030405060708090Y 实际摄氏温度 (℃)X 测量摄氏温度 (℃)02040608010012014016002040608010012014016020406080100120140160Y 实际流量 (L /h )X 测量流量 (L/h )八、 思考题1.你曾接触过哪些换热器,它们的结构和性能有什么区别?2.增强传热的方法有哪些? 九、 注意事项1.由于热水泵的性能限制,热水箱内的加热水温一般不要超过70℃;2.启动冷水泵后,当切换冷水阀门顺逆流时,要注意先打开某一对阀门通路然后再关闭另一对阀门通路,否则会使水泵出问题。

相关文档
最新文档