数学模型 微 分 方 程
微分方程模型(全)

第四步:了解问题中所涉及的原则或物理定律。
第五步:依据 第二、第三、第四步 建立微分 方程。 还有已知的对应某个 t 的 y 的值(可 能还有 y 的导数的值)就是求解微分方程所 需要的初始值。
第六步:求微分方程的解并给出问题的答案。 下面我们从易到难给出微分方程模型之应 用案例
例1 火车启动
例 1:火车启动
y ce .
kt
(2)
y( 24) 400.
初始值:
y(0) 100,
代入(2)求得: 因此:
c 100, k (ln 4) / 24.
t ln 4 / 24
y 100e
.
我们要求的是:
y(12) 100e
(12 / 24) ln 溶液浓度
如果有一个实际问题,要找一个量 y , 与另一个量 t(时间或其他变量)的关系, 这种关系涉及量 y 在每个 t 时的瞬时变化率, 而且这个瞬时变化率与量 y 与 t 的关系可以 确定,那么这样的问题通常可以通过微分 方程来解决。 利用微分方程解决这样的问题的一般 步骤如下: (分为六步)
第一步:
题目:一列火车从静止开始启动,均匀地加速,
五分钟时速度达到 300 千米。问:这段时间内 该火车行进了多少路程?
例1 火车启动
解 这个问题相对比较简单,问题与“加速”、 “速度”有关,所以与导数有关; 涉及的量为: “时间”(小时),“路程”(千米),“速 度”(千米/小时),“加速度”(常数 a );
例2 细菌增长
解 这个问题也比较简单。 问题与“增长率”有关,所以与导数有关;
涉及的量为: “时间”(小时),“细菌总数”(个), “速度”(个/小时); 有(待定)函数关系的两个量定为: 细菌总数 y ,时间 t ; 涉及的原则或物理定律: 导数=增长率.
微分方程(组)模型

③
(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例
微分方程模型

6.1 微分方程模型的建模步骤 6.2 作战模型
6.3 传染病模型 习题
6.1 微分方程模型的建模步骤
例1 某人的食量是10467焦/天,其中5038焦/天用于基本的新
陈代谢(即自动消耗)。在健身训练中,他每天大约每千克
体重消耗69焦的热量。 假设以脂肪形式贮藏的热量100%地有效,而1千克脂肪含 热量41868焦,试研究此人的体重随时间变化的规律。
模型分析
甲乙两支部队互相交战,在整个战争期间,双方的兵力 在不断发生变化,而影响兵力变化的诸多因素转化为数量非 常困难。为此,我们作如下假定把问题简化。
模型假设
1. x(t) , y(t) 表示甲乙双方在时刻 t 的人数, x(0)=x0 ,y(0)=y0 表示甲乙双方开战时的人数,x0 > 0, y0 >0; 2.设x(t) , y(t)是连续变化的,并且充分光滑; 3.每一方的战斗减员率取决于双方的兵力,不妨以f(x,y) ,
投入多大的初始兵力。不妨设 100 x0
S 活动区域 x 0.1
p, 0.1 rx, x
ry 2
, 平
平方千米,乙方射击的有效面积 1 sy
y0 2 0.1 0.1 106 100 x 2 1 100 0
2
方米,则可得乙方获胜的条件为:
a
时甲方兵力
降为“零”,从而乙方获胜。同理可知,K 0
甲方获胜。而当 K 0 时,双方战平。 2 2 甲方获胜的充要条件为 bx0 ay0 0
时,
代入a 、b 的值,有甲方获胜的充要条件为
2 2 rx p x x 0 r y p y y 0
故可找到一个用于正规作战部队的综合战斗力的评价函数:
微分方程模型方法

物理现象模型
总结词
物理现象模型是利用微分方程来描述物理现象的动态变化过程,如力学、电磁学、光学 等。
详细描述
物理现象模型可以帮助科学家深入理解物理现象的本质和规律,预测新现象和新技术的 发展。例如,通过建立微分方程来描述电磁波的传播过程,可以研究电磁波的传播规律
和特性。
05 微分方程模型的发展趋势 与挑战
人口动态模型
总结词
人口动态模型是利用微分方程来描述人 口数量随时间变化的规律,预测未来人 口规模和结构。
VS
详细描述
人口动态模型可以用来研究人口增长、出 生率、死亡率、迁移率等指标的变化趋势 ,为政策制定者提供依据,以制定合理的 计划生育政策。例如,Logistic模型是一 种常用的人口动态模型,通过建立微分方 程来描述人口数量的增长规律。
THANKS FOR WATCHING
感谢您的观看
数学软件
选择适合的数学软件,如MATLAB、 Python等,以便进行模型建立和求解。
建立微分方程模型
模型类型
根据问题类型和目标,选择合适的微分方程模型类型,如常微分方程、偏微分方 程等。
参数估计
根据收集到的数据和信息,估计模型中的参数,使模型能够更好地描述实际问题 。
03 微分方程模型的求解方法
确定研究范围
根据问题与目标,确定研究的范围和 边界条件,为建立模型提供基础。
收集数据与信息
数据来源
根据研究问题,确定合适的数据来源,如实验数据、观测数据、历史数据等。
数据处理
对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值剔除等,以 确保数据质量。
选择合适的数学工具
数学基础
根据问题类型和目标,选择合适的数 学基础,如线性代数、微积分、常微 分方程等。
第四章 微分方程数学模型

3)、若s0
1
, 则i(t )先增加,当 s
1
1
时,i(t )达到最大
im 1
(1 ln s0 ), 然后减小趋于0, s(t ) s
若s0
1
, 则i(t )单调趋于0,(i)单调趋于s s
i0
i0
1
i
1
i
1
O
1
1
1
t
i0
O
t
O
t
1 1 i ( ) 0 1
1 1
1 ~ 阈值
1 i (t )
感染期内有效接触感染的 i0小 i(t )按S曲线增长 健康人数不超过病人数
直接求解方程,亦可得到上述结果
di i (1 i ) i dt i (0) i0
时
i0 i (t ) i0 t 1
1
时
1 ( ) t e i(t ) i 0
x s0
i0小, 0 1 s
x x ln(1 ) 0 s0 1
x x2 x ( 2)0 s0 2 s 0 1
x 2s0 ( s0
1
)
令 s0 1 , 又 较小, s0 1)
x 2
模型检验 医疗机构一般依据r(t)来统计疾病的波及人数 ,从广 义上理解,r(t)为t时刻已就医而被隔离的人数,是康 复还是死亡对模型并无影响。
代数方程组 f ( x, y ) 0, g ( x, y ) 0. 的实根x = x0, y = y0称为方程(4-3)的平衡点, 记作P0 (x0, y0). 它也是方程(4-3)的解.
微分方程(模型)

dx 2 或 x 0.03 dt 100 t 这是一阶线性非齐次方程,且有初值条件 x(0) 10,;利用8.3节的公式(5),可得此 C 方程的通解:x (t ) 0.01(100 t ) (100 t ) 2 有初值条件可得C 9 10 4,所以容器内含盐 量x随时间t的变化规律为 9 10 4 x 0.01(100 t ) 2 (100 t )
微分方程模型
重庆邮电大学
数理学院
引言
微分方程模型
当我们描述实际对象的某些特性随时间(空 间)而演变的过程、分析它的变化规律、预测它 的未来形态、研究它的控制手段时。通常要建立 对象的动态模型。
在研究某些实际问题时,经常无法直接得 到各变量之间的联系,问题的特性往往会给出关 于变化率的一些关系。利用这些关系,我们可以 建立相应的微分方程模型。在自然界以及工程技 术领域中,微分方程模型是大量存在的。它甚至 可以渗透到人口问题以及商业预测等领域中去, 其影响是广泛的。
四. 悬链线方程问题
将一均匀柔软的绳索两端固定,使之仅受重力的作 用而下垂,求该绳索在平衡状态下的曲线方程(铁塔 之间悬挂的高压电缆的形状就是这样的曲线)。 解 以绳索所在的平面为xoy 平面,设绳索最低点 为y轴上的P点,如图8-1所示。考察绳索上从点p到 l 另一点Q(x,y)的一段弧 PQ ,该段弧长为 ,绳索线密 度为 l ,则这段绳索所受重力为gl 。由于绳索是软 的,
y x 2 2.
微分方程的几个应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一. 嫌疑犯问题
微分方程模型介绍

微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
数学建模微分方程模型

我国是世界第一人口大国,地球上每九 个人中就有二个中国人,在20世纪的一段 时间内我国人口的增长速度过快,如下表:
年 1908 1933 4.7 1953 6.0 1964 7.2 1982 10.3 1990 11.3 2000 12.95
人口(亿)3.0
有效地控制人口的增长,不仅是使我国全面进 入小康社会、到21世纪中叶建成富强民主文明的社 会主义国家的需要,而且对于全人类社会的美好理 想来说,也是我们义不容辞的责任。
1.人口模型
问题的提出 假设和定义 模型的建立 分析和求解 结论和讨论
1 问题的提出
人口问题是当今世界上最令人关注的问题之一, 一些发展中国家的人口出生率过高,越来越威胁着 人类的正常生活,有些发达国家的自然增长率趋于 零,甚至变为负数,造成劳动力紧缺,也是不容忽 视的问题。另外,在科学技术和生产力飞速发展的 推动下,世界人口以空前的规模增长,统计数据显 示:
模型的缺点
缺点:当t→∞时,I(t) → n,这表示所有的人最
终都将成为病人,这一点与实际情况不 符合
原因:这是由假设〔1)所导致,没有考虑病人可
以治愈及病人病发身亡的情况。 思考题:考虑有病人病发身亡的情况,再对模型 进行修改。
模型三 有些传染病(如痢疾)愈后免疫力很低,还有可能再
次被传染而成为病人。 模型假设: (1)健康者和病人在总人数中所占的比例分别为s(t)、i(t), 则: s(t)+i(t)=1 (2)一个病人在单位时间内传染的人数与当时健康人数成 正比,比例系数为k (3)病人每天治愈的人数与病人总数成正比,比例系数为 μ(称日治愈率),病人治愈后成为仍可被感染的健康者, 称1/ μ为传染病的平均传染期(如病人数保持10人,每 天治愈2人, μ =1/5,则每位病人平均生病时间为 1/ μ =5天)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模型 13.人体注射葡萄糖溶液时,血液中葡萄糖浓度g(t)的增长率与注射速率r 成正比,与人体血液容积v 成反比,而由于人体组织的吸收作用,g(t)的减少率与g(t)本身成正比。
分别在以下几种假设下建立模型,并讨论稳定情况。
(1)人体血液容积v 不变。
(2)v 随着注入溶液而增加。
(3)由于排泄等因素v 的 增加有极限值
解:模型假设:
本模型中主要符号说明为:
葡萄糖浓度g(t)
注射速率r
人体血液容积v
基本模型为:
g k V
r k dt dg 21-= (1k ,02>k ,常数) ⑴ (1)V 为常数时,平衡点V k r k g 210=
稳定。
如果以g 为横轴、
dt dg 为纵轴作出方程的图形(图1),可以分析葡萄糖浓度增长速度dt
dg 随着g 的增加而变化的情况,从而大概地看出g(t)的变化规律。
令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100-0.5g,{g,0,100},PlotStyle->{RGBColor[1,0,0]}]
得到:
图1
dt
dg ~g 曲线 再利用matlab 在操作窗口中输入以下代码命令:
g=dsolve('Dg=k1*r/v-k2*g','g(0)=g0','t')
其解为
g =k1*r/v/k2+exp(-k2*t)*(-k1*r+g0*v*k2)/v/k2
整理得到:
2
20112)(vk vk g r k e v r k t g t
k +-+=- ⑵ 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100+Exp[-0.5t],{t,0,100},PlotStyle->{RGBColor[1,0,0]}]
得到:
图2 g ~t 曲线
由图可以知道它在平衡点V k r k g 210=
稳定。
(2)不妨设
β=dt
dV (0>β,常数) ⑶ 方程⑴,⑵不存在平衡点。
若由⑵解出t V t V β+=0)(代入⑴,得到 g k t
V r k dt dg 201-+=β ⑷ 则⑷不能是自治方程。
因为平衡点及稳定性的概念只是对自治方程而言才有意义,而⑷不能是自治方程,所以不能考虑它的稳定性。
(3)不妨设
V )(V dt
dV -=1μ (0>μ,常数) ⑸ 如果以V 为横轴、dt
dV 为纵轴作出方程的图形(图3),可以分析人体血液容积V 增长速度dt
dV 随着V 的增加而变化的情况,从而大概地看出V(t)的变化规
律。
令5.0=u ,20001=V ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.5(2000-v),{v,0,2000},PlotStyle->{RGBColor[0,1,0]}]
得到:
图3
dt
dV ~V 曲线 再利用matlab 在操作窗口中输入以下代码命令:
v=dsolve('Dv=u*(v1-v)','v(0)=v0','t')
得到:
v =v1+exp(-u*t)*(-v1+v0)
整理得到: t e V V V t V μ---=)()(011 ⑹
令5.0=u ,20001=V ,,利用Mathematica 在操作窗口中输入以下代码命令: Plot[2000-Exp[-0.5t](2000-1000),{t,0,100},PlotStyle->{RGBColor[0,1,0]}] 得到:
图4 V ~t 曲线
由图可以知道它在平衡点1V V =稳定.
方程⑴,⑸存在平衡点:),(),(1121**V V k r k V g =,它是稳定的,若由⑸解出t e V V V t V μ---=)()(011代入⑴,得到:
g k e
V V V r k dt dg ut 20111)(---=- ⑺ 则⑺不能是自治方程,所以不能考虑它的稳定性。