数学建模差分方程模型
数学建模中的差分方程模型

数学建模中的差分方程模型数学建模是一种将实际问题转化为数学模型并寻求与之相连的数学方法的学科,不仅仅在理论研究上有很大的应用,也在实际生活中有着广泛的应用。
在各种数学模型中,差分方程模型也是一种很重要的模型。
本文将结合实例,介绍差分方程模型的定义、建立、求解以及应用。
差分方程模型定义差分方程模型是一种通过离散化的方法,将连续时间问题转化为离散时间问题,来描述变量随时间的变化规律的数学模型。
这种数学模型以时间为自变量,以某个状态量为因变量,由一定的关系式组成。
例如:y(n+1)=ay(n)+b,式子中y(n)代表第n时刻系统状态,y(n+1)代表第n+1时刻系统状态,a和b为常数。
差分方程模型建立建立差分方程模型的关键是将实际问题中的连续变化离散化。
一般情况下,对于所建立的模型,首先要确定它的思路和范围,然后根据实际情况,确定差分方程的形式。
此外,还需要进行参数的估计和参数变化的分析,以及对模型精确性的验证。
以物理学中的简谐振动为例,建立一个差分方程模型描述其运动,即一个质点在回复力作用下以简谐运动形式振动。
设t为时间,y为质点的位移,v为质点的速度,a为质点的加速度,则有:$$y=n\Delta y \\v=\dfrac{y(n+1)-y(n-1)}{2\Delta t} \\a=\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2}$$其中n为时间步长,$\Delta t$为时间间隔。
我们利用受力平衡的原理,即简谐振动中的$F=-ky$得到:$$\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2} = -\dfrac{k}{m}y(n)$$将$\alpha=\dfrac{k}{m}$带入上式得到:$$y(n+1)-2(1+\alpha)y(n)+y(n-1) = 0$$此时,我们便成功地建立了描述简谐振动的差分方程模型。
差分方程模型求解对差分方程模型求解通常有两种方法:一种是使用递推公式进行求解,另一个方法是使用其它数学方法,如拉普拉斯变换或离散傅立叶变换等。
差分方程模型的基本概念

预测经济趋势
通过建立差分方程模型,可以对 未来的经济趋势进行预测,帮助 决策者制定相应的经济政策。
评估经济政策
差分方程模型可以用来评估不同 经济政策的实施效果,为政策制 定者提供参考依据。
在物理学中的应用
描述振动现象
差分方程模型可以用来描述物体的振动规律,如弹簧振荡、单摆 等。
预Байду номын сангаас波动传播
在声学和波动理论中,差分方程模型可以用来描述波动传播的规 律,如声波、电磁波等。
可以采用动态模型来反映数据的变化趋势,减少时间滞后的影 响。
可以利用大数据技术来处理大规模的数据集,提高模型的预测 精度和稳定性。
可以尝试优化参数估计方法,例如采用全局优化算法或贝叶斯 推断等方法,以提高参数估计的准确性和稳定性。
THANKS FOR WATCHING
感谢您的观看
确定差分关系
根据时间序列数据的特性,确定合适的差分关系,以描述数据的变化规律。差分关系通常表示为变量在不同时间 点的变化量或变化率。
建立差分方程模型
根据变量和参数建立模型
根据确定的变量和参数,建立差分方程模型,以描述变量的变化规律。
验证模型的适用性
建立差分方程模型后,需要验证模型的适用性,确保模型能够准确描述实际问题的变化规律。
Python
使用Python的数值计算库,如NumPy和 SciPy,求解差分方程。
Mathematica
使用Mathematica的符号计算和数值计算功 能求解差分方程。
04 差分方程模型的应用
在经济学中的应用
描述经济周期
差分方程模型可以用来描述经济 活动的周期性变化,如经济增长、 通货膨胀、就业率等的时间序列 数据。
数学建模:差分方程模型

差分方程建模
•处理动态的离散型的问题
•处理对象虽然涉及的变量(如时间)是连续的,
但是从建模的目的考虑,把连续变量离散化更 为合适,将连续变量作离散化处理,从而将连 续模型(微分方程)化为离散型(差分方程)问题
差分方程模型
一、银行复利问题
二、抵押贷款买房问题
三、市场经济中的蛛网模型
四、减肥计划——节食与运动
当不稳定时政府能采取什么干预手段使之稳定
蛛网模型
xk~第k时段商品数量;yk~第k时段商品价格
消费者的需求关系
生产者的供应关系
y y0 0
需求函数
yk f ( xk )
减函数
供应函数 xk 1 h( yk ) 增函数
yk g ( xk 1 )
f g P0 x0
f与g的交点P0(x0,y0) ~ 平衡点 一旦xk=x0,则yk=y0,
P0是不稳定平衡点
P3 f P0 P1 x0 x
P3
P2
曲线斜率
K f Kg
P1 x1 x
g
P4
y0 0
P2
K f Kg
x2 x0 x3
方程模型 yk f ( xk )
在P0点附近用直线近似曲线
yk y0 ( xk x0 ) ( 0) xk 1 x0 ( yk y0 ) ( 0)
模 型 假 设
记号
1. 储蓄的年利率为 r 2. 任何时候都可以存款,但存款利息只 从下一时期开始计算,如时间段开始第 一天的存款即开始计算利息
y ( t ) : t期结束时的总存款
x ( t ) : 第t期内的新存款
模型
y(t ) (1 rn ) y(t 1) x(t )
(完整版)差分方程模型(讲义)

差分方程模型一. 引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。
1. 确定性连续模型1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。
2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。
3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。
4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。
2. 确定性离散模型1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。
2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。
3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。
4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。
随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。
在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。
有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。
例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。
这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。
二. 差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。
有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。
但是,往往都需要用计算机求数值解。
这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。
差分方程模型

差分方程模型
周家全
对连续型变化的问题而言, 常常可建立微分方程模型. 而对离散状态转移的问题, 则可建立差分方程模型. 差分方 程与常微分方程有很多类似的性质和结论.首先引入差分的 概念.
1 差分定义及其性质
定义 设函数 y = y(x) 在等距节点 xi = x0 + ih ( i = 0,1, , n)
对于一般的差分方程 xn+2 + axn+1 + bxn = f 来讲, 其平衡 点的稳定性问题可以同样给出. 二阶方程的上述结果可以推
广到 n 阶线性差分方程, 即稳定平衡点的条件是特征根: n
次代数方程的根 λi (i = 1, 2, , n) 均有| λi |< 1.
4 经济学中的蛛网模型
1. 提出问题 在自由竞争的社会中, 很多领域会出现循环波动的现象. 在经济领域中, 可以从自由集市上某种商品的价格变化看到 如下现象:在某一时期, 商品的上市量大于需求, 引起价格 下跌, 生产者觉得该商品无利可图, 转而经营其它商品;一
解
Δf (0) = f (0.5) − f (0) = 0.75 ,
-2-
洛阳理工学院数学建模竞赛培训教案
Δf (0.5) = f (1) − f (0.5) = 1.25
周家全
Δ2 f (0)= Δ(Δf (0)) = Δf (0.5) − Δf (0) = 1.25 − 0.75 = 0.5
计算较多点的差分可按差分表进行, 容易看出表中每一 个需要计算的差分值分别等于其左侧的数减去左上侧的 数.每个点 xi 处的各阶差分位于与主对角线平行的斜线上.
(I) 先求解对应的特征方程
a0λn + a1λn−1 + + a0 = 0
7.数学建模-差分方程法

pt 发生动态等幅振荡;
ab t ) p* (5) 当 0 < ab < 2 , pt ( A1 sin kt A2 cos kt)( 2 ab ab t 1 ( ) 为衰减因子 2 2
pt → p*
( t → + ∞ ) , pt 动态发展趋于稳定 .
5.差分形式的生物数量 ic(阻滞增长)模型及其稳定性研究 描述生物生长受到环境约束的微分方程模型是 Logistic(阻滞增 长)模型 。其形式是 : y
0
这时还贷公司需要还清银行的债务的时限变为:
b ln b ry0 x 503.5 ( 半月) 21年 . ln(1 r )
这表明还贷公司只用 21 年就可还清银行的债务, 由此 , 还贷公司赚 了购房人 一年的钱: 24 × 316 = 7584 ( 元 ) . 故问题 (2) 的解答是 : 此方案对还贷公司而言是有利可图的 。
模型II . 模型假设: (1) t 时刻的商品价格 pt 是商品数量 xt 的直线下降函数: pt = pM - a xt ; (2) 这一时期的商品数量 xt 是前两个时期的商品价格 pt-1 与 pt-2 的 算术平均值的直线上升函数(企业对市场的分析、判断应更成 b( pt 1 pt 2 ) 熟一些): 模型建立:
p ( 0 ) = p0 ,p(1) = p1 ( 初始价格 ) . (二阶线性常系数差分方程)
r1, 2
ab ab(ab 8) 4
p M axm p* 1 ab
(2) 当 ab = 8 时,
ab t pt ( A1 A2 t )( ) p * ( A1 A2 t )(2) t p * 4 ab t ) p* (3) 当 ab < 8 时, pt ( A1 sin kt A2 cos kt)(
数学建模分类方法大全

23,混合泳接力模型
24,投入产出模型
25,三级火箭模型
26,糖尿病模型
27,传染病模型
28,生物种群模型
29,人口模型
30,分子模型
31,扫雪模型
32,商人过河问题
196
冲突目标
Minmax与maxmin
机会约束
约束满足概率性>P
矛盾约束
约束相互矛盾
单纯形法
木匠生产模型
注意步骤性。
215
组合模型
参数模型
动态规划
决策法
背包问题
排序问题
多步骤形的规划
数值搜索法
工业流程优化
黄金分割搜索法
还有二分搜索法
233
网络流
最大树
最大流
最短路
关键路线法
网络计划
布点问题
中心问题
重心问题
384
最优化
模拟退火法
神经网络
遗传算法
分治算法
差分进化
蚁行算法
粒子群
不确定
模型
灰色系统
数理统计
模糊数学
聚类分析
无分类
模型名称
所在目录
1,国有企业业绩分化的数学模型
2,打假问题的机理数学分析
3,足球比赛排名问题
4,大象群落的稳定性分析
5,火车便餐最有价格方案
6,影院最优设计方案
7,国有企业业绩分化的数学模型
数学建模分类方法大全
类别
类别(2)
模型名称
关键点
备注
参考书目
复杂系统
库存模型
排队模型
可靠系统
差分方程模型
动力系统类
酵母菌增长模型
差分方程数学建模举例

差分方程建模举例差分方程建模方法的思想与与一般数学建模的思想是一致的,也需要经历背景分析、确定目标、预想结果、引入必要的数值表示(变量、常量、函数、积分、导数、差分、取最等)概念和记号、几何形式(事物形状、过程轨迹、坐标系统等),也就是说要把事物的性态、结构、过程、成分等用数学概念、原理、方法来表现、分析、求解。
当然,由于差分方程的特殊性,首先应当把系统或过程进行特别分解,形成表现整个系统的各个部分的离散取值形式,或形成变化运动过程的时间或距离的分化而得到离散变量。
然后通过内在的机理分析,找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程。
另外,有时有可能通过多个离散变量的关系得到我们关心的变量的关系,这实际上建立的是离散向量方程,它有着非常重要的意义。
有时还需要找出决定变量的初始条件。
有时还需要将问题适当分成几个子部分,分别求解。
模型1 种群生态学中的虫口模型:在种群生态学中,考虑像蚕、蝉这种类型的昆虫数目的变化 ,他的变化规律是:每年夏季这种昆虫成虫产卵后全部死亡,第二年春天每个虫卵孵化成一个虫子。
建立数学模型来表现虫子数目的变化规律。
模型建立:假设第n 年的虫口数目为n P ,每年一个成虫平均产卵c 个(这个假设有点粗糙,应当考虑更具体的产卵分布状况),则有:n n cP P =+1,这是一种简单模型;如果进一步分析,由于成虫之间会有争斗以及传染病、天敌等的威胁,第n+1年的成虫数会减少,如果考虑减少的主要原因是虫子之间的两两争斗,由于虫子配对数为)1(21-n n p p 221n p ≈,故减少数应当与它成正比,从而有: 21n n n bP cP P -=+这个模型可化成:)1(1n n n x x x -=+λ,这是一阶非线性差分方程。
这个模型的解的稳定性可以用相应一阶差分方程的判断方法来获得。
如果还考虑其它的影响成虫孵卵及成活的因素的定量关系,这个模型在此基础上仍可进一步改进,更加符合实际情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yk
x k 1 bk(1 x x k) (2 )
记br1 一阶(非线性)差分方程
(1)的平衡点y*=N
(2)的平衡点 x* r 11 r1 b
讨论 x* 的稳定性
补充知识
一阶非线性差分方程 xk1f(xk)(1)的平衡点及稳定性 (1)的平衡点 x*——代数方程 x=f(x)的根 (1)的近似线性方程 x k 1 f(x * ) f(x * )x k ( x * )( 2 ) 稳定性判断 x*也是(2)的平衡点
需求函数不变 y k y 0 (x k x 0 ) 2 x x x 2 ( 1 ) x , k 1 , 2 ,
k 2 k 1 k
0
二阶线性常系数差分方程
x0为平衡点 研究平衡点稳定,即k, xkx0的条件
模型的推广 2 x k 2 x k 1 x k 2 ( 1 ) x 0
• 运动(内容同前) C 80 0 0 .00 2 78 5 16(千 80 )
3 差分形式的阻滞增长模型
连续形式的阻滞增长模型 (Logistic模型)
x(t) ~某种群 t 时刻的数量(人口)
x (t)rx(1 x) N
t, xN, x=N是稳定平衡点(与r大小无关)
离散
yk ~某种群第k代的数量(人口)
y
g
需求曲线变为水平 y0 以行政手段控制价格不变
0
2. 使 尽量小,如 =0 y
供应曲线变为竖直
靠经济实力控制数量不变
0
f
x g
f
x0
x
模型的推广 生产者管理水平提高 xk1h(yk)
• 生产者根据当前时段和前一时 段的价格决定下一时段的产量。
xk1
h
y k
y k1
2
设供应函数为 x k 1 x 0 [y k ( y k 1 ) /2 y 0 ]
7.0 3.0 4.4
2.5
7.9
基本
w(k1)w(k)c(k1) t~每周运动
模型
(t)w(k) 时间(小时)
取 t 0.00 ,即 3 t24( 0 .0) 25 t( 0 .0)2
w (k n ) (1 )n [w (k)C m ]C m
7 5 0 .9n 7 (92 0 4.6 4 ) 4.6 4 n14
差分方程模型
1 市场经济中的蛛网模型 2 减肥计划——节食与运动 3 差分形式的阻滞增长模型 4 按年龄分组的种群增长
1 市场经济中的蛛网模型
供大于求
价格下降
现 象
数量与价格在振荡
增加产量
价格上涨
减少产量 供不应求
描述商品数量与价格的变化规律
问 题 商品数量与价格的振荡在什么条件下趋向稳定
当不稳定时政府能采取什么干预手段使之稳定
差分方程建模:
在实际建立差分方程模型时,往往要将变化过程进行划分, 划分成若干时段,根据要解决问题的目标,对每个时段引入 相应的变量或向量,然后通过适当假设,根据事物系统的实 际变化规律和数量相互关系,建立每两个相邻时段或几个相 邻时段或者相隔某几个时段的量之间的变化规律和运算关系 (即用相应设定的变量进行四则运算或基本初等函数运算或 取最运算等)等式(可以多个并且应当充分全面反映所有可 能的关系),从而建立起差分方程。或者对事物系统进行划 分,划分成若干子系统,在每个子系统中引入恰当的变量或 向量,然后分析建立起子过程间的这种量的关系等式,从而 建立起差分方程。
蛛网模型
xk~第k时段商品数量;yk~第k时段商品价格
消费者的需求关系 需求函数 yk f(xk) 减函数
生产者的供应关系 供应函数 xk1h(yk) 增函数
y
f
g
y0
P0
0
x0
yk g(xk1)
f与g的交点P0(x0,y0) ~ 平衡点 一旦xk=x0,则yk=y0,
xk+1,xk+2,…=x0, yk+1,y数学模型,对它的应用也应当 遵从一般的数学建模的理论与方法原则。同时注意与其它数 学模型方法结合起来使用,因为一方面建立差分方程模型所 用的数量、等式关系的建立都需要其他的数学分析方式来进 行;另一方面,由差分方程获得的结果有可以进一步进行优 化分析、满意度分析、分类分析、相关分析等等
c(k1) 1[w(k)1] w (k)w (0)k
c(k1) w (0) 1(1k)
1 8000
0.025
120 200 k 00Cm 10000 k 10
第一阶段10周, 每周减1千克,第10周末体重90千克
吸收热量为 c ( k 1 ) 1 2 2 k ,k 0 0 0 , 1 , 0 0 9
xk 1x0(xkx0)x k 1 x 0 ()k(x 1 x 0 )
1 (1/) xk x0 P0稳定 Kf Kg 1 (1/) xk P0不稳定 Kf Kg
方程模型与蛛网模型的一致 K f 1/ Kg
结结果果解解释释
考察 , 的含义
xk~第k时段商品数量;yk~第k时段商品价格
3)给出达到目标后维持体重的方案。
基本模型
w(k) ~ 第k周(末)体重 c(k) ~第k周吸收热量 w ( k 1 ) w ( k ) c ( k 1 ) w ( k )
1800(千 0 克 /千卡) ~ 代谢消耗系数(因人而异)
1)不运动情况的两阶段减肥计划 • 确定某甲的代谢消耗系数 每周吸收20000千卡 w=100千克不变
背 正常; BMI>25 ~ 超重; BMI>30 ~ 肥胖. 景 • 多数减肥食品达不到减肥目标,或不能维持
• 通过控制饮食和适当的运动,在不伤害身体 的前提下,达到减轻体重并维持下去的目标
分 • 体重变化由体内能量守恒破坏引起 析 • 饮食(吸收热量)引起体重增加
• 代谢和运动(消耗热量)引起体重减少
应用:差分方程模型有着广泛的应用。实际上,连续变量
可以用离散变量来近似和逼近,从而微分方程模型就可以近 似于某个差分方程模型。差分方程模型有着非常广泛的实际 背景。在经济金融保险领域、生物种群的数量结构规律分析、 疾病和病虫害的控制与防治、遗传规律的研究等许许多多的 方面都有着非常重要的作用。可以这样讲,只要牵涉到关于 变量的规律、性质,就可以适当地用差分方程模型来表现与 分析求解。
wwcw c 20000 0.025
w 80 01000 即每周每千克体重消耗 20000/100=200千卡
1)不运动情况的两阶段减肥计划
• 第一阶段: w(k)每周减1千克, c(k)减至下限10000千卡
w (k)w (k1)1 w ( k 1 ) w ( k ) c ( k 1 ) w ( k )
减肥计划
某甲体重100千克,目前每周吸收20000千卡热量, 体重维持不变。现欲减肥至75千克。
1)在不运动的情况下安排一个两阶段计划。 第一阶段:每周减肥1千克,每周吸收热量逐渐减 少,直至达到下限(10000千卡); 第二阶段:每周吸收热量保持下限,减肥达到目标
2)若要加快进程,第二阶段增加运动,试安排计划。
yky0(xkx0)
~ 商品数量减少1单位, 价格上涨幅度
xk 1x0(yky0)
~ 价格上涨1单位, (下时段)供应的增量
~ 消费者对需求的敏感程度 小, 有利于经济稳定
~ 生产者对价格的敏感程度 小, 有利于经济稳定
1 经济稳定
结果解释
经济不稳定时政府的干预办法
1. 使 尽量小,如 =0
x
蛛 网 模 型 yk f(xk) xk1h(yk) yk g(xk1)
设x1偏离x0
x 1 y 1 x 2 y 2 x 3
xk x0,yk y0
xk x0,yk y0
P 1 P 2 P 3 P 0P 1 P 2 P 3 P 0
P0是稳定平衡点
P0是不稳定平衡点
方程通解
xk
c1
k 1
c2
k 2
(c1, c2由初始条件确定)
1, 2~特征根,即方程 22 0的根
平衡点稳定,即k, xkx0的条件:
1, 2
1
()28
1,2
4
平衡点稳定条件 2
1, 2
2
比原来的条件 1放宽了
2 减肥计划——节食与运动
• 体重指数BMI=w(kg)/l2(m2). 18.5<BMI<25 ~
运动 t=24 (每周跳舞8小时或自行车10小时), 14周即可。
3)达到目标体重75千克后维持不变的方案
每周吸收热量c(k)保持某常数C,使体重w不变
w ( k 1 ) w ( k ) c ( k 1 ) ( t ) w ( k )
w w C ( t)w C(t)w • 不运动 C 80 0 0 .00 2 75 5 15(千 00 ) 卡 0
第二阶段19周, 每周吸收热量保持10000千卡, 体重按 w ( n ) 4 0 . 9 0 n 7 5 ( n 5 0 1 , 2 , , 1 )减9 少至75千克。
2)第二阶段增加运动的减肥计划 根据资料每小时每千克体重消耗的热量 (千卡):
跑步 跳舞 乒乓 自行车(中速) 游泳(50米/分)
过程时段或子系统的划分方式是非常非常重要的,应当结合 已有的信息和分析条件,从多种可选方式中挑选易于分析、 针对性强的划分,同时,对划分后的时段或子过程,引入哪 些变量或向量都是至关重要的,要仔细分析、选择,尽量扩 大对过程或系统的数量感知范围,包括对已有的、已知的若 干量进行结合运算、取最运算等处理方式,目的是建立起简 洁、深刻、易于求解分析的差分方程。
(1)n[w(k)C m]C m
以 0.02 ,5 1,C10代 00入 0 得
800m0
w (k n ) 0 .9n [ 7 w (k 5 ) 5] 0 50