实验四作业

实验四作业

实验四作业单一样本t检验

4.1.1.某品牌洗衣粉生产过程中的设计重量为500克,低于这一重量被认为是不合格产品。随机抽取了10袋洗衣粉,经过测量的洗衣粉重量数据。假定总体服从正态分布,显著性水平为0.05,检验该样本结果能否表示该生产过程运作正常?(基本数据见4-2.sav,洗衣粉重量)

不能

4.1.2.我国2011年城镇单位就业人员年平均工资为41047.1元,浙江省11座城市城镇单位就业人员年平均工资如数据4-3.sav所示,假定总体服从正态分布,显著性水平为0.05,检验浙江城镇单位就业人员年平均工资和全国年平均工资水平是否有显著性差异(基本数据见4-3.sav )。

有显著差异

重庆大学数学模型数学实验作业四讲解

开课学院、实验室:数统学院实验时间:2015年10月28日 课程名称数学实验实验项目 名称 种群数量的状态转移—— 微分方程 实验项目类型 验证演示综合设计其他 指导 教师 肖剑成绩 实验目的 [1] 归纳和学习求解常微分方程(组)的基本原理和方法; [2] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [3] 熟悉MATLAB软件关于微分方程求解的各种命令; [4] 通过范例学习建立微分方程方面的数学模型以及求解全过程; 通过该实验的学习,使学生掌握微分方程(组)求解方法(解析法、欧拉法、梯度法、改进欧拉法等),对常微分方程的数值解法有一个初步了解,同时学会使用MATLAB软件求解微分方程的基本命令,学会建 立微分方程方面的数学模型。这对于学生深入理解微分、积分的数学概念,掌握数学的分析思维方法,熟 悉处理大量的工程计算问题的方法是十分必要的。 实验内容 1.微分方程及方程组的解析求解法; 2.微分方程及方程组的数值求解法——欧拉、欧拉改进算法; 3.直接使用MATLAB命令对微分方程(组)进行求解(包括解析解、数值解); 4.利用图形对解的特征作定性分析; 5.建立微分方程方面的数学模型,并了解建立数学模型的全过程。 基础实验 一、问题重述 1.求微分方程的解析解, 并画出它们的图形, y’= y + 2x, y(0) = 1, 0

作业调度_实验报告

实验名 称 作业调度 实验内容1、设计可用于该实验的作业控制块; 2、动态或静态创建多个作业; 3、模拟先来先服务调度算法和短作业优先调度算法。 3、调度所创建的作业并显示调度结果(要求至少显示出各作业的到达时间,服务时间,开始时间,完成时间,周转时间和带权周转时间); 3、比较两种调度算法的优劣。 实验原理一、作业 作业(Job)是系统为完成一个用户的计算任务(或一次事物处理)所做的工作总和,它由程序、数据和作业说明书三部分组成,系统根据该说明书来对程序的运行进行控制。在批处理系统中,是以作业为基本单位从外存调入内存的。 二、作业控制块J C B(J o b C o nt r o l Bl o ck) 作业控制块JCB是记录与该作业有关的各种信息的登记表。为了管理和调度作业,在多道批处理系统中为每个作业设置了一个作业控制块,如同进程控制块是进程在系统中存在的标志一样,它是作业在系统中存在的标志,其中保存了系统对作业进行管理和调度所需的全部信息。在JCB中所包含的内容因系统而异,通常应包含的内容有:作业标识、用户名称、用户帐户、作业类型(CPU 繁忙型、I/O 繁忙型、批量型、终端型)、作业状态、调度信息(优先级、作业已运行时间)、资源需求(预计运行时间、要求内存大小、要求I/O设备的类型和数量等)、进入系统时间、开始处理时间、作业完成时间、作业退出时间、资源使用情况等。 三、作业调度 作业调度的主要功能是根据作业控制块中的信息,审查系统能否满足用户作业的资源需求,以及按照一定的算法,从外存的后备队列中选取某些作业调入内存,并为它们创建进程、分配必要的资源。然后再将新创建的进程插入就绪队列,准备执行。 四、选择调度算法的准则 1).面向用户的准则 (1) 周转时间短。通常把周转时间的长短作为评价批处理系统的性能、选择作业调度方式与算法的重要准则之一。所谓周转时间,是指从作业被提交给系统开始,到作业完成为止的这段时间间隔(称

操作系统实验四存储管理

师学院计算机系 实验报告 (2014—2015学年第二学期) 课程名称操作系统 实验名称实验四存储管理 专业计算机科学与技术(非师)年级2012级 学号B2012102147 姓名秋指导教师远帆 实验日期2015-05-20

图1 word运行情况 “存使用”列显示了该应用程序的一个实例正在使用的存数量。 5) 启动应用程序的另一个实例并观察它的存需求。 请描述使用第二个实例占用的存与使用第一个实例时的存对比情况: 第二个实例占用存22772K,比第一个实例占用的存大很多 4:未分页合并存。 估算未分页合并存大小的最简单法是使用“任务管理器”。未分页合并存的估计值显示在“任务管理器”的“性能”选项卡的“核心存”部分。 总数(K) :________220___________ 分页数:_____________________ 未分页(K) :_________34__________ 图2核心存

C 简单基本NTFS 30G 良好(系 统) D 简单基本NTFS 90G 良好 E 简单基本NTFS 90G 良好 F 简单基本NTFS 88 G 良好 图3磁盘情况 6:计算分页文件的大小。 要想更改分页文件的位置或大小配置参数,可按以下步骤进行: 1) 右键单击桌面上的“我的电脑”图标并选定“属性”。 2) 在“高级”选项卡上单击“性能选项”按钮。 3) 单击对话框中的“虚拟存”区域中的“更改”按钮。 请记录: 所选驱动器的页面文件大小: 驱动器:______________F_____________________ 可用空间:___________9825_____________________ MB 初始大小(MB) :_____ 2048______________________ 最大值(MB) :________4092_____________________ 所有驱动器页面文件大小的总数: 允的最小值:________16____________________ MB

下学期数学实验作业

实验一 图形的画法 1. 做出下列函数的图像: (1))2sin()(2 2--=x x x x y ,22≤≤-x (分别用plot 、fplot ) (2)2 2 /9/251x y +=(用参数方程) (3) 在同一图形窗口中,画出四幅不同图形(用subplot 命令): 1cos()y x =,2sin(/2)y x pi =-,23cos()y x x pi =-,sin()4x y e =(]2,0[π∈x ) 2 作出极坐标方程为)cos 1(2t r -=的曲线的图形. 3 作出极坐标方程为10/t e r =的对数螺线的图形. 4 绘制螺旋线?? ? ??===t z t y t x ,sin 4,cos 4在区间[0,π4]上的图形.在上实验中,显示坐标轴名称. 5 作出函数2 2 y x xye z ---=的图5形. 6 作出椭球面11 942 22=++z y x 的图形. (该曲面的参数方程为 ,cos ,sin sin 3,cos sin 2u z v u y v u x === (π π20,0≤≤≤≤v u ).) 7 作双叶双曲面13 .14.15.122 2222-=-+z y x 的图形. (曲面的参数方程是 ,csc 3.1,sin cot 4.1,cos cot 5.1u z v u y v u x === 其中参数πππ<<-≤

作业调度实验报告

实验二作业调度 一. 实验题目 1、编写并调试一个单道处理系统的作业等待模拟程序。 作业调度算法:分别采用先来先服务(FCFS,最短作业优先(SJF)、响应 比高者优先(HRN的调度算法。 (1)先来先服务算法:按照作业提交给系统的先后顺序来挑选作业, 先提交的先被挑选。 (2)最短作业优先算法:是以进入系统的作业所提出的“执行时间”为标准, 总是优先选取执行时间最短的作业。 (3)响应比高者优先算法:是在每次调度前都要计算所有被选作业(在后备队列中)的响应比,然后选择响应比最高的作业执行。 2、编写并调度一个多道程序系统的作业调度模拟程序。 作业调度算法:采用基于先来先服务的调度算法。可以参考课本中的方法进 行设计。 对于多道程序系统,要假定系统中具有的各种资源及数量、调度作业时必须考虑到每个作业的资源要求。 二. 实验目的: 本实验要求用高级语言(C语言实验环境)编写和调试一个或多个作业调度的模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解 三. 实验过程 < 一>单道处理系统作业调度 1)单道处理程序作业调度实验的源程序: zuoye.c 执行程序: zuoye.exe 2)实验分析:

1、由于在单道批处理系统中,作业一投入运行,它就占有计算机的一切资 源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到 满足,它所占用的CPU时限等因素。 2、每个作业由一个作业控制块JCB表示,JCB可以包含如下信息:作业名、 提交时间、所需的运行时间、所需的资源、作业状态、链指针等等。作业 的状态可以是等待W(Wait)、运行R(Run)和完成F(Finish)三种状态之一 每个作业的最初状态总是等待W 3、对每种调度算法都要求打印每个作业幵始运行时刻、完成时刻、周转时 间、带权周转时间,以及这组作业的平均周转时间及带权平均周转时间 3) 流程图: .最短作业优先算法 三.高响应比算法 图一.先来先服务流程图 4) 源程序: #in elude #in elude #in elude vconi o.h> #defi ne getpeh(type) (type*)malloc(sizeof(type)) #defi ne NULL 0 int n; float T1=0,T2=0; int times=0;

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

计算机科学与技术学院实验报告 实验题目:实验四、进程同步实验学号: 日期:20120409 班级:计基地12 姓名: 实验目的: 加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥 操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。 实验内容: 抽烟者问题。假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。一个抽烟者有烟草,一个有纸,另一个有胶水。系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。这一过程重复进行。请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。 硬件环境: 处理器:Intel? Core?i3-2350M CPU @ 2.30GHz ×4 图形:Intel? Sandybridge Mobile x86/MMX/SSE2 内存:4G 操作系统:32位 磁盘:20.1 GB 软件环境: ubuntu13.04 实验步骤: (1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。

(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。 (3)新建Producer文件,首先定义producer 的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。 (4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。 运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。

北理工数学实验作业

一. 1. 1/e 2. 3 3.1 4.e3 5. ∞ 6. 0 7.∞ 8.0 9.1/2 10.0 11.e2c12.不存在13. 1/12 Matlab实验过程: 1.1/exp(1) syms n; f=(1-1/n)^n; limit(f,n,inf) ans = 1/exp(1) 2.3 syms n; f=(n^3+3^n)^(1/n); limit(f,n,inf) ans = 3 3. 1 syms n; f=(1+sin(2*n))/(1-cos(4*n)); limit(f,n,pi/4) ans = 1 4.e^3 syms x; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) ans = exp(3) 5.inf syms x; f=(x^2)*exp(1/(x^2));

limit(f,x,0) ans = Inf 6.0 syms x; f=(x^2-2*x+1)/(x^3-x); limit(f,x,1) ans = 7.inf syms x; f=((2/pi)*atan(x))^x; limit(f,x,+inf) ans = Inf 8.0 syms x y; f=(1-cos(x^2+y^2))/((x^2+y^2)*exp(x^2+y^2)); limit(limit(f,x,0),y,0) ans = 9.1/2 syms x; f=(1-cos(x))/(x*sin(x)); limit(f,x,0) ans = 1/2 10.0 syms x;

f=atan(x)/(2*x); limit(f,x,inf) ans = 11.exp(2*c) syms c; f=sym('((x+c)/(x-c))^x'); limit(f,'x',inf) ans = exp(2*c) 12.极限不存在 syms x; f=cos(1/x); limit(f,x,0) ans = limit(cos(1/x), x = 0) 13.1/12 syms x; f=1/(x*log(x)^2)-1/(x-1)^2; limit(f,x,1) ans = 1/12 二.观察函数logbx,当b=1/2,1/3,1/4和b=2,3,4时函数的变化特点,总结logbx的图形特点。

作业调度实验报告

作业调度实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二作业调度 一.实验题目 1、编写并调试一个单道处理系统的作业等待模拟程序。 作业调度算法:分别采用先来先服务(FCFS),最短作业优先(SJF)、响应比高者优先(HRN)的调度算法。 (1)先来先服务算法:按照作业提交给系统的先后顺序来挑选作业,先提交的先被挑选。 (2)最短作业优先算法:是以进入系统的作业所提出的“执行时间”为标准,总是优先选取执行时间最短的作业。 (3)响应比高者优先算法:是在每次调度前都要计算所有被选作业(在后备队列中)的响应比,然后选择响应比最高的作业执行。 2、编写并调度一个多道程序系统的作业调度模拟程序。 作业调度算法:采用基于先来先服务的调度算法。可以参考课本中的方法进行设计。 对于多道程序系统,要假定系统中具有的各种资源及数量、调度作业时必须考虑到每个作业的资源要求。 二.实验目的: 本实验要求用高级语言(C语言实验环境)编写和调试一个或多个作业调度的模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解三 .实验过程 <一>单道处理系统作业调度 1)单道处理程序作业调度实验的源程序: 执行程序: 2)实验分析:

1、由于在单道批处理系统中,作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所占用的 CPU 时限等因素。 2、每个作业由一个作业控制块JCB 表示,JCB 可以包含如下信息:作业名、提交时间、所需的运行时间、所需的资源、作业状态、链指针等等。作业的状态可以是等待W(Wait)、运行R(Run)和完成F(Finish)三种状态之一。每个作业的最初状态总是等待W 。 3、对每种调度算法都要求打印每个作业开始运行时刻、完成时刻、周转时间、带权周转时间,以及这组作业的平均周转时间及带权平均周转时间。 3)流程图: 二.最短作业优先算法 三.高响应比算法 图一.先来先服务流程图 4)源程序: #include <> #include <> #include <> #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 int n; float T1=0,T2=0; int times=0; struct jcb .\n",p->name); free(p); .wait...",time); if(times>1000) 代替 代替

操作系统实验报告4

《操作系统》实验报告 实验序号: 4 实验项目名称:进程控制

Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜ 修改后: #include #include int main(VOID) { STARTUPINFO si; PROCESS_INFORMA TION pi; ZeroMemory(&si,sizeof(si)); si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, "c:\\WINDOWS\\system32\\mspaint.exe", NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) { fprintf(stderr,"Creat Process Failed"); return -1; } WaitForSingleObject(pi.hProcess,INFINITE); printf("child Complete"); CloseHandle(pi.hProcess); CloseHandle(pi.hThread); } 在“命令提示符”窗口运行CL命令产生可执行程序4-1.exe:C:\ >CL 4-1.cpp

实验任务:写出程序的运行结果。 4.正在运行的进程 (2)、编程二下面给出了一个使用进程和操作系统版本信息应用程序(文件名为4-5.cpp)。它利用进程信息查询的API函数GetProcessVersion()与GetVersionEx()的共同作用。确定运行进程的操作系统版本号。阅读该程序并完成实验任务。 #include #include

数学实验作业题目(赛车跑道)

数学实验报告实验题目:赛车车道路况分析问题 小组成员: 填写日期 2012 年 4 月 20 日

一.问题概述 赛车道路况分析问题 现要举行一场山地自行车赛,为了了解环行赛道的路况,现对一选手比赛情况进行监测,该选手从A地出发向东到B,再经C、D回到A地(如下图)。现从选手出发开始计时,每隔15min观测其位置,所得相应各点坐标如下表(假设其体力是均衡分配的): 由D→C→B各点的位置坐标(单位:km) 假设:1. 车道几乎是在平原上,但有三种路况(根据平均速度(km/h)大致区分): 平整沙土路(v>30)、坑洼碎石路(10

2.估计车道的长度和所围区域的面积; 3.分析车道上相关路段的路面状况(用不同颜色或不同线型标记出来); 4.对参加比赛选手提出合理建议. 二.问题分析 1.模拟比赛车道的曲线:因为赛道散点分布不规则,我们需要用光滑曲线来近似 模拟赛道。由于数据点较多,为了避免龙格现象,应采用三次样条插值法来对曲线进行模拟(spline命令)。全程曲线为环路,我们需要对上下两部分分别 模拟,设模拟出的曲线为P:。 2.把A到B点的曲线分成若干小段: 赛道的路程L:取dL=,对模拟出的整条曲线求线积分,即 所围区域的面积:用上下部分曲线的差值对求定积分,即 3.用样条插值法模拟出比赛车道曲线后,根据曲线分别计算出原数据中每两点 ()间的路程,即求线积分 由于每两点间时间间隔相同且已知(15min),故可求出每段路程的平均速度 易知即为的积分中值 将此速度近似作为两点间中点时刻的速度,然后再次采用样条插值法,模拟出全过程的图像。而根据求出的与之间的关系,再次采用样条插值法,即可模拟出全过程的图像 4. 由赛道曲线可求出赛道上任一点到点的路程

操作系统实验报告-作业调度

作业调度 一、实验目的 1、对作业调度的相关内容作进一步的理解。 2、明白作业调度的主要任务。 3、通过编程掌握作业调度的主要算法。 二、实验内容及要求 1、对于给定的一组作业, 给出其到达时间和运行时间,例如下表所示: 2、分别用先来先服务算法、短作业优先和响应比高者优先三种算法给出作业的调度顺序。 3、计算每一种算法的平均周转时间及平均带权周转时间并比较不同算法的优劣。

测试数据 workA={'作业名':'A','到达时间':0,'服务时间':6} workB={'作业名':'B','到达时间':2,'服务时间':50} workC={'作业名':'C','到达时间':5,'服务时间':20} workD={'作业名':'D','到达时间':5,'服务时间':10} workE={'作业名':'E','到达时间':12,'服务时间':40} workF={'作业名':'F','到达时间':15,'服务时间':8} 运行结果 先来先服务算法 调度顺序:['A', 'B', 'C', 'D', 'E', 'F'] 周转时间: 带权周转时间:

短作业优先算法 调度顺序:['A', 'D', 'F', 'C', 'E', 'B'] 周转时间: 带权周转时间:1. 响应比高者优先算法 调度顺序:['A', 'D', 'F', 'E', 'C', 'B'] 周转时间: 带权周转时间: 五、代码 #encoding=gbk workA={'作业名':'A','到达时间':0,'服务时间':6,'结束时间':0,'周转时间':0,'带权周转时间':0} workB={'作业名':'B','到达时间':2,'服务时间':50} workC={'作业名':'C','到达时间':5,'服务时间':20} workD={'作业名':'D','到达时间':5,'服务时间':10} workE={'作业名':'E','到达时间':12,'服务时间':40} workF={'作业名':'F','到达时间':15,'服务时间':8} list1=[workB,workA,workC,workD,workE,workF] list2=[workB,workA,workC,workD,workE,workF] list3=[workB,workA,workC,workD,workE,workF] #先来先服务算法 def fcfs(list): resultlist = sorted(list, key=lambda s: s['到达时间']) return resultlist #短作业优先算法 def sjf(list): time=0 resultlist=[] for work1 in list: time+=work1['服务时间'] listdd=[] ctime=0 for i in range(time): for work2 in list: if work2['到达时间']<=ctime: (work2) if len(listdd)!=0: li = sorted(listdd, key=lambda s: s['服务时间']) (li[0]) (li[0]) ctime+=li[0]['服务时间'] listdd=[]

操作系统实验四

青岛理工大学课程实验报告

算法描述及实验步骤 功能:共享存储区的附接。从逻辑上将一个共享存储区附接到进程的虚拟地址空间上。用于建立调用进程与由标识符shmid指定的共享内存对象之间的连接。 系统调用格式:virtaddr=shmat(shmid,addr,flag) 该函数使用头文件如下: #include #include #include (8)shmdt( ) 功能:用于断开调用进程与共享内存对象之间的连接,成功时返回0,失败返回-1。 系统调用格式: int shmdt(shmaddr) char *shmaddr;/*采用shmat函数的返回值*/ (9)shmctl( ) 功能:共享存储区的控制,对其状态信息进行读取和修改。用于对已创建的共享内存对象进行查询、设置、删除等操作。 系统调用格式:shmctl(shmid,cmd,buf) 该函数使用头文件如下: #include #include #include 2、步骤: (1)定义进程变量(2)定义两个字符数组 (3)创建管道(4)如果进程创建不成功,则空循环(5)如果子进程创建成功,pid为进程号(6)锁定管道 (7)给Outpipe赋值(8)向管道写入数据 (9)等待读进程读出数据(10)解除管道的锁定 (11)结束进程等待子进程结束(12)从管道中读出数据 (13)显示读出的数据(14)父进程结束 创建jincheng.c 插入文字

调 试 过 程 及 实 验 结 果 运行: 运行后: 总 结 (对实验结果进行分析,问题回答,实验心得体会及改进意见) 虽然对pipe()、msgget()、msgsnd()、msgrcv()、msgctl()、shmget()、shmat()、 shmdt()、shmctl()的功能和实现过程有所了解,但是运用还是不熟练,过去没 见过,所以运行了一个简单的程序。 利用管道机制、消息缓冲队列、共享存储区机制进行进程间的通信,加深了对 其了解。 (1)管道通信机制,同步的实现过程:当写进程把一定数量的数据写入pipe, 便去睡眠等待,直到读进程取走数据后,再把它唤醒。当读进程读一空pipe 时,也应睡眠等待,直到写进程将数据写入管道后,才将之唤醒,从而实现进 程的同步。 管道通信的特点:A管道是半双工的,数据只能向一个方向流动;需要双方通 信时,需要建立起两个管道;B. 只能用于父子进程或者兄弟进程之间(具有亲 缘关系的进程);C.单独构成一种独立的文件系统:管道对于管道两端的进程而

先来先服务FCFS和短作业优先SJF进程调度算法_实验报告材料

先来先服务FCFS和短作业优先SJF进程调度算法 1、实验目的 通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。 2、需求分析 (1) 输入的形式和输入值的范围 输入值:进程个数Num 范围:0

说明本程序中用到的所有抽象数据类型的定义、主程序的流程以及各程序模块之间的层次(调用)关系。 4、详细设计 5、调试分析 (1)调试过程中遇到的问题以及解决方法,设计与实现的回顾讨论和分析 ○1开始的时候没有判断进程是否到达,导致短进程优先算法运行结果错误,后来加上了判断语句后就解决了改问题。 ○2 基本完成的设计所要实现的功能,总的来说,FCFS编写容易,SJF 需要先找到已经到达的进程,再从已经到达的进程里找到进程服务时间最短的进程,再进行计算。 (2)算法的改进设想 改进:即使用户输入的进程到达时间没有先后顺序也能准确的计算出结果。(就是再加个循环,判断各个进程的到达时间先后,组成一个有序的序列) (3)经验和体会 通过本次实验,深入理解了先来先服务和短进程优先进程调度算法的思想,培养了自己的动手能力,通过实践加深了记忆。 6、用户使用说明 (1)输入进程个数Num

数学实验8月13日作业

1.取不同的初值计算下列平方和形式的非线性规划,尽可能求出所有局部极小点,进 而找出全局极小点,并对不同算法(搜索方向、搜索步长、数值梯度与分析梯度等)的结 果进行分析、比较。 (2). ( )( ) 2 2 2 22 121212min 12114949812324681x x x x x x +-++++-, (4).()()212222 23 12123min10010,1x x x x x x θ??????-++-+?????????????? ,其中 ()()()21112211 1 arc ,02,11arc ,0 22tg x x x x x tg x x x π θπ ?>??=??+

作业调度实验报告

实验项 目名称 作业调度 实验目的及要求一、实验目的: 1、通过模拟作业调度算法的设计加深对作业管理基本原理的理解。 2、深入了解批处理系统如何组织作业、管理作业和调度作业。 3、掌握作业调度算法。 二、实验要求: 1、编写程序完成实验内容; 2、对测试数据进行分析; 3、撰写实验报告。 实验内容1、设计可用于该实验的作业控制块; 2、动态或静态创建多个作业; 3、模拟先来先服务调度算法和短作业优先调度算法。 3、调度所创建的作业并显示调度结果(要求至少显示出各作业的到达时间,服务时间,开始时间,完成时间,周转时间和带权周转时间); 3、比较两种调度算法的优劣。 实验原理一、作业 作业(Job)是系统为完成一个用户的计算任务(或一次事物处理)所做的工作总和,它由程序、数据和作业说明书三部分组成,系统根据该说明书来对程序的运行进行控制。在批处理系统中,是以作业为基本单位从外存调入内存的。 二、作业控制块J C B(J o b C o n t ro l B lo c k) 作业控制块JCB是记录与该作业有关的各种信息的登记表。为了管理和调度作业,在多道批处理系统中为每个作业设置了一个作业控制块,如同进程控制块是进程在系统中存在的标志一样,它是作业在系统中存在的标志,其中保存了系统对作业进行管理和调度所需的全部信息。在JCB中所包含的内容因系统而异,通常应包含的内容有:作业标识、用户名称、用户帐户、作业类型(CPU 繁忙型、I/O 繁忙型、批量型、终端型)、作业状态、调度信息(优先级、作业已运行时间)、资源需求(预计运行时间、要求内存大小、要求I/O设备的类型和数量等)、进入系统时间、开始处理时间、作业完成时间、作业退出时间、资源使用情况等。 三、作业调度 作业调度的主要功能是根据作业控制块中的信息,审查系统能否满足用户作业的资源需求,以及

操作系统实验4

操作系统 实验报告 学号: 姓名: 提交日期: 成绩: 内蒙古大学计算机学院

实验四进程管理 一、实验目的 1. 加深对进程概念的理解,明确进程和程序的区别; 2. 进一步认识并发执行的实质; 3. 分析进程争用资源的现象,学习解决进程互斥的方法; 二、实验内容 1. 进程的创建; 2. 进程的控制; 3. 进程并发执行结果分析; 三、主要实验步骤 1. 编制一段程序,使用系统调用fork()创建两个子进程,在此程序运行时,系 统中就有一个父进程和两个子进程在活动。让每一个进程在屏幕上显示一个字符:父进程显示字符a,子进程分别显示字符b和子符c。试观察、记录并分析屏幕上进程调度的情况。若在程序中使用系统调用nice()来改变各进程的优先级,会出现什么现象? (1)使用vi创建forktest.c源文件 (2)编写程序

(3)保存程序并退出

(4)使用gcc编译源文件生成可执行文件forktest (5)执行文件,输入./forktest回车 (6)结果分析

2. 编制一段程序要求父进程创建子进程,在子进程中分别用exec函数与system 函数执行“dir -a”。并分析其区别。 3. 分析以下程序框架,修改并上机运行后回答下列问题。 #include #include #include V oid main() {① pid=fork(); ② if(pid==0){ ........ sleep(3); .......... printf("ddd\n"); exit(0); } else { ............ sleep(7); ........... printf("aaa\n"); wait(0); printf("bbb\n"); } printf("ccc\n"); }

数学实验作业 韩明版

练习6.7 1.有两个煤厂A,B,每月进煤不少于60t,100t,它们担负供应三个居 民区的用煤任务,这三个居民区每月用煤量分别为45t,75t和45t.A 厂离这三个居民区的距离分别为10km,5km,6km,B厂离这三个居民区的距离分别为4km,8km,15km.问这两个煤厂如何分配供煤量能使总运输量(t.km)最小。 解:设甲对三个居民区的供煤量分别为:x1,x2,x3,乙对三个居民区的供煤量分别为x4,x5,x6.由已知有: y=10x1+5x2+6x3+4x4+8x5+15x6 -x1-x2-x3<=-60, -x4-x5-x6<=-100, x1+x4=45,x2+x5=75,x3+x6=40, X1>=0,x2>=0,x3>=0,x4>=0,x5>=0,x6>=0. 输入命令: > c=[10 5 6 4 8 15];A=[-1 -1 -1 0 0 0;0 0 0 -1 -1 -1;0 0 0 0 0 0;0 0 0 0 0 0;0 0 0 0 0 0;0 0 0 0 0 0]; >> b=[-60;-100;0;0;0;0];Aeq=[1 0 0 1 0 0;0 1 0 0 1 0;0 0 1 0 0 1;0 0 0 0 0 0;0 0 0 0 0 0;0 0 0 0 0 0]; >> beq=[45 75 40 0 0 0]; >> lb=ones(6,1); >> [x,fval]=linprog(c,A,b,Aeq,beq,lb) Optimization terminated.

结果为: x = 1.0000 20.0000 39.0000 44.0000 55.0000 1.0000 fval =975.0000 这说明甲乙两个煤厂分别对三个居民区输送1t 20t 39t,44t 55t 1t的煤才能使总运输量最小,且总运输量为975t.km 2.某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券及其信用等级、到期年限、税前收益如下表所示。按照规定,市政证券的收益可以免税,其他证券的收益需按40%的税率纳税。此外还有以下限制: (1)政府及待办机构的证券总共至少购进400万元; (2)所构证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高); (3)所构证券的平均到期年限不超过5年。

操作系统实验四存储管理

宁德师范学院计算机系 实验报告 (2014—2015学年第二学期) 课程名称操作系统 实验名称实验四存储管理 专业计算机科学与技术(非师)年级2012级 学号B2012102147 姓名王秋指导教师王远帆 实验日期2015-05-20

2) 右键单击任务栏以启动“任务管理器”。 3) 在“Windows任务管理器”对话框中选定“进程”选项卡。 4) 向下滚动在系统上运行的进程列表,查找想要监视的应用程序。 请在表4-3中记录: 表4-3 实验记录 映像名称PID CPU CPU时间内存使用 WINWORD.EXE 5160 00 0:00:10 22772k 图1 word运行情况 “内存使用”列显示了该应用程序的一个实例正在使用的内存数量。 5) 启动应用程序的另一个实例并观察它的内存需求。 请描述使用第二个实例占用的内存与使用第一个实例时的内存对比情况: 第二个实例占用内存22772K,比第一个实例占用的内存大很多 4:未分页合并内存。 估算未分页合并内存大小的最简单方法是使用“任务管理器”。未分页合并内存的估计值显示在“任务管理器”的“性能”选项卡的“核心内存”部分。 总数(K) :________220___________ 分页数:__________167___________ 未分页(K) :_________34__________

图2核心内存 还可以使用“任务管理器”查看一个独立进程正在使用的未分页合并内存数量和分页合并内存数量。操作步骤如下: 1) 单击“Windows任务管理器”的“进程”选项卡,然后从“查看”菜单中选择“选择列”命令,显示“进程”选项卡的可查看选项。 2) 在“选择列”对话框中,选定“页面缓冲池”选项和“非页面缓冲池”选项旁边的复选框,然后单击“确定”按钮。 返回Windows “任务管理器”的“进程”选项卡时,将看到其中增加显示了各个进程占用的分页合并内存数量和未分页合并内存数量。 仍以刚才打开观察的应用程序(例如Word) 为例,请在表4-4中记录: 表4-4 实验记录 映像名称PID 内存使用页面缓冲池非页面缓冲池 WINWORD.EXE 2964 37488 951 42 从性能的角度来看,未分页合并内存越多,可以加载到这个空间的数据就越多。拥有的物理内存越多,未分页合并内存就越多。但未分页合并内存被限制为256MB,因此添加超出这个限制的内存对未分页合并内存没有影响。 5:提高分页性能。 在Windows 2000的安装过程中,将使用连续的磁盘空间自动创建分页文件(pagefile.sys) 。用户可以事先监视变化的内存需求并正确配置分页文件,使得当系统必须借助于分页时的性能达到最高。 虽然分页文件一般都放在系统分区的根目录下面,但这并不总是该文件的最佳位置。要想从分页获得最佳性能,应该首先检查系统的磁盘子系统的配置,以了解它是否有多个物理硬盘驱动器。 1) 在“开始”菜单中单击“设置”–“控制面板”命令,双击“管理工具”图标,再双击“计算机管理”图标。 2) 在“计算机管理”窗口的左格选择“磁盘管理”管理单元来查看系统的磁盘配置。 如果系统只有一个硬盘,那么建议应该尽可能为系统配置额外的驱动器。这是因为:Windows 2000最多可以支持在多个驱动器上分布的16个独立的分页文件。为系统配置多个分页文件可以实现对不同磁盘I/O请求的并行处理,这将大大提高I/O请求的分页文件性能。 请在表4-5中记录: 表4-5 实验记录

《数学实验》报告matlab-第五次作业

《数学实验》报告 实验名称 matlab拟合与插值学院机械工程学院 专业班级 姓名 学号

2011年 10月

一、【实验目的】 掌握Matlab关于采用最小二乘法拟合曲线的方法。学会使用matlab求实际中得到数据的插值曲线。 二、【实验任务】 P130第8、10、12题 三、【实验程序】 P130第8题: x=[0.10,0.30,0.40,0.55,0.70,0.80,0.95]; y=[15,18,19,21,22.6,23.8,26]; p1=polyfit(x,y,1); p3=polyfit(x,y,3); p5=polyfit(x,y,5); disp('一阶拟合函数'),f1=poly2str(p1,'x') disp('三阶拟合函数'),f3=poly2str(p3,'x') disp('五阶拟合函数'),f5=poly2str(p5,'x') x1=0.1:0.0017:0.95; y1=polyval(p1,x1); y3=polyval(p3,x1); y5=polyval(p5,x1); plot(x,y,'rp',x1,y1,'--',x1,y3,'k-.',x1,y5); legend('拟合点','一次拟合','三次拟合','七次拟合') P130第10题 x=[10,15,20,25,30]; y=[25.2,29.8,31.2,31.7,29.4]; xi=10:.5:30; yi1=interp1(x,y,xi,'*nearest'); yi2=interp1(x,y,xi,'*linear'); yi3=interp1(x,y,xi,'*spline'); yi4=interp1(x,y,xi,'*cubic'); plot(x,y,'ro',xi,yi1,'--',xi,yi2,'-',xi,yi3,'k.-',xi,yi4,'m:') ,grid on

相关文档
最新文档