高中数学必修2培优辅导专题(空间几何体)
高中复习数学必修2《空间几何体》知识点

第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。
棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱与底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱正棱柱: 底面是正多边形的直棱柱叫做正棱柱(1)上下底面平行,且是全等的多边形。
(2)侧棱相等且相互平行。
(3) 侧面是平行四边形。
三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。
按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。
特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。
人教版高中数学必修二知识讲解,巩固练习,补习资料:第一章 空间几何体

第一章空间几何体知识一、空间几何体的有关概念1.空间几何体对于空间中的物体,如果我们只考虑其形状和大小,而不考虑其他因素,那么由这些物体抽象出来的就叫做空间几何体.例如,一个正方体形包装箱,占有的空间部分就是一个几何体,这个几何体就是我们熟悉的正方体.2.多面体(1)多面体:一般地,我们把由若干个围成的几何体叫做多面体.(2)多面体的面:围成多面体的各个多边形叫做多面体的面,如图中面ABB′A′,面BCC ′B′等.(3)多面体的棱:相邻两个面的公共边叫做多面体的棱, 如图中棱AA′,棱BB′等.(4)多面体的顶点:棱与棱的公共点叫做多面体的顶点, 如图中顶点A,B,C等.3.旋转体(1)旋转体:由一个平面图形绕它所在平面内的一条定直线所形成的封闭几何体.如图所示为一个旋转体,它可以看作由矩形OBB′O′绕其边OO′所在的直线旋转而形成.(2)旋转体的轴:平面图形旋转时所围绕的定直线.如图中直线OO′是该旋转体的轴.二、几种最基本的空间几何体 1.棱柱的结构特征图形 表示①用表示底面的各顶点字母来表示棱柱.如图所示的六棱柱可以表示为棱柱ABCDEF −A ′B ′C ′D ′E ′F②用棱柱的对角线表示棱柱.如图,(1)可表示为四棱柱AC 1或四棱柱BD 1等;(2)可表示为六棱柱AD 1或六棱柱AE 1等;(3)可表示为五棱柱AC 1或五棱柱AD 1等.这种记法要说明棱柱是几棱柱.② 棱柱的底面:棱柱中,两个互相 的面叫做棱柱的底面,简称底③棱柱的侧棱:相邻侧面的公共边叫做棱柱的侧棱①底面互相 . ②侧面都是2.棱锥的结构特征 图形3.棱台的结构特征 图形表示4.圆柱的结构特征 图形 表示5.圆锥的结构特征图形 表示6.圆台的结构特征图形表示7.球的结构特征 图形表示8.简单组合体的结构特征①多面体与多面体的组合体图(1)中几何体由一个四棱柱挖去一个三棱柱得到,图(2)中几何体由一个四棱柱与一个四棱锥组合而成,图(3)中几何体由一个三棱柱与一个三棱台组合而成.②多面体与旋转体的组合体图(1)中几何体由一个三棱柱挖去一个圆柱得到,图(2)中几何体由一个圆锥挖去一个四棱柱得到,图(3)中几何体由一个球挖去一个三棱锥得到.③旋转体与旋转体的组合体图(1)中几何体由一个球体和一个圆柱组合而成,图(2)中几何体由一个圆台和两个圆柱组合而成,图(3)中几何体由一个圆台、一个圆柱和一个圆锥组合而成.K知识参考答案:二、1.平行四边形平行;平行;平行平行四边形平行;斜棱柱正棱柱2.多边形三角形;多边形三角形公共顶点;四面体3.平行;平行相似一点梯形;正棱台4.矩形旋转体;平行平行平行且相等矩形5.直角三角形直角;圆面相等顶点等腰三角形6.平行于;平行不等无数等长等腰梯形7.直径;圆心半径直径8.柱体锥体台体球体重点重点:棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征.难点:几种特殊的四棱柱及各棱柱之间的关系,球与简单组合体的结构特征、空间几何体的平面展开图.易错:解题时凭直观感觉判断几何体致误,要注意紧扣定义.1.K重点——棱柱、棱锥、棱台的结构特征判断一个几何体是棱柱、棱锥还是棱台,要从定义出发,严格按照其结构特征进行推理和判断,才能得出正确结论.有下列三组定义:①有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;③有一个面是多边形,其余各面都是三角形的几何体是棱锥.其中正确定义的个数为A.0 B.1C.2 D.3【答案】B【思路点拨】从结构特征出发:棱台上、下两个底面平行且相似;棱锥侧面都是三角形且有一个公共顶点;棱柱上、下两个底面平行且侧面都是平行四边形,从而可快速得解. 2.K 重点——圆柱、圆锥、圆台的结构特征圆柱是绕矩形的一边旋转得到的,圆锥是绕直角三角形的一直角边旋转得到的,圆台是用平行于圆锥底面的平面截圆锥得到的,要以动态的观点去观察和理解,才能熟练掌握其结构特征.正方形绕其一条对角线所在直线旋转一周,所得几何体是 A .圆柱 B .圆锥C .圆台D .两个共底的圆锥【答案】D【思路点拨】本题考查旋转体的结构特征,熟练掌握旋转体的定义及旋转体的结构特征是解答本题的关键. 3.K 难点——球的结构特征从近几年高考来看,常结合三视图与多面体来考查球内接多面体问题,或以此为载体考查空间几何体的表面积或体积,因此在学习过程中,必须熟练掌握球的结构特征和性质.一个正方体的内切球、外接球、与各棱都相切的球的半径之比为 A . B . C .D .【答案】C【解析】设正方体的棱长为,那么其内切球的半径为,外接球的半径为(正方体体对角线的一半),与各棱都相切的球的半径为(正方体面对角线的一半),所以比值是,故选C . 【方法点睛】球与几何体的组合体的问题,尤其是相切,一般不画组合体的直观图,而1O 2O 3O 1:3:21:1:11:2:312123221是画切面图,圆心到切点的距离是半径并且垂直,如果是内切球,那么对面切点的距离就是直径,而对面切点的距离是棱长,如果与棱相切,那么对棱切点的距离就是直径,而切点在棱的中点,所以对棱中点的距离等于面对角线长,而如果外接球,那么相对顶点的距离就是直径,即正方体的体对角线是直径.4.K难点——简单组合体的结构特征几何体分割开来看:若几何体由几个面围成,且有面面平行或各面有公共顶点,则从棱柱、棱锥、棱台的概念入手;若题中几何体由某平面图形绕定直线旋转形成,则从圆柱、圆锥、圆台、球的概念入手.如图所示,是由等腰梯形、矩形、半圆、圆、倒三角形对接形成的平面轴对称图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点【答案】A【解题必备】考查简单组合体的构成,就必须要明白该组合体是由简单几何体拼接、截去还是挖去一部分而成的,因此,要仔细观察简单组合体的组成,并充分结合柱、锥、台、球的几何结构特征进行识别.5.K难点——空间几何体的平面展开图求几何体表面上两点间的最小距离的步骤:(1)将几何体沿着某棱剪开后展开,画出其侧面展开图;(2)将所求曲线问题转化为平面上的线段问题; (3)结合已知条件求得结果.如图,一竖立在水平地面上的圆锥形物体的母线长为,一只小虫从圆锥的底面圆上的点出发,绕圆锥表面爬行一周后回到点处,若该小虫爬行的最短路程为,则圆锥底面圆的半径等于A .B .C .D .【答案】C【方法点晴】本题主要考查了圆锥的有关计算及圆锥的侧面展开的应用,着重考查了求立体图形中两点之间的曲线段的最短线路长,解答此类问题一般应把几何体的侧面展开,展开在一个平面内,构造直角三角形,从而求解两点间的线段的长度,用到的知识为:圆锥的弧长等于底面周长,本题的解答中圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥的底面周长,扇形的半径等于圆锥的母线长,体现了“化曲面为平面”的思想方法.6.K 易错——空间几何体的判断判断旋转体形状的关键是看平面图形绕哪条直线旋转,同一个平面图形绕不同的旋转轴4m P P 31m 3m 24m 32m旋转所形成的旋转体可能不同.如图,最左边的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是A .①②B .②③C .③④D .①⑤【错解】B【错因分析】读题不准,上底面已挖去,截面就不会出现②的情况,另外,空间想象能力差且凭主观臆断,考虑不全面导致错解.【正解】当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件.故截面图形可能是①⑤,选D .7.K 易错——考虑不全致错如图所示,在长方体中,则在长方体表面上连接两点的所有曲线长度的最小值为__________.【错因分析】该题考查的是几何体的表面距离的最值问题,结合平面内连接两点的直线段是最短的,所以将长方体的侧面沿着不同的方向展开,使得两个点落在同一平面内,利用勾股定理来求解,选出最小的那个就是,容易出错的地方在于考虑不全面,沿着一个方向展开求得结果,从而出现错误.14cm,2cm,3cm,AB AD AA ===1A C 、基础训练1.以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是A.一个圆柱B.一个圆锥C.一个圆台D.两个圆锥2.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是A.三棱锥B.四棱锥C.五棱锥D.六棱锥3.如图所示的简单组合体,其结构特征是A.两个圆锥B.两个圆柱C.一个棱锥和一个棱柱D.一个圆锥和一个圆柱4.有下列三个说法:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②有两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有A.0个B.1个C .2个D .3个5.下列平面图形中,通过围绕定直线旋转可得到下图所示几何体的是A .B .C .D .6.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是 A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球的组合体7.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)A .B .C .D .8.在正方体中,分别是的中点,那么,过的正方体的截面图形是A .三角形B .四边形l 1111ABCD A B C D P Q R 、、11AB AD B C 、、P Q R 、、C.五边形D.六边形9.下列几何体是棱台的是(写出所有满足题意的序号).10.给出下列说法:①圆柱的底面是圆;②经过圆柱任意两条母线的截面是一个矩形;③连接圆柱上、下底面圆周上的两点的线段是圆柱的母线;④圆柱的任意两条母线互相平行;⑤圆柱的母线有且只有一条.其中正确的是(写出所有正确说法的序号).11.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?能力提升12.下列说法正确的是①圆台可以由任意一个梯形绕其一边旋转形成; ②用任意一个与底面平行的平面截圆台,截面是圆面; ③以半圆的直径为轴旋转半周形成的旋转体叫做球;④圆柱的任意两条母线平行,圆锥的任意两条母线相交,圆台的任意两条母线延长后相交. A .①② B .②③ C .①③D .②④13.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为A .B .C .D .14.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是,则棱台的高是 A . B . C .D .15.如图,在正四棱柱ABCD −A 1B 1C 1D 1中,点E 为AB 上的动点,则D 1E +CE 的3cm 12cm 9cm 6cm 3cm 11,AB AA ==最小值为A .BCD .16.有一种骰子,每一面上都有一个英文字母,如图是从3个不同的角度看同一粒骰子的情形,请画出骰子的一个侧面展开图,并根据展开图说明字母H 对面的字母是 .17.如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm 和5 cm ,圆台的母线长是12 cm ,求圆锥SO 的母线长.参考答案1.【答案】D【解析】以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是两个圆锥,且两个圆锥有一个公共的底面,故选D. 2.【答案】D【解析】一定不是正六棱锥,因为正六边形的中心与相邻两个顶点连接构成等边三角形,那么正六棱锥的侧棱应大于底边,所以当侧棱与底面边长相等时,一定不是正六棱锥.故选. 3.【答案】D【解析】这个简单组合体是一个圆柱上放置了一个圆锥,故选D. 4.【答案】A【解析】本题主要考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,故②③错.5.【答案】B6.【答案】C【解析】只有球体被任意一个平面所截,截面是圆面. 7.【答案】A【解析】其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.故选A. 8.【答案】D【解析】如图,连接QP ,取C 1D 1的中点H ,连接HR ,则HR ∥QP ,再分别取B 1B ,D 1D 的中点M ,N ,连接HN ,NQ ,PM ,MR ,易知六边形HNQPMR 即是过P ,Q ,R 的正方体的截面图形.选D .D【总结归纳】正方体的截面形状:①可以是三角形:等边三角形、等腰三角形、锐角三角形,不可能是直角三角形、钝角三角形;②可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形,截面为四边形时,这个四边形中至少有一组对边平行;③可以是五边形,截面为五边形时必有两组分别平行的边,同时有两个角相等,截面五边形不可能是正五边形;④可以是六边形,截面为六边形时必有三组分别平行的边,同时有两个角相等.截面六边形可以是正六边形.对应截面图形如下图所示.9.【答案】④10.【答案】②④【解析】①不正确,因为圆柱的底面是圆面而不是圆;②正确,因为母线互相平行,且都垂直于底面;③不正确,因为连接圆柱上、下底面圆周上的两点的线段不一定与圆柱的轴平行;④正确,因为圆柱的任意一条母线都与轴平行;⑤不正确,圆柱的母线有无数条.故填②④.11.【答案】(1)三棱锥;(2)见解析;(3)见解析.【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF 为等腰三角形,△PEF 为等腰直角三角形,△DPE 和△DPF 均为直角三角形. (3【思路点拨】(1)棱锥侧面为三角形,几棱锥决定于底面边数. (2)结合平面图形可知三个侧面加上一个底面,都是直角三角形.(3)根据直角情况,分别求对应直角边,再根据直角三角形面积公式求各自面积. 12.【答案】D13.【答案】C【解析】截面图形应为图C 所示的圆环面.故选C. 14.【答案】D【解析】面积比为底面边长比的平方,从而由面积比可得底面边长的比,底面边长的比与截去棱锥和原棱锥高的比相等,从而可求得原棱锥的高,即可得棱台的高.设原棱锥的高为.依题意可得,解得,所以棱台的高为.故D 正确. 15.【答案】B【解析】将正方形ABCD 沿AB 向下翻折到对角面ABC 1D 1内成为正方形ABC 2D 2,在矩形C 1D 1D 2C 2中连接D 1C 2,与AB 的交点即为所求最小值点E ,此时D 1E +CE =D 1C 2.因为对角线h 231()4h=6h =633(cm)-=BC 1=2,C 1C 2=3,故.16.【答案】O【解析】将原正方体外面朝上展开,得其表面字母的排列如图所示,易得H 对面的字母是O .17.【答案】20 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得,即, 所以l =20 cm.故截得此圆台的圆锥的母线长为20 cm.【名师点睛】用一个平行于圆锥底面的平面截这个圆锥,则截得的圆面与底面相似.12D C =1O A SA SB OB =1225l l -=知识一、中心投影与平行投影1.投影的概念由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做.其中,我们把光线叫做,把留下物体影子的屏幕叫做.2.中心投影(1)概念光由一点向外散射形成的投影,叫做,如图所示.现实生活中见到的很多投影都是中心投影,如在电灯泡、蜡烛等点光源照射下物体的影子.(2)性质①中心投影的投影线相交于.②平行于投影面放置的物体,点光源离物体越近,投影形成的影子越.例如,在电灯泡的照射下,物体后面的屏幕上会形成影子,而且随物体距离灯泡(或屏幕)的远近,形成的影子大小会有所不同.3.平行投影(1)概念在一束平行光线照射下形成的投影,叫做.在平行投影中,投影线正对着投影面时,叫做,否则叫做斜投影.如图所示. 在日常生活中,常常把太阳光线看作平行光线.(2)性质①平行投影的投影线互相.②在平行投影之下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小是完全的.③当图形中的直线或线段不平行于投影线时:(ⅰ)直线或线段的平行投影仍是;(ⅱ)平行直线的平行投影是的直线;(ⅲ)平行于投影面的线段,它的投影与这条线段;(ⅳ)与投影面平行的平面图形,它的投影与这个图形;(ⅴ)在同一直线或平行直线上的两条线段的平行投影的长度比这两条线段的长度比.二、空间几何体的三视图1.三视图的概念(1)光线从几何体的前面向后面正投影,得到的投影图叫做几何体的;(2)光线从几何体的左面向右面正投影,得到的投影图叫做几何体的;(3)光线从几何体的上面向下面正投影,得到的投影图叫做几何体的.几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.2.三视图的画法规则(1)排列规则:一般地,侧视图在正视图的,俯视图在正视图的.如下图:(2)画法规则①正视图与俯视图的长度一致,即“”;②侧视图和正视图的高度一致,即“”;③俯视图与侧视图的宽度一致,即“”.(3)线条的规则①能看见的轮廓线用表示;②不能看见的轮廓线用表示.3.常见几何体的三视图三、简单组合体的三视图常见的组合体的生成方式:(1)将基本几何体拼接成的组合体;(2)从基本几何体中切掉或挖掉部分构成组合体.所以,在画组合体的三视图时,一定要认真观察,先认识它的基本结构,然后再画它的三视图.如图.知识参考答案:二、1.正视图侧视图俯视图2.(1)右边下边(2)长对正高平齐宽相等(3)实线虚线重点重点:空间几何体的三视图.难点:简单组合体的三视图、由三视图还原几何体.易错:不能准确画出三视图或由三视图还原几何体.1.K重点——空间几何体的三视图正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度.下列几何体各自的三视图中,有且仅有两个视图相同的是A.①②B.①③C.①④D.②④【答案】D【解析】②中正视图和侧视图相同,④中正视图和侧视图相同,可得②④正确,故选D.【名师点睛】在确定几何体的三视图时可以按照下面的步骤进行:确定投影角度→按照三视图的画法规则作图→完成后检验.2.K难点——简单组合体的三视图对于简单组合体要分清楚是由哪些简单几何体组成的,并注意它们的组合方式,特别是它们的交线位置,画出分解后的简单几何体的三视图后,将其拼合即得组合体的三视图.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为【答案】D【思路点拨】画三视图时,要想象在几何体的后面、右面、下面各有一个屏幕,一组平行光线分别从前面、左面、上面垂直照射,先画出影子的轮廓,再验证几何体的轮廓线,能够看到的画成实线,不能看到的画成虚线.3.K难点——由三视图还原几何体由三视图还原立体图形时,根据三视图的特征,先判断是简单几何体还是由它们组成的组合体.若是简单几何体,结合柱、锥、台、球的三视图逆推;若是组合体,结合柱、锥、台、球的三视图,判断是由哪几种简单几何体组合而成,根据它们的相对位置关系,想象出组合体的构成情况,再加以验证.如图所示,甲、乙、丙是三个几何体的三视图,则甲、乙、丙对应的几何体分别为①长方体;②圆锥;③三棱锥;④圆柱.A.④③②B.①③②C.①②③D.④②③【答案】A【技巧点拨】由三视图判断几何体时,首先,确定正视、侧视、俯视的方向;其次,判断几何体的组合方式,特别是它们的交线位置,交线的实虚情况等.要注意不能看见的轮廓线的画法,应画成虚线,切不可略去不画.4.K易错——不能准确由三视图还原几何体当已知三视图去还原成几何体时,要充分关注图形中关键点的投影,先从俯视图来确定是多面体还是旋转体,再从正视图和侧视图想象出几何体的大致形状,然后通过已知的三视图验证几何体的正确性,最后检查轮廓线的实虚.一个几何体的三视图如图所示,则该几何体的直观图可以是【错解】A或B或C【错因分析】选A,俯视图判断出错,从俯视图看,几何体的上、下部分都是旋转体;选B,下部分几何体判断出错,误把旋转体当多面体;选C,上部分几何体判断出错,误把旋转体当多面体.【正解】由三视图可知该几何体上部是一个圆台,下部是一个圆柱,选D.基础训练1.下列各项中,不属于三视图的是A.正视图B.侧视图C.后视图D.俯视图2.下列光线所形成的投影,不是中心投影的是A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线3.两条相交直线的平行投影是A.两条相交直线B.一条直线C.两条平行直线D.两条相交直线或一条直线4.下列几何体中,正视图、侧视图和俯视图都相同的是A.圆柱B.圆锥C.球D.三棱锥5.若一个几何体的三视图如下图所示,则这个几何体是A.三棱锥B.四棱锥C.三棱柱D.四棱柱6.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是A.B.C.D.7.如下图为长方体木块堆成的几何体的三视图,则组成此几何体的长方体木块块数共有A.3块B.4块C.5块D.6块8.如图所示,画出四面体AB1CD1三视图中的正视图,以面AA1D1D为投影面,则得到的正视图可以为A.B.C.D.9.给出以下结论,其中正确的结论的序号是________.①一个点光源把一个平面图形照射到一个平面上,它的投影与这个图形全等;②平行于投射面的平面图形,在平行投影下,它的投影与原图形全等;③垂直于投射面的平面图形,在平行投影下,它的投影与原图形相似;④在平行投影下,不平行、也不垂直于投射面的线段的投影仍是线段,但与原线段不等长.10.桌子上放着一个长方体和一个圆柱(如图所示),则下列三幅图分别是什么图(填“正视图、俯视图、侧视图”).①________、②________、③________.11.如图所示,是一个长方体截去一个角所得多面体的直观图和它的主视图、左视图(单位:).请在正视图下面,按照画三视图的要求画出该多面体的俯视图.能力提升12.当图形中的直线或线段不平行于投影线时,关于平行投影的性质,下列说法不正确的是A .直线或线段的平行投影仍是直线或线段B .平行直线的平行投影仍是平行的直线cm。
高中数学必修2《空间几何体》知识点

第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的圭寸闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
圆台+大圆锥-小圆锥多面体旋转体圆台圆柱-圆锥圆柱+圆锥二、柱、锥、台、球的结构特征于底面的棱柱叫做直棱柱正棱柱:底面是正多边形的直棱柱叫做正棱柱四棱柱三棱柱斜棱柱直棱柱正棱柱左边那平是正四面体.右边那亍不是正四両萍 两于都是正三棱锥正四面悴是四千面祁是正三帝形I正三磧链只雯底面是正三甬港,具啊面是驴嗟三角托四棱锥 五棱锥三棱锥实用标准正棱台定义图形表示性质定义:以矩形的一边 所在直线为旋转轴, 其余三边旋转形成的 曲面所围成的几何体叫做圆柱。
定义图形表示性质以直角三角形的一条直角 边所在直线为旋转轴,其余 两边旋转而成的曲面所围 成的几何体叫做圆锥。
A用表示它的轴的字母表示,如圆锥S0。
用表示它的轴的字母表示,如圆柱00 1。
定义图形表示性质用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,这样的几何体叫做圆台。
用表示它的轴的字母表示,如圆台00 '7.球的结构特征1、球的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球。
(1 )半圆的半径叫做球的半径。
(2 )半圆的圆心叫做球心。
(3)半圆的直径叫做球的直径。
2、球的表示:用表示球心的字母表示,如球03、球的性质(1)用一个平面去截球,截面是圆面;用一个平面去截球面,截线是圆。
大圆---截面过圆心,半径等于球半径;小圆---截面不过圆心。
新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。
必修2辅导—1—空间几何体(同步教师版ok)

空间几何体课标要求1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图;3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式;4.了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
几何体的结构特征知识要点1.柱体棱柱(图1)(1)棱柱—有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
侧面母线图1 图2 图3(2)相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①棱柱侧棱与底面不垂直斜棱柱棱柱侧棱垂直于底面直棱柱底面是正多边形正棱柱②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体(3)棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
(4)长方体的性质:①所有的面都是矩形;②侧棱垂直底面,侧面垂直底面;相邻侧面相互垂直③长方体一条对角线长的平方等于一个顶点上三条棱的平方和;如图2:AC12=AB2+AD2+AA12 .圆柱(图3)(1)圆柱—以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.(2)圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.(3)侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.锥体棱锥(图4)面面B图4 图5(1)棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥—如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
高中数学必修二知识讲解,巩固练习(复习补习,期末复习资料):08【提高】《空间几何体》单元复习与巩固

空间几何体结构及其三视图【学习目标】(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图.(3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.【知识网络】【要点梳理】要点一.空间几何体的结构及其三视图和直观图1.多面体的结构特征(1)棱柱(以三棱柱为例)如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与ΔA1B1C1的关系是全等.各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C.(2)棱锥(以四棱锥为例)如图:一个面是四边形,四个侧面是有一个公共顶点的三角形.(3)棱台棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台.2.旋转体的结构特征旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴.要点二.空间几何体的三视图和直观图1.空间几何体的三视图空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图.2.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴.y轴.z轴两两垂直,直观图中,x’轴.y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直;(2)原图形中平行于坐标轴的线段,直观图中仍平行、平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半.3.平行投影与中心投影平行投影的投影线互相平行,而中心投影的投影线相交于一点.要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形.要点三.空间几何体的表面积和体积1.旋转体的表面积2.几何体的体积公式(1)设棱(圆)柱的底面积为S ,高为h ,则体积V =Sh ; (2)设棱(圆)锥的底面积为S ,高为h ,则体积V =13Sh ; (3)设棱(圆)台的上.下底面积分别为S ',S ,高为h ,则体积V =13('S S )h ;(4)设球半径为R ,则球的体积V =43π3R . 要点诠释:1.对于求一些不规则几何体的体积常用割补的方法,转化成已知体积公式的几何体进行解决.2.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.3.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.【典型例题】类型一.空间几何体的结构特征例1.若沿△ABC 三条边的中位线折起能拼成一个三棱锥,则△ABC ( ) A .一定是等边三角形 B .一定是锐角三角形 C .可以是直角三角形 D .可以是钝角三角形【思路点拨】在三棱锥的展开图中:过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,其中∠3为底面三角形的内角,进而逐一分析△ABC为不同形状时沿△ABC三条边的中位线能否拼成一个三棱锥,最后结合讨论结果,可得答案.【答案】B【解析】在三棱锥的展开图中:过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,当△ABC为锐角三角形时,三个顶点处均满足此条件,故能拼成一个三棱锥,当△ABC为为直角三角形时,在斜边中点E处不满足条件,故不能拼成一个三棱锥,同理当△ABC为钝角三角形时,在钝角所对边中点处不满足条件,故不能拼成一个三棱锥,综上可得:△ABC一定是锐角三角形,故选B.【总结升华】本题考查的知识点是棱锥的结构特征,三角形形状的判断,其中正确理解:三棱锥的展开图中,过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,其中∠3为底面三角形的内角,是解答的关键.举一反三:【变式】如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,长方形ABCD为底面,则四边形EFGH的形状为()A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【思路点拨】根据平面ABFE∥平面DCGH和面面平行的限制定理得EF∥GH,再由FG∥EH得四边形EFGH为平行四边形【答案】B【解析】∵平面ABFE∥平面DCGH,且平面EFGH分别截平面ABFE与平面DCGH得直线EF与GH,∴EF∥GH.同理,FG∥EH,∴四边形EFGH为平行四边形.故答案为B例2.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形【思路点拨】根据几何体的直观图,得出该几何体的结构特征,由此判断选项A、B、C正确,选项D错误.【答案】D【解析】根据几何体的直观图,得该几何体是由两个同底的四棱锥组成的几何体,且有棱MA、MB、MC、MD、AB、BC、CD、DA、NA、NB、NC和ND,共12条;顶点是M、A、B、C、D和N共6个;且有面MAB、面MBC、面MCD、面MDA、面NAB、面NBC、面NCD和面NDA共8个,且每个面都是三角形.所以选项A、B、C正确,选项D错误.故选D.【总结升华】本题考查了利用空间几何体的直观图判断几何体结构特征的应用问题.举一反三:【变式】用一个平面去截正面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有()A.6个B.7个C.10个D.无数个【思路点拨】根据几何体的性质判断正四面体是中心对称几何体,利用中心对称几何体的性质判断即可.【答案】D【解析】∵正四面体是中心对称图形,∴平面过正四面体的中心,则分成为形状,大小都相同的两个几何体,可判断这样的平面有无数个,故选D.类型二.空间几何体的三视图例3.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为().【思路点拨】由正视图和俯视图想到三棱锥和圆锥.【解析】由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D.【总结升华】(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.举一反三:【变式】若某几何体的三视图如图所示,则此几何体的直观图是()【答案】A【解析】A中,的三视图:,满足条件;B中,的侧视图为:,与已知中三视图不符,不满足条件;C中,的侧视图和俯图为:,与已知中三视图不符,不满足条件;D 中,的三视图为:,与已知中三视图不符,不满足条件; 故选A例4.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【思路点拨】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案. 【解析】由主视图和俯视图可知切去的棱锥为1D AD C ,棱1CD 在左侧面的投影为1BA , 故选B .举一反三: 【变式1】某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为( )A .32π B .π C .32π D .52π【思路点拨】三视图复原可知几何体是圆锥的一半,根据三视图数据,求出几何体的表面积.【答案】A【解析】由题目所给三视图可得,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为1122ππ⨯⨯⨯=,底面积为12π, 观察三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为12222⨯⨯⨯=则该几何体的表面积为32π 故选A .【变式2】一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( )A .1B .2C .3D .4【思路点拨】由三视图及题设条件知,此几何体为一个四棱锥,其较长的侧棱长已知,底面是一个正方形,对角线长度已知,故先求出底面积,再求出此四棱锥的高,由体积公式求解其体积即可.【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为14112 2⨯⨯⨯=由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形23=此棱锥的体积为1232 3⨯⨯=故选B【总结升华】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是四棱锥的体积,其公式为13×底面积×高.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”三视图是新课标的新增内容,在以后的高考中有加强的可能.类型三.几何体的直观图例5.如图所示,正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 B.8C.2+3 2 D.2+2 3【思路点拨】由斜二测画法的规则知在已知图形平行于x轴的线段,在直观图中画成平行于x'轴,长度保持不变,已知图形平行于y轴的线段,在直观图中画成平行于y'轴,且长度为原来一半.【答案】B【解析】根据水平放置平面图形的直观图的画法,可得原图形是一个平行四边形,如图,对角线OB=22,OA=1,∴AB=3,所以周长为8.故选B【总结升华】本题考查的知识点是平面图形的直观图,其中斜二测画法的规则,能够帮助我们快速的在直观图面积和原图面积之间进行转化.举一反三:【变式】对于一个底边在x轴上的正三角形ABC,边长AB=2,采用斜二测画法做出其直观图,则其直观图的面积是________.【思路点拨】如图所示,A 'B '=AB =2,1''22O C OC ==,作C 'D '⊥x ',可得''''2C D C ==.因此其直观图的面积1''''2C D A B =⋅⋅.【解析】如图所示,A 'B '=AB =2,1''2OC OC == 作C 'D '⊥x ',则''''24C D C ==.∴其直观图的面积11''''22244C D A B =⋅⋅=⨯=.类型四.空间几何体的表面积与体积例6.有一根长为3πcm ,底面半径为1cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少? 【思路点拨】把圆柱沿这条母线展开,将问题转化为平面上两点间的最短距离. 【解析】把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图),由题意知BC =3πcm ,AB =4πcm ,点A 与点C 分别是铁丝的起.止位置,故线段AC 的长度即为铁丝的最短长度.AC πcm ,故铁丝的最短长度为5πcm .【总结升华】把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法,所以几何体的展开与折叠是高考的一个热点. 举一反三:【变式】如图是某个圆锥的三视图,请根据正视图中所标尺寸,则俯视图中圆的面积为__________,圆锥母线长为______.【答案】圆半径r =10,面积S =100π,圆锥母线2230101010l =+=.例7.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是________cm 2,体积是________cm 3.【思路点拨】由三视图可得,原几何体为由四个棱长为2 cm 的小正方体所构成的,代入体积公式和面积公式计算即可. 【答案】72,32【解析】由三视图可得,原几何体为由四个棱长为2 cm 的小正方体所构成的,则其表面积为22×(24-6)=72 cm 2, 其体积为4×23=32, 故答案为:72,32 【总结升华】本题考查了由三视图求几何体的体积和表面积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象力.举一反三:【变式】如图是某简单组合体的三视图,则该组合体的体积为( )A .πB .2)π+C .D .2)+【思路点拨】几何体是一个简单的空间组合体,前面是半个圆锥,圆锥的底面是半径为6的圆,母线长是12,后面是一个三棱锥,三棱锥的底边长是12、高为6的等腰三角形,三棱锥的高是12,求出两个几何体的体积,求和得到结果. 【答案】B【解析】由三视图知,几何体是一个简单的空间组合体,前面是半个圆锥,圆锥的底面是半径为6的圆,母线长是12,∴根据勾股定理知圆锥的高是∴半个圆锥的体积是211623π⨯⨯⨯⨯=, 后面是一个三棱锥,三棱锥的底是边长12、高为6的等腰三角形,三棱锥的高是∴三棱锥的体积是1112632⨯⨯⨯⨯=∴几何体的体积是2)π+=+, 故选B .【巩固练习】1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线 2.下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台3.如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )4.某三棱锥的三视图如图所示,该三棱锥的体积为( )A .80B .40C .803D .4035.如图,网络纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A .323 B .64 C D .6436.一个棱长为2的正方体的顶点都在球面上,则该球的表面积为( )A.4πB.8πC.12πD.16π7.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是()A.203B.163C.86π-D.83π-8.某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.某几何体的三视图如图所示,则该几何体的体积为()A.123π+B.136πC.73πD.52π10.一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48 cm3B.24 cm3C.32 cm3D.28 cm311.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________cm3.12.两个半径为1的铁球,熔化后铸成一个大球,这个大球的半径为________.13.正三棱柱ABC—A1B1C1内接于半径为2的球,若A,B两点的球面距离为π,则正三棱柱的体积为.14.某几何体的三视图如图所示,作出该几何体直观图的简图,并求该几何体的体积.15.已知一几何体的三视图如图所示.(1)求该几何体的体积;(2)求该几何体的表面积.【参考答案与解析】 1.【答案】D【解析】A .如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,故A 错误;B .如图(2)(3)所示,若△ABC 不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥,故B 错误; C .若六棱锥的所有棱长都相等,则底面多边形是正六边形,由过中心和定点的截面知,若以正六边形为底面,侧棱长必然要大于底面边长,故C 错误;D .根据圆锥母线的定义,故D 正确. 故选D . 2.【答案】C【解析】①是底面为梯形的棱柱; ②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的, 故选:C . 3.【答案】C .【解析】由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是4π,C 的面积是12,D 的面积是4π,故选C . 4.【答案】D【解析】由三视图可知该几何体是如图所示的三棱锥:PO ⊥平面ABC ,PO =4,AO =2,CO =3,BC ⊥AC ,BC =4.从图中可知,三棱锥的底是两直角边分别为4和5的直角三角形,高为4,体积为11404(23)4323V =⨯⨯⨯+⨯=. 故选D .5.【答案】D【解析】由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积16444433V =⨯⨯⨯=, 故选D .6.【答案】C 7.【答案】A 【解析】由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示;所以该几何体的体积为3212022133-⨯⨯=. 故选A . 8.【答案】A【解析】根据几何体的三视图,得:该几何体是下面为半圆柱,上面为长方体的组合体, 半圆柱的底面半径为2,高为4,∴半圆柱的体积为:212482ππ⨯⋅⨯=; 长方体的长宽高分别为4,2,2, ∴长方体的体积为4×2×2=16, ∴该几何体的体积为V =16+8π, 故选A . 9.【答案】B【解析】由题意可知几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧与一个底面半径为1,高为1的半圆锥组成的组合体, 几何体的体积为:2211131112236πππ⨯⨯⨯+⨯=.故选B . 10.【答案】A【解析】由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4,体积3164448cm 2V Sh ==⨯⨯⨯= 故选A 11.【答案】18【解析】由三视图可知此几何体是由两块长、宽均为3 cm ,高为1 cm 的长方体构成,故其体积为2(3×3×1)=18(cm 3).故答案为:18 12.【解析】设大球的半径为r ,则根据体积相同,可知3444333r πππ+=, 即r 3=2,r =. 13.【答案】8【解析】由条件可得,所以,O 到平面ABC,所以所求体积等于8. 14.【解析】根据几何体的三视图,得该几何体是底面为正方形,高为1的四棱锥, 且底面正方形的边长为1;画出该四棱锥的直观图如图所示:∴该四棱锥的体积为V =2111133⨯⨯= 15.【答案】(1)163;(2)12+【解析】由图知该几何体上面是四棱锥下面是长方体,长方体的长,宽,高,分别为2,2,1,棱锥的底面是边长为2的正方形,高为1,(1)体积11622122133V =⨯⨯+⨯⨯⨯=. (2=故表面积12242142122S =⨯+⨯⨯+⨯⨯=+2AOB π∠=AB =。
新课标人教A版高中数学必修2空间几何体复习ppt课件

r1
a 2
a
2
r2 2 a
a
r3
3a 2
2a
2a
•画出正确的截面:(1)中截面;(2)对角面 •找准数量关系
34
球与正方体的“接切”问题
1.一 个 正 方 体 的 顶 点 都 在球 面 上 , 它 的 棱 长 是4cm, 求 这 个 球 队 体 积. 2.钢 球 直 径5cm, 把 钢 球 放 入 一 个 正 方体 的 有 盖 纸 盒 中 , 至 少 要 用多 少 纸 ?
D1
A1
C1 B1
D1
C1
B1
D1
C1
B1
D C
D C
D
A
B
A 图1 B
A 图2 B
D1
A1
C1
D1
B1
C1 B1
正视图
侧视图
D
D
C
C
A
B A 图1 B
俯视图
27
典型例题 例:10年福建文科3 若一个底面是正三角形的三棱住的正视图如图
所示,则其侧面积等于 A. 3 B.2 C.2 3 D.6
A1
解:如图,取BB1中点为B1,DD1中点为D,
C1
则V
V ,
B1 B1 EF
DDEF
VC1 B1EDF
V C1 B1EDF
1aa a
3
2
1 a3. 6
D1 F
D C
B1
A1
B1
E B
D
A
C1
B1
D1 F
D C
D
A1 B1
E B
30
A
典型例题 割补思想
例:如图,表示以AB 4cm, BC 3cm的长方形ABCD为底面的长
高中数学必修2空间几何体知识点归纳总结

高中数学必修2空间几何体知识点归纳总结高中数学空间几何体的学习一直是高中数学教学的重、难点,学生要重点掌握相关知识点,下面店铺给大家带来高中数学必修2空间几何体知识点,希望对你有帮助。
高中数学必修2空间几何体知识点考点要求:1.几何体的展开图、几何体的三视图仍是高考的热点.2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.3.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.4.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.知识结构:1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,直观图中仍平行于z′轴且长度不变.高中数学必修2知识点1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修2培优辅导专题(空间几何体)
一、选择题
1、(2010陕西文)若某空间几何体的三视图如图所示,则该几何体的体积是()
(A )2 (B )1
(C )
(D )
2、半径为的半圆卷成一个圆锥,则它的体积为( )
A .
B .
C .
D . 3、一个正方体的顶点都在球面上,它的棱长为,则球的表面积是( ) A. B.
C.316cm
π
D.
4、棱台上、下底面面积之比为,则棱台的中截面分棱台成 两部分的体积之比是( )
A . B. C. D.
5、如图,在多面体中,已知平面是边长为的正方形,,,且与平面的距离为,则该多面体的体积为( )
A .
B. C. D.
6、有一个几何体的三视图如下图所示,这个几何体可能是一个( ).
主视图 左视图 俯视图 (第1题)
A .棱台
B .棱锥
C .棱柱
D .正八面体
7、棱长都是1的三棱锥的表面积为( ).
A .3
B .23
C .33
D .43
8、正方体的棱长和外接球的半径之比为( ).
A .3∶1
B .3∶2
C .2∶3
D .3∶3
2
313
R 324R 38R 324R 38
R 2cm 2
8cm π212cm
π2
20cm π1:91:72:77:195:162
16cm πABCDEF ABCD 3//EF AB 3
2
EF =EF ABCD 29
2
56152
9、在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是().
A .
2
9
π B .
2
7
π C .
25
π D .
2
3π
10、如图是一个物体的三视图,则此物体的直观图是( ).
11、图(1)是由哪个平面图形旋转得到的( )
A B C D
12
、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为
V 1和V
2,则V 1:V 2=( )
A. 1:3
B. 1:1
C. 2:1
D. 3:1
13、如果两个球的体积之比为8:27,那么两个球的表面积之比为( )
A.8:27
B. 2:3
C.4:9
D. 2:9
14、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:
A.24πcm 2,12πcm 3
B.15πcm 2
,12πcm
3
C.24πcm 2,36πcm 3
D.以上都不正确
15、一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是() A .28cm π B .212cm π C .216cm π D .220cm π
16、一个正方体的顶点都在球面上,此球与正方体的表面积之比是( )
A. 3π
B. 4π
C. 2π
D. π 17、如右图为一个几何体的三视图,其中府视图为正三角形,A 1B 1=2AA 1=4,则该几何体的表面积为() (A)6+3 (B)24+3(C)24+23 (D)32
A
A B 1
正视图
侧视图
府视图。