第五章Bezier曲面与B样条曲面
B样条曲线

Bezier曲线
给定P0、P1、P2、P3,三次曲线的参数形式如下:
三次曲线的动态图如下:
对于三次曲线,可由线性贝塞尔曲线描述的中介点 Q0、Q1、Q2,和由二次曲线描述的点R0、R1所建 构。P0、P1、P2、P3四个点在平面或在三维空间中 定义了三次方贝塞尔曲线。曲线起始于P0走向P1, 并从P2的方向来到P3。一般不会经过P1或P2;这两 个点只是在那里提供方向资讯。P0和P1之间的间距, 决定了曲线在转而趋进P3之前,走向P2方向的“长 度有多长”。
Bezier曲线
更高阶的贝塞尔曲线,可以用以下公式表示:用表示由点 P0、P1、…、Pn所决定的贝塞尔曲线。则有:
高阶曲线的动态图如下:
要“画”出贝塞尔曲线,一般需要进行 较多的计算,然后绘制出来。
Bezier曲线 Bezier曲线的一般化形式:
即:
其中多项式:
又称作 n 阶的伯恩斯坦基底多项式,定义 00 = 1。
B样条曲线
Bezier曲线改变一点曲线整体受影响
B样条曲线
B样条曲ቤተ መጻሕፍቲ ባይዱ的优点:
易于进行局部修改; 更逼近特征多边形;
是低阶次的曲线。
B样条曲线改变一点曲线局部受影响
B样条曲线
均匀B样条曲线的参数表达式为:
式中为n次B样条基函数,其形式为:
其中
B样条曲线
B样条曲线的C语言实现
#include<graphics.h> #include<conio.h> float px[10]={50,90,150,120,220,300,380,320,450,500}; float py[10]={100,60,50,150,240,100,100,200,250,130}; void B_spline() { float a0,a1,a2,a3,b0,b1,b2,b3; int k,x,y; float i,t,dt,n=10; setcolor(15); dt=1/n; for(k=0;k<10;k++) { if(k==0) moveto(px[k],py[k]); lineto(px[k],py[k]); } setcolor(4); for(k=0;k<10-3;k++) { if(getch()==17)exit();
(4条消息)曲线曲面基本理论(二)

(4条消息)曲线曲面基本理论(二)一、Bezier曲线的生成生成一条Bezier 曲线实际上就是要求出曲线上的点。
下面介绍两种曲线生成的方法:1、根据定义直接生成 Bezier 曲线绘制Bezier曲线主要有以下步骤:2、Bezier 曲线的递推 (de Casteljau)算法根据 Bezier 曲线的定义确定的参数方程绘制 Bezier 曲线,因其计算量过大,不太适合在工程上使用。
de Casteljau 提出的递推算法则要简单得多。
Bezier 曲线上的任一个点(t),都是其它相邻线段的同等比例( t ) 点处的连线,再取同等比例( t ) 的点再连线,一直取到最后那条线段的同等比例 ( t )处,该点就是Beizer曲线上的点( t ) 。
以二次 Bezier 曲线为例,求曲线上t=1/3的点:当t 从0变到1时,它表示了由三顶点P0、P1、P2三点定义的一条二次Bezier曲线。
二次Bezier曲线P02可以定义为分别由前两个顶点(P0,P1)和后两个顶点(P1,P2)决定的一次Bezier曲线的线性组合。
由(n+1)个控制点Pi(i=0,1,...,n)定义的n次Bezier曲线P0n可被定义为分别由前、后n个控制点定义的两条(n-1)次Bezier曲线P0n-1与P1n-1的线性组合:这便是著名的de Casteljau算法。
用这一递推公式,在给定参数下,求Bezier曲线上一点P(t)非常有效。
de Casteljau算法稳定可靠,直观简便,可以编出十分简捷的程序,是计算Bezier曲线的基本算法和标准算法。
这一算法可用简单的几何作图来实现。
3、Bezier曲线的拼接几何设计中,一条Bezier曲线往往难以描述复杂的曲线形状。
这是由于增加特征多边形的顶点数,会引起Bezier曲线次数的提高,而高次多项式又会带来计算上的困难。
采用分段设计,然后将各段曲线相互连接起来,并在接合处保持一定的连续条件。
贝塞尔曲线B样条NURBS样条学习总结

Bezier曲线、B样条曲线和NURBS曲线0.概述1. 贝塞尔曲线(Bezier Curve):贝塞尔曲线由一组控制点和控制点上的权重组成。
贝塞尔曲线的阶数由控制点的数量决定,阶数为n的贝塞尔曲线需要n+1个控制点。
贝塞尔曲线具有局部控制的特性,即曲线上的一段由相邻的几个控制点决定,不受其他控制点的影响。
贝塞尔曲线的计算相对简单,但在变形过程中可能会出现形状扭曲的问题。
2. B样条(B-Spline): B样条曲线是一种基于分段多项式的曲线表示方法。
与贝塞尔曲线不同,B样条曲线的每个控制点都有一个关联的基函数。
这些基函数决定了曲线上每一点的形状。
B样条曲线的阶数可以是任意的,较高阶的B样条曲线能够更灵活地描述复杂的曲线形状。
B样条曲线具有良好的局部控制性和平滑性,可以很好地避免贝塞尔曲线的形状扭曲问题。
3. NURBS曲线(Non-Uniform Rational B-Spline Curve):NURBS曲线是对B样条曲线的扩展,它引入了有理权重的概念。
NURBS曲线的每个控制点都有一个关联的权重,这些权重可以调节曲线上各个点的影响程度。
NURBS曲线能够表示更复杂的曲线形状,如圆弧和椭圆等。
总的来说Bezier曲线中的每个控制点都会影响整个曲线的形状,而B样条中的控制点只会影响整个曲线的一部分,显然B样条提供了更多的灵活性;Bezier和B样条都是多项式参数曲线,不能表示一些基本的曲线,比如圆,所以引入了NURBS,即非均匀有理B样条来解决这个问题;贝塞尔曲线适用于简单的曲线形状设计,B样条曲线具有更好的局部控制和平滑性,适用于复杂曲线的建模而NURBS曲线在B样条的基础上引入了有理权重,可以更准确地描述各种曲线形状Bezier曲线是B样条的一个特例,而B样条又是NURBS的一个特例1.Bezier曲线1.1 贝塞尔曲线的历史:贝塞尔曲线于 1962 年,由法国工程师皮埃尔·贝济埃(PierreBézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计,贝塞尔曲线最初由保尔·德·卡斯特里奥于1959年运用德卡斯特里奥算法开发,以稳定数值的方法求出贝塞尔曲线。
课件 计算机图形学 贝塞尔曲线及B样条

n
p(t) pi Bi,n (t)
(0 t 1)
i0
p(t) (1 t)3 p0 3t(1 t)2 p1 3t 2 (1 t) p2 t3 p3
其中混合函数分别为:
B0,3 = 1- 3t + 3t2 - t3 =
B1,3 = 3t - 6t2 + 3t3 =
B2,3 = 3t2 - 3t3 =
(2)通过控制点即顶点直观而方便地调整曲线的形状, (3)仅通过起始点和终止点,而不通过其它的型值点。
三 贝塞尔曲线举例 曲线仅通过起始点和终止点,而不通过其它的型值点。
四 贝塞尔曲线的性质:
1 该曲线由一组多边形折线的多个顶点唯一地定义出来。
多边形折线又称特征多边形,顶点又称为控制点。
2 在多边折线的各个顶点中,只有第1点和最后1点在曲线上。
1 n!
nk j0
(1)
j
j (t n k j)n (0 t 1, k 0,1, n)
n1
P’(0) B2
2 例:n=3,m=1,
B1
P’(1)
表示有5个顶点, 能画出两段3次曲线
B02
B3
B0
P’’(0) P’’(1)
B4
3 n次B样条曲线
连接全部曲线段所组成的整条曲线称为n次B样条曲线。
j 0
j (t 2 j)2 1 (t 1)2
3
2
F1,2 (t)
1 2
(2t
2
2t
1)
t F2,2 (t)
1 2
2
因此,二次 B 样条曲线的分段表达式可以写成如下的形式:
Pi (t) F0,2 (t)Pi F1,2 (t)Pi1 F2,2 (t)Pi2
b样条

2)网格离散法.该法的基本思想是先将曲面离散为 由小平面片组成的网格,当网格足够细密时,可以 认为已经非常接近真实曲面.对分别表示不同曲面 的两张网格,利用平面片求交法求得交线,并以此 交线近似代表曲面间的交线.该法原理简明,便于 实现,适用范围广,任意参数曲面均可利用该方法 求交.但为获得精确的交线,则必须生成非常细密 的网格,这将导致占用内存多、计算花费大.因此, 实际工作中很少单一使用网格法,通常将其与其他 方法结合使用.
20:06
一张参数曲面有两个参数,两张曲面共有四 个参数变量. 三参数迭代法时,两曲面的四个参数中只有 三个参数参与迭代过程,而保持另—个参数 固定不变.这实际上就是计算不变参数的等 参数线与另一张曲面的交点. 采用四参数迭代过程时,两张曲面片的四各 参数都参与迭代过程,四者都有可能改变
20:06
曲面求交中的迭代法
为求得精确的交点,Newton—Raphon迭代法得到 了广泛应用.该法的优点为 1)计算精度高、速度快.在初值选择比较合理的情 况下,一般仅需迭代二至三次,就可以使交点的精 度从百分之几提高至万分之几甚至百万分之一的数 量级. 2)适用范围比较广.只要能获得曲面的几何位置、 切矢、法矢等信息,不论什么类型的曲面都可以使 用迭代法.其缺点是时初值的要求较严格,初值选 择不当.可能导致迭代不收敛,也就无法得到精确 的交点.
20:06
4)迭代法.迭代法本身并不能构成一个独立的求 交方法.与所有不动点迭代法一样,应用迭代法求 交线之前,首先必须给出交点的初始估计值,而交 点的初始估计值必须通过其他求交方法得到.因此, 迭代求交常同其它求交方法结合使用,作为交点精 化的一种手段.迭代法的主要过程是根据初始估计 点的几何性质(如坐标位置、切矢、法矢、曲率等) 运用Newton方拄得到一个较原估计点更接近于目 标点(即精确交点)的估计点.如此反复进行,直到 求得的交点满足所要求的精度.该法的优点是在初 值比较好时其收敛速度非常快,而且能应用于任意 参数曲面包括Coons曲面和等距面等,因此应用非 常广泛.其主要缺点是对初值的要求比较苛刘,初 值选择不当有可能导致迭代不收敛
Bezier曲线B样条曲线

是一种特殊情况
Y
0 X
5.1 曲线的参数表 示
• 向量P与时间t有关: P=P(t),就是说P是时 间t的函数。用坐标表示为 :
• 若把参数t 换成一个普通意义的参数u, 则曲线的参数形式为:
• 例如:
是一条空
• 间曲线的参数形式。
• 注: 这是一条以点(0,1,3)为起点,
(3,2,5)为终点的线段
5.2 Bezier、B样条曲线的生成
• 3)三次Bezier曲线 • 当n=3时为三次Bezier曲线,此时P(t)为三
次多项式,有四个控制点,由于三次Bezier 曲线是用3根折线定义的3阶曲线,则有:
用矩阵表示为:
5.2 Bezier、B样条曲线的生成
5.2 Bezier、B样条曲线的生成
且第一点和最后一点在曲线上,第一条和最
后一条折线分别表示出曲线在起点和终点处
的切线方向。 Bezier曲线通常由特征多边形
的n+1个顶点定义一个n次多项式,即给定空
间n+1个点的位置矢量Pi(i=0,1,2,…,
n),则Bezier参数曲线上各点坐标的参数方
程其式中参(插数t的值取值公范式围为)[是 0,1]: ,i是有序集0~n中的一个整数值,表示 顶点顺序号。
但从计算机图形学和计算几何的角度来看, 还
是使用参数表示较好, 因为采用参数方法表示
曲线和曲面, 可以将其形状从特定坐标系的依
附性中解脱出来, 很容易借助计算机得以实现。
• 一个动点的u轨1 迹可以用位置向量P来描述,
如• 注下:图这所里示讨: 论的动点轨u2 迹是
Z
u
在三维空间中所表示的 曲线, 平面轨迹曲线只
是一个Bezier曲线特征多边形顶点的
(整理)Catia--曲面设计.

第一章曲面设计概要1、曲面造型的数学概念:(1)、贝塞尔(Bezier)曲线与曲面:法国雷诺的Bezier在1962年提出的,是三次曲线的形成原理。
这是由四个位置矢量Q0、Q1、Q2、Q3定义的曲线。
通常将Q0,Q1,…,Qn组成的多边形折线称为Bezier控制多边形,多边形的第一条折线与最后一条折线代表曲线起点和终点的切线方向,其他折线用于定义曲线的阶次与形状。
(2)、B样条曲线与曲面:与Bezier曲线不同的是权函数不采用伯恩斯坦基函数,而采用B样条基函数。
(3)、非均匀有利B样条(NURBS)曲线与曲面:NURBS是Non-Uniform Rational B-Splines的缩写。
Non-Uniform(非统一)指一个控制顶点的影响力的范围能够改变。
当创建一个不规则曲面的时候,这一点非常有用。
同样,统一的曲线和曲面在透视投影下也不是无变化的,对于交互的3D建模来说,这是一个严重的缺陷。
Rational(有理)指每个NURBS物体都可以用数学表达式来定义。
B-Spline(B样条)指用路线来构建一条曲线,在一个或更多的点之间以内差值替换。
(4)NURBS曲面的特性及曲面连续性定义:NURBS曲面的特性:NURBS用数学方法来描述形体,采用解析几何图形,曲线或曲面上任何一点都有其对应的坐标(x,y,z),据有高度的精确性。
曲面G1与G2连续性定义:Gn表示两个几何对象间的实际连续程度。
●G0:两个对象相连或两个对象的位置是连续的。
●G1:两个对象光滑连接,一阶微分连续,或者是相切连续的。
●G2:两个对象光滑连接,二阶微分连续,或者两个对象的曲率是连续的。
●G3:两个对象光滑连接,三阶微分连续。
●Gn的连续性是独立于表示(参数化)的。
2、检查曲面光滑的方法:①、对构造的曲面进行渲染处理,可通过透视、透明度和多重光源等处理手段产生高清晰度的、逼真的彩色图像,再根据处理后的图像光亮度的分布规律来判断出曲面的光滑度。
B样条曲线----曲线曲面

B样条曲线的适用范围
对于特征多边形的逼近性
二次B样条曲线优于三次B样条曲线 三次Bezier曲线优于二次Bezier曲线 •
相邻曲线段之间的连续性
二次B样条曲线只达到一阶导数连续 三次B样条曲线则达到二阶导数连续
•
角点的修改对曲线形状的影响
Bezier曲线:修改一个角点将影响整条曲线的形状。
• 贝塞尔曲面表达式如下:
n m
P(u,v)=∑ ∑bi,jBi,n(u)Bj,m(v)
i=0 j=0
0≤u,v≤1
• 贝塞尔曲面中应用最广泛的是双3次贝塞尔曲面, 它由给出的4*4个网格点唯一决定.
赤峰学院计算机系 计算机图形学 08-09第二学期
一般称 Pij为 P(u , v) 的控制顶点,把由 Pi 0 , Pi1 , , Pim (i 0,1, , n) 和 P0 j , P , Pnj( j 0,1, , m) 组成的网格 1j , 称为 P(u , v) 的控制网格,记为{Pij } ,如图9.15所示。
赤峰学院计算机系 计算机图形学 08-09第二学期
在以上表达式中: Fk,n( t )为n次B样条基函数,也称B 样条分段混合函数。其表达式为:
1 nk j j n Fk ,n (t ) (1) Cn1 (t n k j ) n! j 0
n! C 式中: 0≤t ≤ 1 r ! ( n r )! k = 0, 1, 2, …, n
Q1
Q0
P0
Q2
赤峰学院计算机系
计算机图形学
08-09第二学期
• 四角点共线
若要使B样条曲线段之间切接入一段直线,可运用四 角点共线的方法。 Q5 Q1 Q2 P0 P2 P3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 在计算机绘图中常用参数形式表示曲面,自由曲面由曲 面片拼接而成,而曲面片又是由曲线构成,如下图所示:
11 01
v
00 u
10
图 曲面片
r ( u ,v ) [x ( u ,v )y ( ,u ,v )z ( ,u ,v )]
5.3 曲面的参数表示
r ( u ,v ) [x ( u ,v )y ( ,u ,v )z ( ,u ,v )]
r ( u ,v ) [ x ( u ,v )y ( ,u ,v )z ( , u ,v )]
也得到曲面上同一点位置矢量 r(ui ,vj ) ,即:
r ( u i,v j) [ x ( u i,v j)y ( ,u i,v j)z ( , u i,v j)]
5.3 曲面的参数表示
❖ 例如:如下图的平面片方程为:
r ( u ,v ) r 0 a b uv ( 0 u ,v 1 )
❖ 上式中矢量 r0为平面上
一点的位置矢量,a和 b
为常矢量,且a不平行
b r(1 , 1)
于b ,该平面片是由矢
v
32
量a和 b张成的四边形。
r(u, v)
Z r0
ua
O
Y
X
平面片
eg: 当u=1/3,v=1/2时对应平 面片中一点:
u
线 r(u,v j ),即一条u线。
图-参数曲面
即参数v为定值的曲面 上的线。
5.3 曲面的参数表示
r(ui ,v)
v
r(u, v j )
r(ui ,vj )
rr(u,v)
u
图-参数曲面
❖ 上述两条参数曲线 r(ui ,v) 和 r(u,v j )的交点则是r(ui ,vj )。事 实上,用uui,vvj 代入式子
❖ 当u ui 时,代入式子r ( u ,v ) [ x ( u ,v )y ( ,u ,v )z ( ,u ,v )]
得:r ( u i,v ) [x ( u i,v )y ( ,u i,v )z ( ,u i,v )]
即参数u为定
上式是曲面上一条参数曲线 r(ui ,v,) 即一条v线。
值的曲面上 的线。
xx(u,v) 或 yy(u,v)
zz(u,v)
u0uu1 v0vv1
式u 中 ,v为 参 数
v
r(ui ,v)
r(u, v j )
❖ 三维空间任意曲面的 图形如左图示,曲面
r(ui ,vj )
有两族参数曲线,或称 rr(u,v) 为坐标曲线,通常简称
u
u线和v线。
图-参数曲面
5.3 曲面的参数表示
r(1/3,1/2)=r0+a/3+b/2
5.3 曲面的参数表示
❖ 又如下图所示,以固定方向长度为a的直线段作为母线沿
给定一条空间曲线移动生成一个柱面,其方程为:
r ( u , v ) r 1 ( u ) av ( 0 u , v 1 )
上式中 a是沿母线方向的常矢量。
a
直线段
v
u
空间曲线 r1 (u)
曲面的种类繁多,为了便于讨论,将曲面分为两类:
➢ 一类是规则曲面,如柱、锥、椭球、环、双曲面、抛物面 等,它可用参数方程解析地描述;
➢ 另一类是不规则曲面,如Coons曲面、Bezier曲面、B样条 曲面等,这是构造某种曲面的方程问题。本节我们主要讨 论Bezier曲面、B样条曲面的生成与计算。
5.3 曲面的参数表示
注:那么我们如何确定这张曲面 上任意一点的位置呢? ➢1.若这点恰好落在某一条网格 线上,如右图中的A点,则就可 以根据这条网格线的函数表示来 计算这一点的位置(坐标); ➢2.若这点不在任何网格线上, 如右图中的B点,则无法计算该 点的精确位置,只能用离该点最 近的一条网格线上的点来近似表 示。
❖ 对于不在网格上的点,若用离该点最近的一条网格线上 的一点来近似表示,这会使得本来精度不很高的近似曲面 在这一点的精度更低,所以用这种方法来产生曲面只能适 合一部分精度不很高的场合。我们可以把平面里自由曲线 生成方法加以推广到曲面的生成问题上,借助于曲面的解 析表达式来处理有关曲面问题。
❖ 又例如:地面则是用一组水平面截得一组等高线表示的, 这实际上是把曲面问题转化为曲线问题。这种处理办法称 为曲线网格表示法,正是利用这些曲线网格来近似地表示 自由曲面。如下所示:
❖ 因此,在产生一张曲面时,我们可以利用一系列的纵横交 错且相互平行的样条曲线来构造曲面,如下图所示。
A B
图 曲面的网格
❖当 v v j 时,代入式子
r(ui ,v)
r ( u ,v ) [x ( u ,v )y ( ,u ,v )z ( ,u ,v )]
v
r(u,v j )
得:
r(u ,v j) [x (u ,v j)y ( ,u ,v j)z(,u ,v j)]
r(ui ,vj ) rr(u,v) 上式则是曲面上另一条参数曲
❖ 在计算机出现之前以及在计算几何没有很好地发展之 前,对于一些工程实际中应用的复杂自由曲面,如飞机、 轮船、汽车等几何外形的描述以及地形形状的表示,传统 的处理办法是用一组或几组平行平面去截这个曲面,画出 几组截交线来表示这个曲面。
❖ 例如:船体就是用相互正交的三组平面截得的纵剖线、横 剖线和水平线表示的;
第5章 曲线与曲面的生成与计算
5.1 曲面的参数表示 5.2 Bezier、B样条曲线的生成 5.3 曲面的参数表示 5.4 Bezier、B样条曲面的生成
曲线与曲面的生成与计算
❖ 曲面和曲线一样,是计算机图形学中研究的重要内容 之一,它们在实际工作中有着广泛的应用。在工程应用中, 常用的自由曲面有很多,例如:Bezier曲面、 B样条曲面、 Coons曲面等。
柱面
r(u, v)
5.4 Bezier、B样条曲面的生成
5.4 Bezier、B样条曲面的生成
下面主要介绍工程上流行应用的Bezier曲面和B样条曲面
一、Bezier(贝塞尔)曲面
❖ 如前所述, Bezier曲线是一条与控制多边形顶点位置有严 格关联关系的曲线, Bezier曲线形状趋向于特征多边形的形 状,而且阶数由控制多边形顶点的个数决定。 ❖ Bezier 曲 面 是 由 Bezier 曲 线 拓 广 而 来 , 它 也 是 以 Bernstein函数作为基函数,是由Bernstein基函数构造空间 点阵列的位置来控制的。 ❖ Bezier曲线是由特征多边形控制的; Bezier曲面则是由特 征网格顶点控制的。二者在表达式上也十分相似。