6种世界最快的数学计算法,提高学习数学成绩
数学快速计算技巧

数学快速计算技巧嘿,朋友们!你们是不是一看到数学计算就头疼,感觉那些数字就像一群调皮捣蛋的小怪兽,在你脑袋里横冲直撞?别担心,今天我就给你们分享一些超酷的数学快速计算技巧,让你轻松驯服这些小怪兽。
先来说说加法吧。
假如你要计算99 + 98,这俩数看起来是不是像两座高高的小山,硬着头皮加可有点累。
这时候呢,你就可以把99看成100 - 1,98看成100 - 2。
哇塞,那式子就变成了(100 - 1)+(100 - 2),这就像把两座小山拆成了几块小砖头,好算多了吧,结果就是200 - 3 = 197,是不是像变魔术一样?减法也有妙法哦。
就像102 - 97,102像是一个稍微鼓一点的气球,97像一个瘪一点的气球。
我们可以把102写成100 + 2,97写成100 - 3。
那式子就变成(100 + 2)-(100 - 3),这就好比从一个大包裹里拿出东西又放进去一点,最后就是2+3 = 5。
乘法也不难。
比如说11×12,11就像一根小棍,12像个小叉子。
我们可以这样算,把12拆成10和2,那11×12就等于11×10+11×2。
这就像把小叉子分成两部分分别和小棍相乘,110+22 = 132。
再看看15×15这种同尾数是5的乘法。
这就像两个长得差不多的小怪物。
很简单,十位数字乘以它自己加1,然后后面再写上25就行啦。
1×(1 + 1)=2,后面写上25,结果就是225,快得像一阵风。
除法呢,比如360÷12。
12就像一个严厉的小管家,360要被它瓜分。
我们可以把360拆成36×10,12拆成3×4。
那式子就变成(36×10)÷(3×4),这就像把一堆糖果先分组再重新分配,最后结果是30。
还有两位数乘以11的情况,比如34×11。
这就像给34这个小战士穿上一件11的铠甲。
史丰收速算法

史丰收速算方法速算:史丰收速算由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。
这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。
这一套计算法,1990年由国家正式命名为“史丰收速算法”,现已编入中国九年制义务教育《现代小学数学》课本。
联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。
史丰收速算法的主要特点如下:⊙从高位算起,由左至右⊙不用计算工具⊙不列计算程序⊙看见算式直接报出正确答案⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上速算法演练实例Example of Rapid Calculation in Practice○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。
□本文针对乘法举例说明○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」。
本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」。
○乘积的每位数是由「本个加后进」和的个位数即--□本位积=(本个十后进)之和的个位数○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。
现在,就以右例具体说明演算时的思维活动。
(例题)被乘数首位前补0,列出算式:7536×2=15072乘数为2的进位规律是「2满5进1」7×2本个4,后位5,满5进1,4+1得55×2本个0,后位3不进,得03×2本个6,后位6,满5进1,6+1得76×2本个2,无后位,得2在此我们只举最简单的例子供读者参考,至于乘3、4……至乘9也均有一定的进位规律,限于篇幅,在此未能一一罗列。
数学最高效的五种复习方法

数学最高效的五种复习方法学习数学中,学过的知识与方法很可能被遗忘,要想牢固掌握,并形成能力,就必须科学而有效地进行复习,以期达到温故知新的目的!以下就是为大家搜集整理的"高中数学课后高效复习5步法",供大家参考、阅读,希望对同学们有所帮助!●数学最高效的五种复习方法如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。
一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。
在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。
可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。
从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
复习一般可以分为集中复习和分散复习。
实验证明,分散复习的效果优于集中复习,特殊情况除外。
分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。
分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
对所学的素材要进行分析、归类,找出重、难点,分清主次。
在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。
史丰收速算法26句

乘数为2时,口诀为:满五进1;乘数为3时,口诀为:超3进1,超6进2;乘数为4时,口诀为:满25进1,满50进2,满75进3;乘数为5时,口诀为:满2进1,满4进2,满6进3,满8进4;乘数为6时,口诀为:超16进1,超3进2,满5进3,超6进4,超83进5;乘数为7时,口诀为:超142857进1,超285714进2,超428571进3,超571428进4,超714285进5,超857142进6;乘数为8时,口诀为:满125进1,满25进2,满375进3,满5进4,满625进5,满75进6,满875进7;乘数为9时,口诀为:超1进1,超2进2,超3进3,……超8进8、加减手指算,手指伸屈动一下,结果一下出来,最快者一秒钟算四五个数,林以轩通过学习指速打破世界吉尼斯和健力士世界纪录,在速度上是任何速算法都无法比拟的。
同时左手的不断摆动来刺激右脑,从而起到开发右脑的潜能。
多位上是从个位上分化出来,与学校教的方法一样,无论多少位都可以算出来。
比起来其它的方法,一般能算三、四位、最多也不过六位就很了不起了,但对史丰收速算法来讲,二十位、三十位都一样的规律,2、乘法更不用说了,史丰收速算法的乘法是最强大的,二三四五十位都是一笔算到底,举个例子:6892456697875414898527763127659846387726985267875248972 × 7,别的速算法可以一下子算出来吗?但对史丰收来讲,只是小意思而已,698758×964867类似这样的题别的速算法如果说靠加减还可以令人赞叹的话,史丰收的乘法更令人目瞪口呆,六位乘六位的也就是几秒钟而已,试问一下,哪一种速算法可以几秒钟算出来?3、除法也是一绝,到余数是几都算得出来。
多位除多位,几下就出来了,令人吃惊。
4、如果说加减乘除是这样的话,高等的复杂的数学也没难倒史丰收速算法,史丰收教授不仅是国际上著名的发明家,也是一位了不起的数学家,在勤奋的研究下解决了以前无法笔算的开方问题,并通过马克劳林级数的运用顺利的解决了三角函数和对数等运算方法。
数学解题八种方法

数学解题八种方法数学解题八种方法数学题是透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生的。
下面是店铺为大家整理的关于数学解题的八种方法,欢迎大家的阅读。
1、实物演示法利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。
比如:数学中的相遇问题。
通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。
像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。
长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。
这样可以有效地提高课堂教学效率,提升学生的学习成绩。
2、图示法借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。
在课堂教学当中,要多用图示的方法来解决问题。
有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。
例1:把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)思维方法是:图示法。
世界上最快的数学计算方法

世界上最快的数学计算方法在世界上,有很多种快速的数学计算方法,其中一些方法可以帮助我们更高效地解决数学问题。
以下是一些世界上最快的数学计算方法。
1.快速乘法:快速乘法是一种在进行大数乘法时能够大大减少计算时间的方法。
它基于分解原理,将两个大数拆分成更小的数,然后使用短乘法方法逐个相乘,最后将结果加起来。
这种方法通常比传统的乘法算法更快速。
2.快速幂算法:快速幂算法是一种高效计算大数幂的方法。
该算法基于指数的二进制形式,通过将指数拆解成二进制表示,可以将计算次数大大减少。
该算法通过重复平方运算,每次将结果平方并且除以2,从而逐渐得到幂的结果。
3.快速开方算法:快速开方算法是一种高效计算平方根的方法。
它基于二分查找原理,通过不断逼近目标平方根的值,最终可以找到非常接近的近似值。
这种方法相较于传统的开方算法更快速。
4.快速逆元计算:快速逆元计算是一种高效计算模逆元的方法。
在数论中,模逆元是指在给定模数下,能够将一个数乘以另一个数得到模数的值。
通过扩展欧几里德算法,可以计算出模逆元。
该算法能够快速计算模逆元,从而解决许多与模逆元相关的问题。
5.快速傅里叶变换:快速傅里叶变换(FFT)是一种在数字信号处理和数据压缩中广泛使用的计算方法。
该算法可以将离散时间序列转换为频域信息,从而实现高效的信号分析。
FFT是一种高效率的计算方法,它能够将傅里叶变换的复杂度从O(n^2)降低到O(n log n),因此在大规模信号处理中具有重要作用。
6.蒙特卡洛方法:蒙特卡洛方法是一种基于概率统计的数值计算方法。
该方法通过随机抽样和统计方法来估计结果。
它在计算复杂问题的结果时,可以通过随机抽样的方式,利用计算机进行大量模拟,从而得到近似解。
蒙特卡洛方法在许多领域中广泛应用,如数值积分、随机模拟等。
综上所述,世界上存在许多种快速的数学计算方法,这些方法可以帮助我们更高效地解决各种数学问题。
通过使用这些方法,我们可以大大减少计算时间,提高计算效率,并且在处理大规模数据时更加轻松。
世界各国个位数的乘法计算方法

世界各国个位数的乘法计算方法
世界各国在个位数的乘法计算上可能存在一些差异,但大多数方法都基于基本的数学原理。
下面是一些常见的方法:
1. 分配律法:这是最基础的方法,即把每个因数的每一位分别相乘,然后相加得到最终结果。
例如,计算35 × 46,先分别计算3 × 4,5 × 4,3 × 6和5 × 6,然后将这些结果相加得到最终答案。
2. 头同尾合十法:适用于两个因数相乘时,个位数相同的情况。
首先将十位上的数字相乘,然后加上两个个位数相乘的结果。
例如,计算23 × 27,先计算20 × 20得到400,再加上3 × 7得到21,所以23 × 27 = 581。
3. 口诀法:这是中国传统的乘法计算方法,通过一些简短的口诀来快速计算乘法。
例如,计算37 × 32时,可以记住“头乘头,尾加尾,尾乘尾”,即37 × 32 = 1184。
4. 印度竖式法:印度的一种传统乘法计算方法,与中国的竖式计算类似,但有一些细节上的差异。
具体方法是将因数分别写在纸上,然后按照印度算法的步骤进行计算。
这些方法并不是互斥的,不同的方法可能适用于不同的数字和情况。
在实际应用中,可以选择最适合的方法来快速准确地计算出答案。
小学加法速算方法

小学加法速算方法速算法对于学童而言、可以开发智力、活用头脑、帮助数理能力的增强。
今天小编为大家推荐小学加法速算方法。
小学加法速算方法一、个位数字的和为十,其他各位数字相同的两个数的速算方法。
个位前的数字加1乘自己的积的末尾添上个位上的数字的积。
如:56×54 5+1=6,6×5=30,在30的末尾添上个位上的数4与6的积24,得到3024,这样56×54=3024。
再如:61×69 (6+1)×6=42,1×9=9,当个位上的数相乘的积是一位数时,仍要占两位,故在9的前面还应添一个0。
故61×69=4209。
小学数学加减法速算技巧二、十位相同,个位数字和不为10的两位数乘两位数的速算方法。
用一个数加上另一个数的个位上的数,乘以由十位上的数字组成的整十数,再加上个位上两个数的积。
例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862三、个位上的数字相同,十位上的数字和为10的两个两位数相乘的速算方法,十位相乘加个位,末尾添上个位积。
(个位积不足两位,积前添0补足两位),例如:24×84 十位相乘加个位:2×8+4=20,个位积是:4×4=16,故24×84=2016。
练习:35×75 17×97 48×68 小学数学加减法速算技巧四、各位数字和为10的两位数,与各位数字相同的两位数相乘的速算方法。
数字和为10的两位数的十位加1乘以各位相同的两位数的十位的积的末尾添上两个个位数的积。
(个位积不足两位添0补足两位)如:46×33 数字和为10的两位数的十位加1乘以各位相同的两位数的十位的积:(4+1)×3=15,个位数字的积为:3×6=18,故46×33=1518五:个位上的数和为10,十位上的数相差1的两个两位数相乘的速算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6种世界最快的数学计算法,提高学习数学成绩
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二
因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。