现代控制理论第4章答案
现代控制理论习题解答(第四章)

第四章 控制系统的稳定性3-4-1 试确定下列二次型是否正定。
(1)3123212322212624)(x x x x x x x x x x v --+++= (2)232123222126410)(x x x x x x x x v ++---= (3)312321232221422410)(x x x x x x x x x x v --+++= 【解】: (1)04131341111,034111,01,131341111<-=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数不定。
(2)034101103031,0110331,01,4101103031<-=--->=--<-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=P二次型函数为负定。
(3)017112141211003941110,010,1121412110>=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数正定。
3-4-2 试确定下列二次型为正定时,待定常数的取值范围。
312321231221211242)(x x x x x x x c x b x a x v --+++=【解】:312321231221211242)(x x x x x x x c x b x a x v --+++=x c b a x T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1112121110212111,011,0111111>---->>c b a b aa 满足正定的条件为:⎪⎩⎪⎨⎧++>+>>1111111114410ca b c b a b a a3-4-3 试用李亚普诺夫第二法判断下列线性系统的稳定性。
;1001)4(;1111)3(;3211)2(;1110)1(x x x x x x x x ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=【解】: (1)设22215.05.0)(x x x v +=⎩⎨⎧≠≤==-=--=+=)0(0)0(0222221212211)(x x x x x x x x x x x x x v为半负定。
现代控制理论第四章答案

G T PG P Q 1 3 1 P11 3 2 0 P 12 0 3 0 P13 P12 P22 P23 P13 1 3 0 P11 P23 3 2 3 P12 P33 1 0 0 13
P 12 P22 P23
19 1 0, 2 0, 3 0 78
19 78 P 13 10 P23 39 P33 1 2
10 39 49 78 19 13
0 0 0 P11 P12 P13 1 0 0 0 P P k P k 2 / 4 P P k / 2 P P P 0 0 0 11 13 33 12 23 12 22 23 0 P13 P23 P33 0 0 0 P12 P23 k / 2 P22
P 12 P22
P 1 1 1 0 12 2 3 0 1 P22
7 P 11 4 5 P 12 8 9 P22 24
2 P 4 P 1 11 12 P 4 P 2 P22 0 11 12 2 P 6 P 1 22 12
1 2 19 13 123 76
故:矩阵P是负定的,所以系统的平衡状态是不稳定的
【习题4-8 】设线性离散系统的状态方程为
0 1 0 x(k 1) 0 0 1 x(k ) 0 k / 2 0
1 Q 0 0 0 0 0 P 11 P P 12 P 13
I A
a11
a12
a21 a22 (a22 a11 a12 a21 ) 1 2 0 2 (a11 a22 ) 1 2 0 2
现代控制理论智慧树知到课后章节答案2023年下长安大学

现代控制理论智慧树知到课后章节答案2023年下长安大学长安大学绪论单元测试1.下列语句中,不正确的是()。
A:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分,可以解决经典控制理论不能解决的所有控制难题。
B:现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统;C:20世纪50年代中期,空间技术的迅速发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题;D:在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法;答案:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分,可以解决经典控制理论不能解决的所有控制难题。
2.通过测量输出量,产生一个与输出信号存在函数关系的信号的元件称为()。
A:给定元件B:放大元件C:反馈元件D:比较元件答案:比较元件3.闭环控制系统的控制方式为()。
A:按扰动信号控制B:按输入信号控制C:按偏差信号控制D:按反馈信号控制答案:按偏差信号控制4.经典控制理论描述系统的数学模型是由高阶线性常微分方程演变来的传递函数,适合分析和设计下列哪种系统()A:非线性系统B:单输入单输出系统C:线性定常系统D:多输入多输出系统答案:单输入单输出系统;线性定常系统5.现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分,比经典控制理论所能处理的控制问题要广泛得多,适合分析和设计下列哪种系统()A:非线性系统B:线性时变系统C:多输入多输出系统D:线性定常系统答案:非线性系统;线性时变系统;多输入多输出系统;线性定常系统第一章测试1.系统状态空间实现中选取状态变量不是唯一的,其状态变量的个数是唯一的()A:对 B:错答案:对2.多输入-多输出系统的U-Y 间的传递函数为()A:错 B:对答案:对3.由一个状态空间模型可以确定多个传递函数。
《现代控制理论》课后习题全部答案(最完整打印版)

第一章习题答案1-1试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:系统的模拟结构图如下:系统的状态方程如下:阿令,则所以,系统的状态空间表达式及输出方程表达式为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程。
解:由图,令,输出量有电路原理可知:既得写成矢量矩阵形式为:1-3参考例子1-3(P19).1-4两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
解:系统的状态空间表达式如下所示:1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。
解:令,则有相应的模拟结构图如下:1-6(2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:1-7给定下列状态空间表达式(1)画出其模拟结构图(2)求系统的传递函数解:(2)1-8求下列矩阵的特征矢量(3)解:A的特征方程解之得:当时,解得:令得(或令,得)当时,解得:令得(或令,得)当时,解得:令得1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)解:A的特征方程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10已知两系统的传递函数分别为W1(s)和W2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结(2)并联联结1-11(第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-12已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为(1)解法1:解法2:求T,使得得所以所以,状态空间表达式为第二章习题答案2-4用三种方法计算以下矩阵指数函数。
(2)A=解:第一种方法:令则,即。
求解得到,当时,特征矢量由,得即,可令当时,特征矢量由,得即,可令则,第二种方法,即拉氏反变换法:第三种方法,即凯莱—哈密顿定理由第一种方法可知,2-5下列矩阵是否满足状态转移矩阵的条件,如果满足,试求与之对应的A阵。
《现代控制理论》第三版_.习题答案

1 0 0 3 1 0 5 2 1 52 7 1 5 2 70 125 3 5 7 5 0 0 1 1 B 2 ; 2 5 5
1 0 a1 0 0 1 0 1 0 0 1 a2 3 7 5
0 B 0 1
C (b0 a0bn ) (bn1 an1bn ) 2 1 0
3 1 a 或者 2 2 1 a1 0 a0
e At I At 1 22 1 33 A t A t 2! 3! t2 t4 t6 t3 t5 1 4 16 64 , 4 16 t 2! 4! 6! 3! 5! 3 5 2 4 6 t t t t t t 4 16 64 , 1 4 16 64 3! 5! 2! 4! 6!
0 0 1 B M 1 0 0 0 0 1 M2
1 0 B 1 M1 B1 M2
1 B1 M1 B1 B2 M2
0
0 0 1 0 C 0 0 0 1
1-5. 根据微分方程, 写状态方程, 画模 拟结构图。
1 a2 a2 2 a1 3 2 a a a 1 2 2 a0
1 a2 a1
1 a2
12 b1 b0
b3 b 2 b1 1 b0
凯莱哈密顿法: 1,2 2 j
0 (t ) 1 1 e1t 1 2(e 2 jt e 2 jt ) (t ) 1 2t 4 2 jt 2 jt e j ( e e ) 2 1
《现代控制理论》课后习题答案4

ε 和初始时刻 t0 有关), 使得从球域 S (δ ) 内任一初始状态出发的状态轨线始终都保持在球域 则平衡状态 xe = 0 称为是李雅普诺夫意义下稳定的。 进一步, 如果平衡状态 xe = 0 S (ε ) 内,
是李雅普诺夫意义下稳定的,并且当 t → ∞ 时,始于原点邻域中的轨线 x (t ) → 0 ,则平衡 状态 xe = 0 称为在李雅普诺夫意义下是渐近稳定的。 它既适用于线性系统, 也适用于非线性系统, 既适用于时变系统, 也适用于时不变系统, 既适用于连续系统,也适用于离散系统。 4.4 怎样判别二次型函数的正定、负定、半正定、半负定? 答:二次型函数的一般表达式为:
2 2 2
(2) V ( x ) = − x12 − 10 x 2 2 − 4 x3 2 + 6 x1 x2 + 2 x3 x2 ; (3) V ( x ) = 10 x1 + 4 x2 + x3 + 2 x1 x2 − 2 x3 x2 − 4 x1 x3
2 2 2
2 2 答: (1) V ( x ) = x12 + 4 x2 + x3 + 2 x1 x2 − 6 x2 x3 − 2 x1 x3
⎛ ⎡10 1 −2 ⎤ ⎞
由于矩阵 P 的三个顺序主子式分别是
⎛ ⎡10 1 ⎤ ⎞ ⎜⎢ ⎥⎟ Δ1 = 10 > 0 , Δ 2 = det ⎜ ⎢ ⎟ = 39 > 0 , Δ 3 = det ⎜ ⎢ 1 4 −1⎥ ⎟ = 17 > 0 ⎥ ⎝ ⎣ 1 4⎦ ⎠ ⎜ ⎢ −2 − 1 1 ⎥ ⎟ ⎦⎠ ⎝⎣
AT P + PA = −Q
其中,未知对称矩阵具有以下形式
⎡P P = ⎢ 11 ⎣P 12
《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n pb1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc ---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
《现代控制理论》第三版 第四章.习题答案

a11 a22 0
4-3(1)选 v( x ) x1 x2 ,平衡点 xe 0 v( x ) 0 ( x ) 2 x12 6 x2 2 6 x1 x2 x T Px v
2 3 P 3 6 2 3 0
1 P 11 0
4-2 法一: 系统的特征方程为:
I A 2 a11 a22 a11a22 a12 a21
系统大范围渐近稳定等价于方程有两个 负实部的共轭复特征值或两个负实特征 值,于是可以得到 1 2 a11 a22 0 12 a11a22 a12 a21 0 法二: P11 P12 设对称阵 P = ,设 Q I P12 P22
2
2
因为 i 为奇数 i 0 i 为偶数 i 0 ,所以
P 负定。
( x ) 0 渐近稳定 v 当 x 近稳定 或按
AT P PA Q
v( x ) 所以大范围渐
取Q I
7 4 P 5 8
稳定
5 8 3 8
1 0 2 0 所以 P 渐近
(2) v( x ) x1 x2
2
2
( x ) 2( x12 x2 2 ) 0 v
当
x v( x ) 所以大范围渐近稳定 1 2 P 0 0 1 2
2 2
或按 AT P PA Q
问题: 4-2 讨论对取 v( x ) x1 x2 ,
1 1 0
3 17.75 0 ,所以 Q( x )
是负定的
2) Q( x ) x T Px
1 1 1 P 1 4 3 1 3 1 1 1 0 2 3 0 所以 Q( x ) 不定符号
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代控制理论第四章习题答案4-1判断下列二次型函数的符号性质:(1)222123122313()31122Q x x x x x x x x x x =---+-- (2)222123122313()4262v x x x x x x x x x x =++---解:(1)由已知得[]11231231232311232311()31122111113211112x Q x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥=-+------⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥---⎣⎦110∆=-<,2112013-∆==>-,31111711302411112--∆=--=-<--- 因此()Q x 是负定的 (2)由已知得[][]112312312323112323()433111143131x Q x x x x x x x x x x x x x x x x x x ⎡⎤⎢⎥=---+---+⎢⎥⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦110∆=>,2113014-∆==>-,3111143160131--∆=--=-<--因此()Q x 不是正定的 4-2已知二阶系统的状态方程:11122122a a xx a a ⎛⎫= ⎪⎝⎭试确定系统在平衡状态处大范围渐进稳定的条件。
解:方法(1):要使系统在平衡状态处大范围渐进稳定,则要求满足A 的特征值均具有负实部。
即:111221222112211221221()0a a I A a a a a a a a a λλλλλ---=--=-++-= 有解,且解具有负实部。
即:1122112212210a a a a a a +<>且方法(2):系统的原点平衡状态0e x =为大范围渐近稳定,等价于T A P PA Q +=-。
取Q I =,令11121222P P P P P ⎡⎤=⎢⎥⎣⎦,则带入T A P PA Q +=-,得到 1121111211222112122222220100221a a P a a a a P a a P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦若 11211211222111221122122112222204()()0022a a a a a a a a a a a a a a +=+-≠,则此方程组有唯一解。
即22212212222111221222211111121122()1()2()A a a a a a a P a a a a A a a a a A ⎡⎤++-+=-⎢⎥-++++⎣⎦其中11221221det A A a a a a ==- 要求P 正定,则要求222122111112202()A a a P a a A++∆==>-+221122122121122()()04()a a a a P a a ++-∆==>-+因此11220a a +<,且det 0A >4-3试用lyapunov 第二法确定下列系统原点的稳定性。
(1)1123x x -⎡⎤=⎢⎥-⎣⎦ (2)1111x x -⎡⎤=⎢⎥--⎣⎦解:(1)系统唯一的平衡状态是0e x =。
选取Lyapunov 函数为2212()0V x x x =+>,则112211221222112222122()222(2)2(23)266332()022V x x xx x x x x x x x x x x x x x x ∙=+=-++-=-+-=---<()V x ∙是负定的。
x →∞,有()V x →∞。
即系统在原点处大范围渐近稳定。
(2)系统唯一的平衡状态是0e x =。
选取Lyapunov 函数为2212()0V x x x =+>,则11221122122212()222()2()220V x x xx x x x x x x x x x ∙=+=-++--=--<()V x ∙是负定的。
x →∞,有()V x →∞。
即系统在原点处大范围渐近稳定。
4-6设非线性系统状态方程为:1222221(1),0xx xa x x x a ==-+->试确定平衡状态的稳定性。
解:若采用克拉索夫斯基法,则依题意有:22221()(1)x f x a x x x ⎡⎤=⎢⎥-+-⎣⎦ 22201()()143Tf x J x a ax ax x ⎡⎤∂==⎢⎥----∂⎣⎦取P I =222222222()()()0101143143000286T Q x J x J x a ax ax a ax ax a ax ax -=+-⎡⎤⎡⎤=+⎢⎥⎢⎥-------⎣⎦⎣⎦⎡⎤=⎢⎥---⎣⎦很明显,()Q x 的符号无法确定,故改用李雅普诺夫第二法。
选取Lyapunov函数为2212()0V x x x =+>,则112221221222222()2222((1))2(1)0V x x xx x x x x x a x x a x x ∙=+=+--+=-+<()V x ∙是负定的。
x →∞,有()V x →∞。
即系统在原点处大范围渐近稳定。
4-9设非线性方程:123212xx xx x ==--试用克拉索夫斯基法确定系统原点的稳定性。
解:(1)采用克拉索夫斯基法,依题意有:2312()x f x x x ⎡⎤=⎢⎥--⎣⎦2101()()31T f x J x x x ⎡⎤∂==⎢⎥--∂⎣⎦23232212212312()()()()Tx V x f x f x x x x x x x x x ⎡⎤⎡⎤==--+=+--⎢⎥⎣⎦--⎣⎦x →∞,有()V x →∞。
取P I =21212121()()()01033111013132T Q x J x J x x x x x -=+⎡⎤-⎡⎤=+⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤-=⎢⎥--⎣⎦则2121013()132x Q x x ⎡⎤-+=⎢⎥-+⎣⎦ ,根据希尔维斯特判据,有: 2221121210310310132x x x -∆=∆==->-+,(),()Q x 的符号无法判断。
(2)李雅普诺夫方法:选取Lyapunov 函数为421233()042V x x x =+>,则 31122331221222()3333()30V x x xx x x x x x x x ∙=+=+--=-<()V x ∙是负定的。
x →∞,有()V x →∞。
即系统在原点处大范围渐近稳定。
4-12试用变量梯度法构造下列系统的李雅普诺夫函数2111222-2-xx x x x x ⎧=+⎨=⎩解:假设()V x 的梯度为:11112212112222a x a x V V a x a x V +∇⎛⎫⎛⎫∇== ⎪ ⎪+∇⎝⎭⎝⎭计算()V x 的导数为:()()2112111122211222222223111122112222121211122()()22T x x x V x V x a x a x a x a x x a x a a x x a x a x x a x x ∙⎛⎫-+=∇=++ ⎪-⎝⎭=--+-++选择参数,试选112212211,0a a a a ====,于是得:12x V x ⎛⎫∇= ⎪⎝⎭,显然满足旋度方程12122121,0V V x xx x x x ∂∇∂∇∂∂===∂∂∂∂即,表明上述选择的参数是允许的。
则有:221212()(12)V x x x x x ∙=---如果121211202x x x x -><或,则()V x ∙是负定的,因此,1212x x <是12x x 和的约束条件。
计算得到()V x 为:12211(0)()11222212()1()2x x x x x V x x dx x dx x x ===+=+⎰⎰()V x 是正定的,因此在121211202x x x x -><即范围内,0e x =是渐进稳定的。