三角函数的求值、化简与证明(教案)

三角函数的求值、化简与证明(教案)
三角函数的求值、化简与证明(教案)

三角函数的求值、化简与证明

教学目标

1、 掌握两角和与差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式,能正

确运用三角公式进行三角函数的化简证明求值;

2、 培养学生分析问题解决问题的能力,培养热爱数学。

教学重点

掌握两角和与差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式。 教学难点

能正确运用三角公式进行三角函数的化简证明求值

教学过程

一、知识归纳

1、两角和与差公式:

()sin sin cos cos sin αβαβαβ±=± ()cos cos cos sin sin αβαβαβ±= , ()t a n t a n t a n 1t a n t a n

αβαβαβ±±= 2、二倍角公式:sin 22sin cos ααα=, 22t a n t a n 21t a n αα

α=- 22cos 2cos sin ααα=-22cos 1α=-212sin α=-

公式变形:1sin cos sin 22

ααα=

21cos 2sin 2αα-=,21cos 2cos 2αα+= 3、三角函数式化简的一般要求:

①函数名称尽可能少, ②项数尽可能少,③次数尽可能低,尽可能求出值

④尽量使分母不含三角函数,⑤尽量使被开方数不含三角函数

4、求值问题的基本类型及方法:

(1)“给角求值”一般所给的角都是非特殊角,解题时应注意观察非特殊角与特殊角之间的

关系。

(2)“给值求值”即给出某些角的的三角函数式的值,求另一些角的三角函数值,解题关键

在于变角,使其角相同。

(3)“给值求角”关键是变角,把所求的角用含已知角的式子表示。

5、证明三角恒等式的思路和方法:

①思路:利用三角公式进行化名,化角,使等式两端化“异”为“同”。

②证明三角不等式的方法:

比较法、配方法、反证法、分析法,利用函数单调性,利用正余弦函数的有界性,利用

单位圆三角函数线及判别法等。

二、典例分析:

题型一:三角函数式的化简

例1:化简 : 22221sin sin cos cos cos 2cos 22

αβαβαβ?+?-? 分析:化简时使角尽量少,幂次尽量低,不含切割函数,时时要注意角之间的内在联系。

解略。

演练反馈:

144x x ππ????-+- ? ?????

解:原式=12x π??- ???

2.(全国卷2)22sin 2cos 1cos 2cos 2αααα

?=+ ( B ) A.tan α B.tan 2α C.1 D. 12

题型二:三角函数式的求值

例250(13tan10)cos 20)

cos801cos 20+--(金版教程例2 p144)

解:原式 例3:已知3sin 5

α=

,α是第二象限角,且tan()1αβ+=,则tan β的值是( ) A.-7 B.7 C.34- D. 34 演练反馈:

1.tan15cot15+=( C )

A.2

B.2

C.4

D.

2.

cot 20cos103sin10tan702cos40?+?-=2

3.y=44cos sin x x -的最小正周期(π )

3.已知sin 2cos 2+=a,则cos 4=(4a )

4.已知223sin cos 222

A B A B +-+=,(c o s c o s 0A B ?≠)求tan tan A B ? 的值。 解:12

5.设1cos()29βα-

=-,2sin()23αβ-=,且2παπ<<,02πβ<<,求 c o s ()αβ+ 解:239729- 6.已知A 、B 为锐角,且满足tan tan tan tan 1,A B A B =++则

cos()A B +=(2

-)。

7.若sin A B ==,且A,B 均为钝角,求A+B 的值。

解:A+B= 74

π 8.已知cos()0,tan 0,2

θθπ-<>则下列不等式关系式中必定成立的是:( c ) A 、tan cos 22θθ< B 、tan cos 22θθ> C 、sin cos 22θθ< D 、sin cos 22

θθ< 9、A 、B 、C 是ΔABC 的三个内角,且tan ,tan A B 是方程23510x x -+=的两个实数根,

则ΔABC 是( 钝角三角形 )

题型三:三角函数式的证明

例4:证明

1cos sin sin 1cos x x x x

-=+ 证明略

演练反馈: 求证: 1cos cos

sin 21cos sin sin 2

x x x x x x ++=-+ 三、小结

1.三角函数的化简、求值、证明的基本思路是:一角二名三结构,即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心;其次看函数名称之间的关系,通常“切化弦”;再次观察代数式的结构特点.

2.(1)三角函数的化简、求值、证明的基本解题规律:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.

(2)三角函数求值问题一般是运用基本公式,将未知角变换为已知角求解.在解题中,特殊角的三角函数值一般情况下可先求出,同时要注意观察各角之间的和、差是否构成特殊角,以便化繁为简,从而使求值(或证明)问题化难为易.

3.常见三角函数式的求值问题的四种类型:

(1)不含特殊角的三角函数式的求值;

(2)含特殊角的三角函数式的求值;

(3)给出某些角的三角函数的值,求与该角有关的三角函数式的值;

(4)给出三角函数式的值求角.

解法:(1)发现、挖掘角的某种特殊关系;(2)灵活运用三角公式中切与弦、和与差、倍与半、升幂与降次的转换方法;(3)关键在于“变角”(角的配凑);(4)先解所求角的三角函数,再确定角的取值.

三角函数公式推导过程

三角函数公式推导过程 万能公式推导 sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)) (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导 tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2s in^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

三角形全等的证明教案

三角形全等的证明 【知识梳理】 (一)三角形概述: 1.定义(包括内、外角) 2.性质:三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。 ⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。 ⑶角与边:在同一三角形中 3.三角形的主要线段 (1)定义:高线、中线、角平分线、中垂线 (2)××线的交点—-- 三角形的×心及性质 4.特殊三角形(等腰三角形、等边三角形)的判定与性质 等腰三角形: 定理:等腰三角形的两个底角相等,(简称:“等边对等角”) 定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”) 等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等,(简称“等角对等边”)。 等边三角形的性质及判定: 有一个角是60°的等腰三角形是等边三角形 5.全等三角形 全等三角形的的性质:全等三角形的对应边相等,对应角相等; 全等的判定:SAS 、ASA 、AAS 、SSS : 注意问题: (1)在判定两个三角形全等时,至少有一边对应相等; (2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA ;b :有两边和其中一角对应相等,即SSA 。 记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 寻找对应元素的方法: (1)根据对应顶点找 如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。 (2)根据已知的对应元素寻找 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。 翻折 如图(1),?BOC ≌?EOD ,?BOC 可以看成是由?EOD 沿直线AO 翻折180?得到的; 等边 等角 大边 大角 小边 小角

g3.1049 三角函数的化简、求值与证明

g3.1049 三角函数的化简、求值与证明 一、知识回顾 1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。 二、基本训练 1、已知θ是第三象限角,且445 9 sin cos θθ+=,那么2sin θ等于 ( ) A 、223 B 、223- C 、23 D 、23 - 2、函数23 232 y sin x cos x =--+的最小正周期 ( ) A 、2π B 、π C 、3π D 、4π 3、tan 70cos10(3tan 201)- 等于 ( ) A 、1 B 、2 C 、-1 D 、-2 4、已知46 sin 3cos (4)4m m m αα--=≠-,则实数m 的取值范围是______。 5、设1 0,sin cos 2 απαα<<+=,则cos2α=_____。 三、例题分析 例1、化简: 4221 2cos 2cos 2.2tan()sin () 44 x x x x ππ -+ -+ 例2、设3177cos(),45124 x x π ππ +=<< ,求2sin 22sin 1tan x x x +-的值。 例3、求证:sin(2)sin 2cos().sin sin αββ αβαα +-+=

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

【北师大版初三数学】第1讲:三角形的证明-教案

知识讲解: 1.通过探索、猜测、计算、证明得到的定理: (1)与等腰三角形、等边三角形有关的结论: 性质:等腰三角形的两个底角相等,即等边对等角; 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合; 等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等. 等边三角形的三条边都相等,三个角都相等,并且每个角都等于60°; 等边三角形的三条角平分线、三条中线、三条高互相相等. 判定:有两个角相等的三角形是等腰三角形; 有一个角是60°的等腰三角形是等边三角形; 三个角都相等的三角形是等边三角形. (2)与直角三角形有关的结论: 勾股定理的逆定理; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 斜边和一直角边对应相等的两个直角三角形全等.(HL) (3)与一般三角形有关的结论:

在一个三角形中,两个角不相等,它们所对的边也不相等(用反证法证明). 2.命题的逆命题及其真假: 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为另一个命题的逆命题. 一个命题是真命题,它的逆命题不一定是真命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.其中一个定理称为另一个定理的逆定理.例如勾股定理及其逆定理. 3.尺规作图 线段垂直平分线的性质定理和判定定理;用尺规作线段的垂直平分线;已知底边和底边上的高,用尺规作等腰三角形 角平分线的性质定理和判定定理;用尺规作已知角的平分线. 课堂练习: 考点一:等腰三角形 【例题】 1、【14外国语期中】等腰三角形的一边为5另一边为9,这这个三角形的周长为()A.19 B.23 C .14 D.19或23 2、【14外国语月考】等腰三角形补充下列条件后,仍不一定成为等边三角形的是() A.有一个内角是600 B.有一个外角是1200 C.有两个角相等 D.腰与底边相等 3、【经开一中月考】将两个全等的有一个角为300的直角三角形拼成如图所示,其中两条直角边在同一直线上,则图中等腰三角形的个数是() A.4B.3C.2D.1 4、【14外国语月考】腰长为5,一条高为4的等腰三角形的底边长为。 5、【经开一中月考】一个等腰三角形有一角是700,则其余两角分别为。 6、【经开一中月考】等腰直角三角形一条边长是1cm,那么它斜边上的高是 cm. 7、【经开一中月考】已知:如图AB=AC,DE∥AC求证:△DBE是等腰三角形。 8、【14外国语月考】如图,等边△ABC中,AO是BC边上的中线,D为AO上一点,以CD为一边且在CD 下方作等边△CDE,连结BE。 (1)求证:AD=BE

二倍角的三角函数的化简与证明

课题:二倍角的三角函数 本节考试要求为B 级 一、知识梳理 1、二倍角公式 =α2sin ;=α2cos ;=α2tan . 2、公式变形 =α2sin ;=α2cos ;=-αcos 1 ; =+αcos 1 ;=-α2sin 1 ;=+α2sin 1 . 3、技巧:(1)巧变角;(2)切化弦;(3)变逆用;(4)幂升降;(5)变结构;(6)1代换;(7)三兄妹. 二、三基能力强化 1、已知5 3 )4sin( = -x π ,则=x 2sin . 2、已知θ是第三象限角,且9 5cos sin 4 4=+θθ,那么θ2sin = . 3、在ABC ?中,6cos 4sin 3=+B A ,1cos 3sin 4=+A B ,则C sin 的值为 . 4、教材习题改编)已知1tan 2tan 1=+-θθ,则=++)4 tan(42tan π θθ . 5、已知βα,均为锐角,且α αα αβsin cos sin cos tan +-=,则=+)tan(βα . 三、典例互动 三角函数式的化简:化简的要求 例1:(1)化简)4 cos(6)4sin( 2x x -+-π π ; (2)α αααα2sin ) 1cos )(sin 1sin (cos +--+ 规律总结: 三角函数式的求值:求值的方法 例2:求值:0 01000 1cos 20sin10(tan 5tan 5)2sin 20-+-- 又如:ο ο ο ο 78sin 66sin 42sin 6sin =

例3:已知),43(ππα∈,3 10 tan 1tan =+αα,求 ) 2 sin(28 2 cos 112 cos 2 sin 82 sin 52 2 π αα α α α --++的 值。 变题:本题条件不变,求 ) 3 sin(cos 22sin 2π ααα- -的值。 例4:已知ββαsin 3)2sin(=+,设x =αtan ,y =βtan ,记)(x f y = (1)求)(x f 的解析式;(2)若角α是一个三角形的最小内角,试求函数)(x f 的值域 四、课堂反馈 1.已知cos2α=1 4 ,则sin 2α=________. 2.2sin2α1+cos2α·cos 2αcos2α 等于________. 3.已知α,β,γ∈(0,π 2),且sin α+sin γ=sin β,cos β+cos γ=cos α,则α-β的值等于________. 4.定义运算a b =ab 2+a 2b ,则sin15°cos15°的值是________. 5.(原创题)已知sin θ=4 5 ,且cos θ-sin θ+1<0,则sin2θ=________. 6.化简:2cos 4x -2cos 2x + 1 2 2tan(π4-x )·sin 2(π 4+x ) .

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

三角函数公式及证明

三角函数公式及证明 ( 编辑整理 2013.5.3) 基本定义 1.任意角的三角函数值: 在此单位圆中,弧AB 的长度等于α; B 点的横坐标αcos =x ,纵坐标 αsin =y ; (由 三角形OBC 面积<弧形OAB 的面积<三角形OMA 的面积 可得: a a tan sin <<α (2 0πα<<)) 2.正切: α α αcos sin tan = 基本定理 1.勾股定理: 1cos sin 22=+αα 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2 =b 2 +c 2 -2bc A cos bc a c b A 2cos 2 22-+=? 3.诱导公试: απ ±k 2

cot tan cos sin ?? 奇变偶不变,符号看相线 4.正余弦和差公式: ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± 推导结论 1. 基本结论 ααα2sin 1)cos (sin 2+=+ α α2 2cos 1 1tan = + 2. 正切和差公式: β αβ αβαβαβ αβαβαβαβαtan tan 1tan tan sin sin cos cos sin cos cos sin )cos()sin() tan(μμ±= ??? ? ??±=±±=± 3.二倍角公式(包含万能公式): θ θθθθθθθθ2 22tan 1tan 2cos sin cos sin 2cos sin 22sin +=??? ??+== θθ θθθθθθθθθ2222222 2 2 2 tan 1tan 1cos sin sin cos sin 211cos 2sin cos 2cos +-=??? ? ??+-=-=-=-= θ θ θθθ2tan 1tan 22cos 2sin 2tan -= = θ θ θθ222 tan 1tan 22cos 1sin +=-= 22cos 1cos 2θθ+= 4.半角公式:(符号的选择由2θ 所在的象限确定)

八年级数学下册第一章三角形的证明回顾与思考教案1新版北师大版

《回顾与思考》 教学目标 1、在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思 路和方法,尺规作图等。 2、发展学生的初步的演绎推理能力,进一步掌握综合法的证明方法,提高学生用规 范的数学语言表达论证过程的能力。 教学重点 通过例题的讲解和课堂练习对所学知识进行复习巩固 教学难点 本章知识的综合性应用。 教学过程 知识回顾 1、等腰三角形的性质:(边)_______________ ;(角)_______________ ;“三线合一”的 内容____________________________________ 。 2、等边三角形的性质:(边)_______________ ;(角)__________________ 。 3、判定等腰三角形的方法有:(边)_______________ ;(角)________________________ 。 4、判定等边三角形的方法有:(边)_______________ ;(角)________________________ 。 5、_________________________________________________ 线段垂直平分线的性质定理:。 逆定理:____________________________________________________________________ 。 三角形的垂直平分线性质:___________________________________________________ 。 6、_____________________________________________________________ 角的性质定理:。 逆定理:____________________________________________________________________ 。 三角形的角平分线性质:_____________________________________________________ 。 7、___________________________________________________ 三角形全等的判定方法有:。 8 30°锐角的直角三角形的性质: ______________________________________________ 。 9、方法总结: (1)证明线段相等的方法:1)可证明它们所在的两个三角形全等;2)角平分线的性质定理:角平分线上的点到角两边的距离相等;3)等角对等边;4)等腰三角形三线合一的性 质;5)中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等。 (2)证明两角相等的方法:1)同角的余角相等;2)平行线性质;3)对顶角相等;4)全等三角形对应角相等;5)等边对等角;6)角平分线的性质定理和逆定理。

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

三角函数万能公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数万能公式及推导过程。 三角函数万能公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形) 三角函数万能公式推导过程 由余弦定理:a^2+b^2-c^2-2abcosC=0 正弦定理:a/sinA=b/sinB=c/sinC=2R 得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0 转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0 即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0 又cos(C)=-cos(A+B)=sinAsinB-cosAcosB 得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0 (cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC 得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 同角三角函数的关系公式 倒数关系公式 ①tanαcotα=1 ②sinαcscα=1 ③cosαsecα=1 商数关系公式 tanα=sinα/cosα

cotα=cosα/sinα平方关系公式 ①sin2α+cos2α=1 ②1+tan2α=sec2α ③1+cot2α=csc2α

北师版八年级数学下册教案第一章三角形的证明

第一章三角形的证明 1等腰三角形 第1课时全等三角形及等腰三角形的性质 1.理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理. 2.经历“探索-发现-猜想-证明”的过程,让学生进一步掌握证明的基本步骤和书写格式. 3.掌握等腰三角形性质定理的推论. 重点 掌握等腰三角形的性质定理及推论. 难点 证明等腰三角形的相关性质. 一、复习导入 1.请学生回忆并整理已经学过的8条基本事实中的5条: (1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; (2)两条平行线被第三条直线所截,同位角相等; (3)两边及其夹角对应相等的两个三角形全等(SAS); (4)两角及其夹边对应相等的两个三角形全等(ASA); (5)三边对应相等的两个三角形全等(SSS). 2.在此基础上回忆全等三角形的判定定理:(推论)两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明. 3.回忆全等三角形的性质. 二、探究新知 1.等腰三角形的性质定理 问题1:什么是等腰三角形? 问题2:你会画一个等腰三角形吗?并把你画的等腰三角形裁剪下来. 问题3 :试用折纸的方法回忆等腰三角形有哪些性质. 引导学生得出等腰三角形的性质: 等腰三角形的两底角相等.(简称为“等边对等角”) 问题4:你能利用已有的基本事实和定理证明这些结论吗? 已知:如图,在△ABC中,AB=AC. 求证:∠B=∠C. 分析:方法一:作∠BAC的平分线,交BC边于点D;方法二:过点A作AD ⊥BC于点D;方法三:取BC的中点D. 证法一:取BC的中点D,连接AD. ?? ? ?? AB=AC BD=CD AD=AD ?△ABD≌△ACD?∠B=∠C.

三角函数化简题

4三角函数得化简、求值与证明日期:2009年月日星期 ,能正确地运用三角公式进行三角函数式得化简与恒等式得证明、 用、 (1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式得逆用等。(2)化简要求:①能求出值得应求出值; ②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数得求值类型有三类:(1)给角求值:一般所给出得角都就就是非特殊角,要观察所给角与特殊角间得关系,利用三角变换消去非特殊角,转化为求特殊角得三角函数值问题;(2)给值求值:给出某些角得三角函数式得值,求另外一些角得三角函数值,解题得关键在于“变角”,如等,把所求角用含已知角得式子表示,求解时要注意角得范围得讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得得所求角得函数值结合所求角得范围及函数得单调性求得角。 3、三角等式得证明:(1)三角恒等式得证题思路就就是根据等式两端得特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端得化“异”为“同”;(2)三角条件等式得证题思路就就是通过观察,发现已知条件与待证等式间得关系,采用代入法、消参法或 、三角函数得求值: ,化非特殊角为特殊角; ?2、正确灵活地运用公式,通过三角变换消去或约去一些非特殊角得三角函数值; ?3、一些常规技巧:“1”得代换、切割化弦、与积互化、异角化同角等、 1、三角函数式得化简: 三角函数式得化简常用方法就就是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角得三角函数互化、 ?2、三角恒等式得证明: 三角恒等式包括有条件得恒等式与无条件得恒等式、①无条件得等式证明得基本方法就就是化繁为简、左右归一、变更命题等,使等式两端得“异”化为“同”;②有条件得:代入法、消去法、综合法、分析法等、 ( A) A、B、C、D、 2、函数得最小正周期( B) A、B、C、D、 3、等于( D) A、1 B、2 C、-1 D、-2 4、已知,则实数得取值范围就就是__[-1,]___。 ____。 ,(),则?( ) ???或 略解:由得或(舍),∴,∴、 例2、已知,就就是第三象限角,求得值、 解:∵就就是第三象限角,∴(), ∵,∴就就是第四象限角,∴, ?∴原式 221 cos(15)sin(15)sin(75)cos(75) 3αααα + =---=+-+=-、 例3、已知,求得值、

高一数学三角函数教案

高一数学三角函数教案 高一数学《三角函数》教案如下: 已知三角函数值求角反正弦,反余弦函数 目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 由 1在R上无反函数。 2在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, 记作,奇函数。 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴ 即 2、已知 解:,是第一或第二象限角。 即。 3、已知

解: x是第三或第四象限角。 即或 这里用到是奇函数。 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:, x是第二或第三象限角。 3、已知,求x的值。 解:由上题:。 介绍:∵ ∴上题 例三、见课本P74-P75略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 高一数学《三角函数的周期性》教案如下: 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数的图象 2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求等函数的周期

《三角形的证明》复习教案

第一章《三角形的证明》 1、性质和判定 2、尺规作图 垂直平分线的应用: (1)确定到两点(三点)距离相等的点的位置 (2)确定线段的中点 (3)过一点作已知直线或线段的垂线 角平分线的应用 (1)把一个角分成n2等份 (2)确定到角的两边或三角形三边距离相等的点 (3)与垂直平分线结合,解决实际问题 3、全等三角形的判定(AAS,SSS,SAS,ASA,HL) 双基训练: 1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是____________. 2.一个等腰三角形的顶角是40°,则它的底角是________________. 3.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是________________. 4.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是 . 5.已知⊿ABC中,∠A = 090,角平分线BE、CF交于点O,则∠BOC = . 6.在△ABC中,∠A=40°,AB=AC ,AB的垂直平分线交AC与D,则∠DBC 的度数为. 7.Rt⊿ABC中,∠C=90o,∠B=30o,则AC与AB两边的关系

是 , 8.等腰三角形一腰上的高与另一腰的夹角为300 ,腰长为6,则其底边上的高是 。 9. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF , 要使△ABC ≌△DEF ,还需要的条件是( ) A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D 10.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( ) A.30° B.36° C.45° D.70° 11.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个 12. 如图, DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:△BCD ≌△EAB . 13.如图,∠A=∠D=90°,AC=BD.求证:OB=OC ; 14.如图,在△ABD 和△ACE 中,有下列四个等式: ①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE .以其中..三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程。 已知: . 求证: . 证明: 提升练习 16.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上. D E C B A

初中三角函数教案

初中数学 三角函数 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3 4 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) A 90 B 90∠-?=∠? =∠+∠得由B A 对边 邻边 C A 90 B 90∠-?=∠? =∠+∠得由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 :i h l =h l α

三角函数公式及证明(高中)

三角函数公式及相关的证明 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2 b a -

cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa s in(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

第01讲-三角形的证明-教案

第01讲 三角形的证明 温故知新 三角形全等的条件 (1)三角形全等条件1:三条边分别相等的两个三角形全等,简写成“边边边”或“SSS”。 注意:①在运用“SSS”判定三角形全等,必须同时满足三边对应相等,只有一边或两边对应相等是不能得到全等的。②“SSS ”判定全等只适用于三角形,不能适用其他图形。 符号语言:已知△ABC 与△DEF 的三条边对应相等。 在△ABC 与△DEF 中,?? ? ??===DF AC EF BC DE AB ∴△ABC ≌△DEF (SSS ) (2)三角形全等条件2:两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”。 注意:①用“ASA”判定两个三角形全等时,一定要说明两个角及夹边对应相等 ②在书写两个三角形全等的条件“ASA”时,一般把夹边相等写在中间的位置。 符号语言:已知∠D=∠E ,AD =AE ,∠BAD =∠CAE .求证:△ABD ≌△ACE . 证明:在△ABD 和△ACE 中, ∠D=∠E AD=AE ∠BAD =∠CAE ∴△ABD ≌△ACE (ASA ) (3)三角形全等条件3: 两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“边边角”或“AAS”。 符号语言:如图:D 在AB 上,E 在AC 上,DC=EB,∠C=∠B .求证:△ACD ≌△ABE 证明:在△ACD 和△ABE 中. ∠C=∠B ∠A=∠A DC=EB ∴△ACD ≌△ABE (AAS ). 注意:“AAS”中的“S”是有限制条件的,必须是两组对应等角中一组等角的对边。 (4)三角形全等条件4:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”。 符号语言:在△ABC 与△DEF 中,

相关文档
最新文档