《定义与命题(1)》导学案2
gfjg

《定义与命题》导学案学习目标:1.通过具体例子,了解定义、命题的含义,会区分命题的条件(题设)和结论。
2.会辨别真命题和假命题。
3.通过具体例子了解反例的作用,知道利用反例可以证明一个命题是错误的。
一.自主预习课本的内容,独立完成课后练习1、2、3后,与小组同学交流(课前完成)。
二.,通过预习定义与命题的概念请思考下列问题:1.定义与命题的区别与联系。
2.对于一些条件和结论不分明的命题,怎样用最快的办法找出它的条件和结论。
3.在判断一个命题是假命题时,如何正确的列举一个反例。
三.巩固练习1.表示的语句叫做命题。
这是命题的(定义)。
2.命题由和两部分组成。
3.命题分为和,要指出一个命题是假命题,只要能够举出一个反例,使它具备命题的,而不具备命题的就可以了。
4.下列语句是命题的是()A.过点A作直线MN的垂线。
B.正数都大于负数吗?C . 你必须完成作业。
D.两点之间,线段最短。
5.命题“等腰三角形的两个底角相等”的条件是,结论是6.把命题“在平面内,垂直于同一条直线的两条直线互相平行”改写成一般形式。
7.下列命题是真命题的是()A.任何数的平方都是正数。
B 相等的角是对顶角。
C.内错角相等。
D 直角都相等。
四.学习小结:(回顾一下这一节所学的,看看你学会了吗?)五.达标检测1.下列命题中,假命题是()(A)两点确定一条直线。
(B)钝角的补角是锐角。
(C)两直线被第三条直线所截,同旁内角互补。
(D)直线外的一点与直线上各点的连线中,垂线段最短。
2.将下面的语句改成“如果……,那么……,”的形式,并指出是真命题,还是假命题,如果是假命题,举出一个反例。
(1)等角的补角相等。
(2)线段垂直平分线上的点,到线段两端点的距离相等。
(3)能被5整除的数的个位数字是0。
(4)互为相反数的两个数的商等于1。
3.命题“直角三角形中两个锐角互余”的题设部分是结论部分是4.命题“面积相等的三角形是全等三角形”的题设部分是,结论部分是,这个命题是命题。
2019—2020年北师大课标版八年级数学上册《定义与命题(1)》教案2(教案).doc

《定义与命题(1)》教案学习目标1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.辅助教学多媒体.学习过程一、自主预习(感知)1、什么是定义?定义:_________2、下列语句为命题的是( )A、你吃过午饭了吗?B、过点A作直线MNC、同角的余角相等D、红扑扑的脸蛋3、一般地,命题都由_________和_________两部分组成.二、合作探究(理解)1、教材P165议一议什么是命题?它们中哪些是命题?2、教材P166想一想你发现这些命题有什么共同的结构特征3、教材P166做一做什么叫真命题?什么叫假命题?其中哪些命题是真命题?你是如何判断的?三、轻松尝试(运用)1、下列语句中,是命题的是( )A、直线AB和CD垂直吗B、过线段AB的中点C画AB的垂线C、同旁内角不互补,两直线不平行D、连结A、B两点2、下列各命题的条件是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;条件:_________;结论:_________(2)如果a>b,b>c,那么a=c;条件:_________;结论:_________3、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为( )A、0B、1个C、2个D、3个四、拓展延伸(提高)将下列命题改成“如果…那么…”的形式,并指出条件和结论.(1)两角和其中一角的对边对应相等的两个三角形全等;(2)菱形的四条边都相等;(3)全等三角形的面积相等;(4)等角的余角相等;(5)对顶角相等.五、当堂检测(达标) 教材随堂练习1,2.。
2022年北师大版数学《定义与命题》精品导学案

7.2 定义与命题第1课时定义与命题学习目标:1.了解定义、命题、真命题、假命题、定理的含义2.会区分命题的条件和结论一、学习过程:情景引入自学指导:独立完成下列问题,小组内完成统一(5分钟)图中A、B、C、D、E、F、G、H、I、J、K处均有一化工厂,如果他们向河中处理污水,下游河水便会受到污染。
如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;二、新知学习:自学指导:阅读165页内容,完成下列问题(10分钟)1.上面“如果……那么……”都是对事情进行判断的句子_________________________,叫做命题例如:熊猫没有翅膀. 对顶角相等. 你还须能举出这样的例子吗?2.举出一些不是命题的句子3.观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等。
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。
结论:每个命题都由________和_________两部分组成. ________是已知的事项,_________是由已知事项推断出的事项.4.下列各命题的条件是什么?结论是什么?如果两个角相等,那么它们是对顶角。
如果a>b,b>c,那么a=c。
两角和其中一角的对边对应相等的两个三角形全等。
全等三角形的面积相等.上述命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?结论:正确的命题称为________,不正确的命题称为________.要说明一个命题是假命题,常常可以举出一个例子,使之具备命题的条件,而不具有命题的结论,这种例子称为_________三、巩固练习:判断下列句子哪些是命题?1.动物都需要水2.猴子是动物的一种3.玫瑰花是动物4.美丽的天空5.l外一点作l a>b, a>c, 那么b=c四、课堂小结:本节课你有哪些收获?(2分钟)五、作业:习题7.2 2、3六、课后反思:1.3 勾股定理的应用一、自主预习(感知)1、勾股定理:直角三角形两直角边的等于。
4.1定义与命题(1)导学案

4.1 定义与命题(1)班级__________________ 姓名__________________〖学习目标〗1.了解定义的含义;2.了解命题的含义;3.了解命题的结构,会把一个命题写成“如果……那么……”的形式。
〖学习重点与难点〗重点:命题的概念。
难点:范例第(2)题的命题中有一个前提条件,第(3)题命题的条件与结论不易区分,是本节学习的难点。
一、自主学习(把握时间,独立完成)1.写出一个你所熟悉的定义:____________________________________。
2.说出下列名词的定义直角三角形 极差 梯形 一次函数 频率 压强3. ____________________________________叫做命题。
4.写出一个你所熟悉的命题:____________________________________ 。
5.命题有____命题和____命题。
6.下列语句哪些是命题,哪些不是命题。
(1)在线段AB 上任取一点C 。
(2)两点确定一条直线。
(3)作线段AB 的中垂线。
(4)两个锐角的和大于直角吗?(5)同角的余角相等。
(6)8不是偶数。
二、合作探究(合作学习,相互帮助)1.判断下列句子是不是命题(1)熊猫没有翅膀。
(2)任何一个三角形一定有直角。
(3)两点确定一条直线。
(4)作线段AB=CD 。
(5)无论n 为怎样的自然数,式子n2-n+11的值都是质数。
(6)平行用符号“∥”表示。
2.下列命题中哪些是假命题,为什么?(1)绝对值相等的两个数一定相等。
(2)如果22b a =,那么a=b 。
(3)末位数字为0的数必能被5整除。
(4)两个锐角之和为钝角。
(5)如果a=b ,那么22b a =。
三、继续探索(收获更多,懂得更多)1.下列语句中,可称为定义的是()A.如果∣a∣=∣b∣,那么a=b。
B.十五的月亮是圆的。
C.点到直线的垂直线段的长度称为点到直线的距离。
2.下列命题,其中正确命题的序号有_____________①对顶角未必相等。
浙教版数学八年级上册《1.2定义与命题》导学案设计

1.2定义与命题(1)【学习目标】:1、了解定义的含义,能够叙述一些简单的数学概念的定义。
2、了解命题的定义,会把一个命题写成“如果……那么……”的形式。
【学习重点】:命题的定义,把一个命题写成“如果……那么……”的形式。
【学习难点】:某些命题有前提条件;或者有些命题的条件与结论不易区分。
一、学法指导:1、通过一些实例,知道定义与命题的概念,会区分定义与命题。
2、通过例题的学习,知道怎样把一个命题写成“如果……那么……”的形式。
二、课前预习:1、在电子表格中输入一些有规律的内容,如月份“一月、二月、三月……”或星期“星期一、星期二、星期三……”等,可以利用Excel的自动填充功能来完成. 只要用户在某个单元格中输入“一月“,Excel就可以自动在后面填入“二月”“三月”……要读懂这段报道,你认为要知道哪些名称和术语的含义?2、“鸟是动物”“会飞的动物是鸟吗?”这两个句子根本性的区别在哪里?3、什么叫打折?4、什么叫密度?5、什么叫平行线?三、课堂学习:1、看书本70页到71页例题结束为止,理解定义与命题的概念。
思考:什么叫定义?举例:::2、书本70页第3段中有7个句子,在表述形式上,对事情作了判断的有,对没有对事情作出判断的有(填序号)3、什么叫命题?举例:::【归纳】句子根据其作用分为判断句、陈述句、疑问句、祈使句四个类别;定义属于陈述句,是对一个名称或术语的意义的规定,而命题属于判断句或陈述句,且都对一件事情作出判断,与判断的正确与否没有关系............。
4、现阶段我们在数学是学习的命题可看做由(或)和两部分组成。
题设是,结论是。
这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是,“那么”后面的部分是,比如“两直线平行,同位角相等”可以改写成“如果两直线平行,那么同位角相等”。
5、例题学习:把例题中三个命题改写成“如果……那么……”的形式,并把正确答案写在下面的横线上:⑴⑵⑶方法指导:先确定什么是结论,然后确定哪些是条件6、自学检测:完成书本71页课内练习1~4题四、知识小结:1、定义的概念2、命题的概念3、会把命题改写成“如果……那么……”的形式五、当堂检测:1、下列语句中为定义的是…………………………………………………………………()A.三角形两边之和大于第三边吗?B.三角形的中线是一条线段C.由不在同一直线上的四条线段首尾顺次相接形成的图形叫做四边形D.同角的补角相等2、判断下列叙述是不是命题,并说明理由.(1)画出线段AB的中点O;(2)平行于同一条直线的两条直线平行;(3)直角都相等;(4)你喜欢英语吗? (5)鲜艳的五星红旗.3、“垂直于同一条直线的两条直线互相平行”的题设是……………………………………()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线4、把命题“同角的余角相等”改写成“如果……那么……”的形式,正确的是……()A.如果同角,那么相等B.如果同角,那么余角相等C.如果同角的余角,那么相等D.如果两个角是同一个角的余角,那么这两个角相等5、把下列命题写成“如果……那么……”的形式.(1)两直线平行,同旁内角互补;(2)等角的余角相等;(3)过已知直线外一点有且只有一条直线平行于这条直线六、我的收获:七、课外作业:必做题:作业本选做题:课本72页作业题5、6反思:对于复杂语句的改写,学生还是有一定的困难。
6.2定义与命题(1)导学案

课题:定义与命题(1)学习目标:(目标明确,行动才更有效!)1、了解定义、命题的概念。
2、了解定义、命题在现实生活中的重要性。
学法指导:(方法得当,事半功倍!)这节课的重点是了解定义、命题的概念,定义必需是严密的,一般避免使用含糊不清的术语,例如“一些”“大概”“差不多”等不能在定义中出现。
正确的定义能把被定义的事物或名词与其他的事物或名词区别开来;命题是对一件事情作出肯定或否定的判断的句子,与判断结果的对错无关。
课堂探究:(我自信,我参与!)1、 自主学习:(试一试自己的学习本领有多强)自主学习课本p218___200请你说出定义、命题的概念:定义:命题:二、合作研讨:(交流也是一种非常好的学习方法,交流过程中你一定会有所感悟,大胆提出你的问题吧。
)不知大家注意了没有,凡是命题,它的组成结构均有共同的特点,你能够总结出这个特点吗?小组交流后归纳出来。
3、巩固提高1.下列句子中哪些是命题?(1)动物都需要水;(2)猴子是动物的一种;(3)玫瑰花是动物;(4)美丽的天空;(5)三个角对应相等的两个三角形一定全等;(6)负数都小于零;(7)你的作业做完了吗?(8)所有的质数都是奇数;(9)过直线外l一点作直线l的平行线;(10)如果a>b,a>c,那么b=c.2、在解决“何处水流受到污染”的问题中,找出几个命题.3、下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4、下列句子中,是命题的是( )A.今天的天气好吗B.作线段AB∥CD;C.连接A、B两点D.正数大于负数5、下列叙述错误的是( )A.所有的命题都有条件和结论;B.所有的命题都是定理;C.所有的定理都是命题;D.所有的公理都是真命题四、课后反思:(同学们,本节课你学到了什么,取得哪些收获,请自我总结,人总是在不段总结中成长!)。
八年级数学下册 4.1《定义与命题》学案(2) 浙教版

八年级数学下册 4.1《定义与命题》学案(2)浙教版4、1定义与命题(2)【学习目标】1、理解真命题、假命题、公理和定义的概念2、会判断一个命题的真假,会区分定理、公理和命题。
【学习过程】1、复习:命题的概念是_____________________________________结构是__________________________________________2、合作学习:思考下列命题的条件是什么?结论是什么?(1)边长为a(a>0)的等边三角形的面积为√3/4a2、(2)两条直线被第三条直线所截,如果同位角相等,(3)那么这两条直线平行、(4)对于任何实数x,x2<0、问:上述命题中,哪些正确?哪些不正确?理由是什么?_________________________________________________________ _________________________________________________________ _______________________3、真命题、假命题的概念:___________命题称为真命题,________命题称为假命题。
要判定一个命题是真命题常常通过推理(即证明)的方式而判定一个命题是假命题常常通过举反例的方式举例:判断下列命题是真命题还是假命题,并说明理由(1)x=1是方程x2-2x-3=0 的解。
(2)一个图形经过旋转变化,像和原图形全等。
(3)三角形的两边之和大于第三边;(4)边长为a(a>0)的等边三角形的面积为(5)一条直线截另外两第直线所得的同位角4、公理和定义(1)公理:数学中通常挑选一部分人类经过________________________命题叫做公理、(2)定理:用____________判断为____________命题叫做定理。
点拨:前面学过的那些用黑了表述的性质都可以作为定理。
定理和公理都可以作为判断其他命题真假的依据、公理(举例):1、两点之间线段最短。
浙教版数学八年级上册1.2《定义与命题》教案2

浙教版数学八年级上册1.2《定义与命题》教案2一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。
本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。
定义是对于一个概念或者事物的本质特征进行准确的描述,而命题是判断一件事情的语句。
本节课通过具体的例子让学生理解定义与命题的区别和联系,提高学生的逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经学习了七年级的数学知识,对于一些基本的概念和语句有一定的理解。
但是,对于定义与命题的深入理解和运用还需要进一步引导。
通过观察学生的学习情况,我发现他们对于实际例子的理解较为直观,但对于理论层面的抽象思维还需要加强。
因此,在教学过程中,我需要结合具体例子引导学生理解定义与命题的概念,并培养他们的逻辑思维能力。
三. 教学目标1.理解定义与命题的概念,并能够正确区分它们。
2.学会如何阅读和理解定义与命题,提高逻辑思维能力。
3.能够运用定义与命题解决实际问题,培养解决问题的能力。
四. 教学重难点1.重点:理解定义与命题的概念,学会正确运用它们。
2.难点:对于抽象定义与命题的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动思考和探索。
2.通过具体例子讲解定义与命题的概念,让学生直观理解。
3.小组讨论,培养学生的合作意识和沟通能力。
4.运用多媒体教学手段,增加课堂的趣味性和互动性。
六. 教学准备1.准备相关定义与命题的例子,用于讲解和练习。
2.设计小组讨论的问题,促进学生的思考和讨论。
3.准备多媒体教学材料,如PPT等,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过一个简单的例子引入定义与命题的概念,激发学生的兴趣。
例子:请同学们判断以下语句是定义还是命题?解答:根据语句的特点,判断其为定义或命题。
2.呈现(15分钟)讲解定义与命题的概念,引导学生理解它们的本质区别。
定义:对于一个概念或者事物的本质特征进行准确的描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科数学年级八年级授课班级
课型新授课课题§7.2定义与命题
学习目标:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.
学习内容(学习过程)
一、自主预习(感知)
1、什么是定义?
定义:。
2、下列语句为命题的是()
A 、你吃过午饭了吗?B、过点A作直线MN
C、同角的余角相等
D、红扑扑的脸蛋
3、一般地,命题都由和两部分组成。
二、合作探究(理解)
1、教材P165 议一议
什么是命题?它们中哪些是命题?
2、教材P166 想一想
你你发现这些命题有什么共同的结构特征?
3、教材P166 做一做
什么叫真命题?什么叫假命题?其中哪些命题是真命题?你是如何判断的?
三、轻松尝试(运用)
1、下列语句中,是命题的是( )
(A)直线AB和CD垂直吗
(B)过线段AB的中点C画AB的垂线
(C)同旁内角不互补,两直线不平行
(D)连结A、B两点
2、下列各命题的条件是什么?结论是什么?
(1)如果两个角相等,那么它们是对顶角;
条件:;结论:
(2)如果a>b,b>c,那么a=c;
条件:;结论:
3、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个
为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为()
A、0
B、1个
C、2个
D、3个
4、下列命题不正确的是( )
(A)一组邻边相等的平行四边形是菱形
(B)直角三角形斜边上的高等于斜边的一半
(C)等腰梯形同一底上的两个角相等
(D)有一个角为60°的等腰三角形是等边三角形
四、拓展延伸(提高)
将下列命题改成“如果……,那么……”的形式,并指出条件和结论
(1)两角和其中一角的对边对应相等的两个三角形全等;
(2)菱形的四条边都相等;
(3)全等三角形的面积相等;
(4)等角的余角相等;
(5)对顶角相等。
五、收获盘点(升华)
六、当堂检测(达标)
教材随堂练习1,2
七、课外作业(巩固)
1、必做题:①整理导学案并完成下一节课导学案中的预习案。
②7.2 第1,2,3题在书上完成。
完成《名校课堂》中的本节内容。
2、思考题:
学习反思:。