岳麓区初中生数学实践与应用能力竞赛
岳麓区初中生数学实践与应用能力竞赛

岳麓区初中生数学实践与应用能力竞赛获奖名单经过岳麓区中学数学教学专业委员会全体理事集中评卷,初中生数学实践与应用能力竞赛成绩已经揭晓。
本次比赛,各校按在校学生人数的5%选派学生参加全区的竞赛,然后分别按各年级参赛人数的10%、20%、30%确定壹、贰、叁等奖名额,各年级获奖学生名单如下:一、七年级获奖名单壹等奖坪塘镇坪塘中学:徐思旸雨敞坪镇嵇山中学:文祯19中:石星蒋国鹏周志鹏龙红梅28中:柳泽宇曾迈周嘉汇袁野成了师大附中博才实验中学:秦明航谢灵尧文健瞿佳高惟韬张振宇李钊毅王子健韩浩言贰等奖莲花镇五峰中学:谭豪高新区延风中学:张欣荣湘仪学校:许国强苏贵星坪塘镇坪塘中学:饶雅婷虢俊雄坪塘镇白泉学校:戴杰王思彬莲花镇双枫中学:阎妍夏晨懿19中:詹巍李梓鑫陈钰红28中:肖翠婷姚津鑫于润涛林岸潮含浦镇学士中学:阎建民代卫东肖顺海欧婷师大附中博才实验中学:李映波张艺辉文卓张淞陈李赵泽龙唐蔚萱卞俊杰李卓康郑天歌丁谦张曦琳谭泽为刘俊哲洪海涛张重哲李湘龙珺蒋正坤黄竞叁等奖雨敞坪镇嵇山中学:刘敏高新区延风中学:龚明远坪塘镇坪塘中学:黎康何首城坪塘镇白泉学校:谢湘闽谢煦涛含浦镇学士中学:杨飘涂博为莲花镇五峰中学:李迎周静妍雨敞坪镇麻田中学:殷岳佳黄新蓉坪塘镇太平中学:戴聪戴倩吴凡湘仪学校:尹潇锐张杨欧阳杏金含浦镇含浦中学:徐佳王诗菱刘尚凌帅杨思琪28中:余苗郭宇柳宇翔李鑫悦贾正阳田诚怡谭帅程俊华清水塘中学:蒋自力任冬阳胡钰莨曾家欣刘旋黄毅刘冰莹熊国瑜19中:蔡志雄余博涛黄智能戴雨睛陈乐虹刘鹏龚维李赛曹威李浩杰师大附中博才实验中学:张浩钧杨家睿唐博文谭丝何人杰欧万吉缪宗霖蒋坚孙嘉伟张弛胡凯邹怡琳杨红宇刘锦权二、八年级获奖名单壹等奖19中:戴景怡坪塘镇坪塘中学:刘博28中:李异陈章睿含浦镇学士中学:吴斯迪湘仪学校:刘宇刘达之向雨川向思齐唐嘉博杨鸿斌徐旺博艾凌浩王文杰童恺宁任祉燕刘心忱贰等奖雨敞坪镇嵇山中学:吴帅清水塘中学:舒南方莲花镇双枫中学李湘龚聘贤坪塘镇坪塘中学:谢添傲周天傲欧阳宗帅19中:莫明潇唐一平夏子睛张欢李雅丹湘仪学校:刘粲仪唐滢瑾余冠英戴琪贺睿智潘邹林凡邓家欣陈静刘敬28中:江泽星彭盛林徐弘毅谭正豪苏俊杰罗荣达邹紫曦黄茜雯陈学润唐钰铃袁键达叁等奖雨敞坪镇嵇山中学:陈龙坪塘镇太平中学:谢盈雨敞坪镇麻田中学:李尚文李博文含浦镇含浦中学:刘德升童思博坪塘镇坪塘中学:陈正泉吴昀健莫家曦坪塘镇白泉学校:徐炼锋谢煌陈源源含浦镇学士中学:李银芳李俊杰梁佳俊莲花镇双枫中学:李欢颜真唐麓林清水塘中学:刘树力黎琪桂迎杨宇成陈思远李鑫臣28中:黄修永唐奕昕付芊庞吉珊刘灏葭何希贤19中:段仪姿张明山李艳喻巧阳龚乐杨嘉欣李镕昆李陈创马芸芸湘仪学校:匡梦恬言思源李彩黄真李润鑫高瑛刘祎露王欢文雅菲董莳瑶杨菁三、九年级获奖名单壹等奖19中:高阳 28中:刘章倩黄越坪塘镇坪塘中学:吴浪刘作莲花镇双枫中学:李雅倩张蒙杨鹏宁湘龙湘仪学校:黄袆俤李盈王立舒刊余笑嫣贰等奖坪塘镇坪塘中学:周梦婷高新区延风中学:郑飞翔含浦镇学士中学:黄今殊雨敞坪镇嵇山中学:冯楚文雨敞坪镇麻田中学:彭建成含浦镇含浦中学:胡强杨意莲花镇双枫中学:李勇罗知达坪塘镇太平中学:徐馨吴将雄清水塘中学:樊清泉谷翼策杨耀 19中:周陵楚红宇湘仪学校:刘晓旻王紫珏秦旷袁钰坤覃娟28中:谭琳杨振宇代振兴张波魏子明任斯靓叁等奖坪塘镇白泉学校:陈建锌含浦镇学士中学:李鑫佩雨敞坪镇嵇山中学:李尚锋雨敞坪镇嵇山中学:周亚文高新区延风中学:贺蜜张聪湘仪学校:粟茜李旭光清水塘中学:黄维陈康吴吉坪塘镇太平中学:黄晴高琦黄鹂19中:肖凌彭志黄小凤张子剑坪塘镇坪塘中学:李渊龙杨誉周亚周可含浦镇含浦中学:陈剑枫阳权曹亚军戴洁莲花镇双枫中学:黄乐登张新果丁娇宁贺斌彭博周洁28中:于见智蔡艺卓彭阳郭星池罗俊容张益岳麓区中学数学教学专业委员会岳麓区教研室 2010年元月13日。
湖南省长沙市岳麓区湖南师范大学附属中学2024-2025学年高三上学期11月月考数学试题

湖南省长沙市岳麓区湖南师范大学附属中学2024-2025学年高三上学期11月月考数学试题一、单选题1.集合{}0,1,2,3A =的真子集的个数是()A .16B .15C .8D .72.“11x -<”是“240x x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是()3,4a a ,其中0a ≠,则sin2α=()A .43B .725C .2425D .2425-4.设向量a ,b满足a b += a b -=r r a b ⋅ 等于()A .B .2C .5D .85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x ym -=总有公共点,则m 的取值范围是()A .1m ≥B .01m <≤C .05m <<,且1m ≠D .1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A .13B .23C .23-D .13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =11A B =)A .1B .4C .7D .1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266nn S b d a b d c c a =++++-⎡⎤⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列ab ,()()()()()()11,22,,11a b a b a n b n cd +++⋅++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A .2B .6C .12D .20二、多选题9.若2024220240122024(12)x a a x a x a x +=++++ ,则下列正确的是()A .02024a =B .20240120243a a a +++= C .012320241a a a a a -+-++= D .12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值点C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()11,A x y ,()22,B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A .5OA OB ⋅=-B .直线MN 恒过定点C .点M 的轨迹方程是()22(1)10y x y -+=≠D .ABMN三、填空题12.已知复数1z ,2z 的模长为1,且21111z z +=,则12z z +=.13.在ABC V 中,角,,A B C 所对的边分别为a ,b ,c 已知5a =,4b =,()31cos 32A B -=,则sin B =.14.若正实数1x 是函数()2e e x f x x x =--的一个零点,2x 是函数()()()3e ln 1e g x x x =---的一个大于e 的零点,则()122e e x x -的值为.四、解答题15.现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:101.12.594≈,101.259.313≈)16.如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,222AD AB BC ===.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.17.已知函数()e sin cos x f x x x =+-,()f x '为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.18.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为1F 、2F ,P为椭圆C 上一动点,设12F PF θ∠=,当2π3θ=时,12F PF(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点M 、N (M 在B ,N 之间),若Q 为椭圆C 上一点,且OQ OM ON =+,①求OBMOBNS S 的取值范围;②求四边形OMQN 的面积.19.飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投掷出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数X 的均值()()()11lim n n k k E X kP k kP k ∞∞→==⎛⎫== ⎪⎝⎭∑∑)(2)对于两个离散型随机变量ξ、η,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()11,mi i ijj p x p x p x y ξ====∑,()()()21,njiij i p y p y p xy η====∑)ξη1x 2x ⋯n x 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y L()2,n p x y ()22p y ⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x L()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}{}{}()()1,,j i i j j i i i P y x p x y P y x P x p x ηξηξξ=======.可以发现i x ηξ=依然是一个随机变量,可以对其求期望{}{}()()1111,mmi j j i j i jj i iE x y P y x y p x y p x ηξηξ====⋅===⋅∑∑.(ⅰ)上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ,求{}E E ηξ⎡⎤⎣⎦;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”,1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.。
2024年湖南省长沙市部分学校初中学业水平联考数学试题

2024年湖南省长沙市部分学校初中学业水平联考数学试题一、单选题112-, 9,3.14,其中比0小的数是( ) AB .12-C .9D .3.14 2.“科技改变世界”.下列与科技最前沿相关的图形中,只是中心对称图形的是( ) A . B . C .D .3.长沙市因地制宜,大力发展新质生产力,眼下长沙跻身“数字经济新一线城市”,数字经济总量达450000000000元,数据450000000000用科学记数法表示为( ) A .120.4510⨯ B .114.510⨯ C .104510⨯ D .104.510⨯ 4.下列计算正确的是( )A .23a b ab +=B .()3263a b a b -=C .()1a b ab a -=-D .222=- 5.若3,6,x 是某三角形的三边长,则x 可取的最大整数为( )A .10B .9C .8D .76.下列事件是必然事件的是( )A .任画一个凸多边形,其外角和是360︒B .在乒乓球比赛中,世界排名第一的运动员一定打赢排名第二的运动员C .圆柱无论怎样摆放,它的三视图都是矩形D .若 a 是实数,则a a >7.如图,直线AB CD ∥,点G 是直线CD 上一点,射线GE ,GF 分别交直线AB 于点H ,N ,若156∠=︒,270∠=︒,则EGF ∠的度数为( )A .50︒B .54︒C .58︒D .62︒8.如图,AC 是O e 的直径,BC 与O e 相切于点C ,AB 交O e 于点D ,连接OD ,若84COD ∠=︒,则ABC ∠的度数为( )A .46︒B .48︒C .50︒D .52︒9.龙年春晚的扑克牌魔术激发了小明的兴趣.他抽取了一副扑克牌中的四张:黑桃3,红桃5,梅花7,方片10(黑桃和梅花是黑色,红桃和方片是红色),他将这四张扑克牌充分洗匀,再随机抽取2张,则他抽到的两张扑克牌颜色不同的概率是( )A .23B .13C .14 D .1610.如图是一张三角形纸片,其中1012AB AC BC ===,,按如下步骤折纸: 第一步:将该纸片对折,点B 与点C 重合,折痕为AD ;第二步:展开后,再将该纸片折叠;折痕为BE ,点A 的对称点A '恰好落在AC 上 根据以上折纸过程,可以求出折痕BE 的长度为( )A .10B .9.8C .9.7D .9.6二、填空题11.分解因式:3x 9x -=.12.方程组x y 3{x y 1+=-=的解是 .13.安全教育是素质教育的重要内容之一,为增强学生的安全意识,提升学生自我保护 能力,某校对学生进行了“中小学生安全知识100条”的讲座和实践活动,为检验学习效果,对学生进行了安全知识测试,并随机抽取了8位学生成绩如下(满分:100分):98,85,90,88,92,95,82,90,则这一组数据的众数是.14.如图,在Rt PQR △中,90PQR ∠=︒,43PQ RQ ==,,将Rt PQR △绕直线PQ 旋转一周,会得到一个几何体,则这个几何体的侧面积等于.(结果保留π)15.已知一次函数()0y ax a =≠的图象如图所示,则反比例函数a y x=的图象经过第象限.16.如图,正方形ABCD 的边长为4,点E ,F 分别在边AD ,BC 上,点M ,N 分别在边AB ,DC 上,且EF MN ⊥,垂足为点O ,若线段EF 恰好平分正方形ABCD 的面积,1AE =,则22EF MN +=.三、解答题17.计算: 101tan 60202452π-⎛⎫⎛⎫+-︒++ ⎪ ⎪⎝⎭⎝⎭. 18.先化简,后求值:2211121x x x x ⎛⎫+÷ ⎪--+⎝⎭,其中100x =. 19.如图,四边形ABCD 是平行四边形,对角线AC 平分BCD ∠,过点A 作AF CD ⊥交其延长线于点F ,过点F 作FE BC ⊥于点E .(1)求证:四边形ABCD 是菱形;(2)若60BCD ∠=︒,12AD =,求FE 的值.20.为进一步提高义务教育质量,提升学生的信息素养,湖南中考于2026年将信息科技科目纳入中考范围,2023年入学的七年级新生将于2025年参加信息科技的中考,为了解学生的信息科技课程学习情况,更好地促进课程学习,长沙某校于2023年期末对全校七年级学生进行了信息科技上机测试.学校将测试成绩(满分:100分),收集、整理分组,记得分为x 分,并制作了如下不完整的统计图表.根据上面信息,回答下列问题:(1)该校七年级总人数为____人;a =____;b =____;(2)将频数分布直方图补充完整;(3)若将上述表格转化为扇形统计图,则C 组学生所对应扇形的圆心角的度数为____︒.21.如图,在ABCV中,O是AB边的中点,D是CO上一点,AE∥BD交CO的延长线于点E.(1)求证:AE BD=;(2)若90ACB∠=︒,BDO CAO∠=∠,6AC=,求BD的长.22.为响应国家关于推动各级各类生产设备、服务设备更新和技术改造的号召,某公司计划将办公电脑全部更新为国产某品牌,市场调研发现,A品牌的电脑单价比B品牌电脑的单价少1000元,通过预算得知,用30万元购买A品牌电脑比购买B品牌电脑多10台.(1)试求A,B两种品牌电脑的单价分别是多少元;(2)该公司计划购买A,B两种品牌的电脑一共40台,且购买B品牌电脑的数量不少于A品牌电脑的35,试求出该公司费用最少的购买方案.23.根据以下实践活动项目提供的材料,完成相关任务.【活动主题】怎样确定隧道口车辆通过限行高度?【活动过程】素材1:长沙附近有一条两车道隧道,隧道口有4.5m限高标志,如图1,表示车辆顶部最高处到地面的距离不超过4.5m,否则禁止通行.素材2:李明通过实地测量和查阅有关资料,获得以下信息,如图2:①隧道口上部是一个半圆,下部是一个矩形,矩形的长和半圆的直径相等②矩形的长为10m,高为2m,车道两侧各有1m人行道;③设计部门要求车辆顶部(约定为平顶)与隧道圆拱内部在竖直方向至少有mh的距离.【问题解决】(1)试求隧道口上半圆中点E到路面AB的距离EF;(2)求h 的最小值.24.我们不妨约定:如果抛物线的顶点在直线y x =上,那么我们把这样的抛物线叫做“星链抛物线”.根据约定,解答下列问题:(1)试判断下列抛物线是否为“星链抛物线”,若是,请在括号内画“√”;若不是,请在括号内画“⨯”.①2y x =( );②221y x x =-+( );③()2y x h h =--+( ).(2)如图,已知“星链抛物线”()21y x k =--+的顶点为点A ,将该抛物线沿直线y x =向上平移,使点A ,和点B 重合,两条“星链抛物线”的交点为点C ,设点B ,点C 的横坐标分别为m ,(1)n m >.①若AB =②在平移过程中,若45ACB ∠=︒,试求mn 的值.25.如图,过O e 上的动点D 作O e 的切线AD ,在O e 上取点B (异于点D ),使得AB AD =,弦CD AB ∥,连接AC 交O e 于点F ,连接DF 并延长,交AB 于点E ,连接BC .(1)求证:AB 是O e 的切线;(2)记AEF V ,ADF V ;DCF V 的面积分别为1S ,2S ,3S ,当123S S S +=时,求AF CF的值; (3)设O e 的半径为R ,当DE CB ∥时,求四边形BCDE 的面积.(用含R 的式子表示)。
2021-2022学年湖南省长沙市岳麓区长郡双语实验中学八年级下学期期末数学试卷(解析版)

2021-2022学年湖南省长沙市岳麓区长郡双语实验中学八年级(下)期末数学试卷一、选择题(本题共10个小题,每小题4分,共40分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填在相应的表格内)1.(4分)下列四组线段中,可以构成直角三角形的是()A.2,3,4B.4,5,6C.1,,3D.1,2,2.(4分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.93.(4分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④4.(4分)已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)5.(4分)一次函数y=2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限6.(4分)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在16≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A.0.8B.0.7C.0.4D.0.27.(4分)菱形ABCD中,对角线AC、BD相交于点O,P为AD边中点,菱形ABCD的周长为16,则OP的长等于()A.2B.4C.6D.88.(4分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时9.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形10.(4分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6二、填空题(本题6个小题,每小题5分,共30分)11.(5分)点A(2,3)关于x轴的对称点的坐标是.12.(5分)函数y=1+中自变量x的取值范围是.13.(5分)已知10个数据:1,1,1,2,2,2,3,3,3,3.其中3出现的频数是.14.(5分)如图,已知△ABC中,∠C=90°,则.(请写出一条结论)15.(5分)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.16.(5分)如图,已知△ABC中,∠C=90°,AB=10,BC=6,若点D为AB边上任意一点,则线段CD的取值范围是.三、解答题(本题3个小题,每小题8分,共24分)17.(8分)如图,在△ABC中,AB=AC=13cm,D是AC边上的点,DC=1cm,BD=5cm,求BC的长.18.(8分)如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.19.(8分)在平面直角坐标系中,将坐标为(0,0),(1,3),(2,0),(3,3)的点用线段依次连接起来得到一个图案N.(1)在图(1)中,分别画出图案N关于x轴和y轴对称的图案;(2)在图(2)中,将图案N先向左平移3个单位长度,再向下平移4个单位长度,画出第二次平移后的图案;(3)在图(3)中,以原点为对称中心,画出与图案N成中心对称的图案.四、解答题(本题3个小题,每小题10分,共30分)20.若函数y=mx+|m|﹣4是正比例函数,且函数值y随自变量x的增大而减小.(1)求该函数的表达式;(2)当函数值为16时,求自变量x的值.21.为了提高学生书写汉字的能力,增强保护汉字的意识,某市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<35a第3组35≤x<4016第4组40≤x<4512第5组45≤x<5010(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?22.如图,已知△ABC中,∠C=90°,AB=10,BC=6,若AD为∠ACB的平分线,求AD的长?五、解答题(本题12分)23.(12分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2…8.29.8体温计的读数y(℃)35.0…40.042.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.六、解答题(本题14分)24.如图,已知Rt△ABC中,∠ACB=90°,先把△ABC绕点C顺时针旋转90°至△EDC 后,再把△ABC沿射线BC平移至△GFE,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结AG,求证:四边形ACEG是正方形.2021-2022学年湖南省长沙市岳麓区长郡双语实验中学八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填在相应的表格内)1.(4分)下列四组线段中,可以构成直角三角形的是()A.2,3,4B.4,5,6C.1,,3D.1,2,【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形,逐一判定即可.解:A、22+32≠42,不符合勾股定理的逆定理,不能构成直角三角形,故本选项不符合题意;B、42+52≠62,不符合勾股定理的逆定理,不能构成直角三角形,故本选项不符合题意;C、12+()2≠32,不符合勾股定理的逆定理,不能构成直角三角形,故本选项不符合题意;D、12+()2=22,符合勾股定理的逆定理,能构成直角三角形,故本选项符合题意.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.(4分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180°(n﹣2)=1080°,解此方程即可求得答案.解:设这个多边形的边数为n,根据题意得:180°(n﹣2)=1080°,解得:n=8.故选:C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.3.(4分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【分析】要判定是正方形,则需能判定它既是菱形又是矩形.解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.4.(4分)已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)【分析】根据点A、C的坐标确定出平移规律,再求出点D的坐标即可.解:∵点A(﹣1,4)的对应点为C(4,7),∴平移规律为向右5个单位,向上3个单位,∵点B(﹣4,﹣1),∴点D的坐标为(1,2).故选:A.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.(4分)一次函数y=2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式和一次函数的性质,可以解答本题.解:∵一次函数y=2x+1,∴该函数经过第一、二、三象限,不经过第四象限,故选:D.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.(4分)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在16≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A.0.8B.0.7C.0.4D.0.2【分析】先求得在16≤x<32这个范围的频数,再根据频率的计算公式即可求解.解:在16≤x<32这个范围的频数是:8+6=14,则在16≤x<32这个范围的频率是:=0.7.故选:B.【点评】本题考查了频数分布表,用到的知识点是:频率=频数÷总数.7.(4分)菱形ABCD中,对角线AC、BD相交于点O,P为AD边中点,菱形ABCD的周长为16,则OP的长等于()A.2B.4C.6D.8【分析】先根据菱形ABCD的周长为16,求出边长AB,然后根据P为AD边中点,可得OP=AB,即可求解.解:∵菱形ABCD的周长为16,∴AB=4,∵P为AD边中点,O为BD的中点,∴OP=AB=2.故选:A.【点评】本题考查了菱形的性质,解答本题的关键掌握菱形四条边都相等,对角线互相垂直且平分的性质.8.(4分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.【点评】此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.9.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形【分析】根据轴对称图形与中心对称图形的概念求解.解:A、等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意;B、平行四边形是中心对称图形,不是轴对称图形.故本选项不合题意;C、矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;D、正五边形是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形沿着对称轴折叠后两部分可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.(4分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD 的长,由OD﹣MD即可求出OM的长.解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.二、填空题(本题6个小题,每小题5分,共30分)11.(5分)点A(2,3)关于x轴的对称点的坐标是(2,﹣3).【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解:点A(2,3)关于x轴的对称点的坐标是(2,﹣3).故答案为:(2,﹣3).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.(5分)函数y=1+中自变量x的取值范围是x≥.【分析】根据二次根式(a≥0),可得2x﹣1≥0,然后进行计算即可解答.解:由题意得:2x﹣1≥0,∴x≥,故答案为:x≥.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)是解题的关键.13.(5分)已知10个数据:1,1,1,2,2,2,3,3,3,3.其中3出现的频数是4.【分析】根据频数的定义,即可解答.解:已知10个数据:1,1,1,2,2,2,3,3,3,3.其中3出现的频数为:4,故答案为:4.【点评】本题考查了频数与频率,熟练掌握频数的定义是解题的关键.14.(5分)如图,已知△ABC中,∠C=90°,则∠A+∠B=90°(答案不唯一).(请写出一条结论)【分析】根据直角三角形的性质即可求解.解:△ABC中,∠C=90°,则∠A+∠B=90°(答案不唯一).故答案为:∠A+∠B=90°(答案不唯一).【点评】本题考查了直角三角形的性质,直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.15.(5分)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为30度.【分析】根据矩形以及平行四边形的面积求法得出当AE=AB,则符合要求,进而得出答案.解:过点A作AE⊥BC于点E,∵将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),∴当AE=AB,则符合要求,此时∠B=30°,即这个平行四边形的最小内角为:30度.故答案为:30.【点评】此题主要考查了矩形的性质和平行四边形面积求法等知识,得出AE=AB是解题关键.16.(5分)如图,已知△ABC中,∠C=90°,AB=10,BC=6,若点D为AB边上任意一点,则线段CD的取值范围是 4.8≤CD≤8.【分析】过点C作CD′⊥AB于D′,根据勾股定理求出AC,根据三角形的面积公式求出CD′,得到答案.解:过点C作CD′⊥AB于D′,由垂线段最短可知,当CD⊥AB时,CD最短,即点D在点D′的位置时,CD最短,由勾股定理得:AC===8,∵S△ABC=AB×CD′=AC,∴CD′==4.8,∴4.8≤CD≤8,故答案为:4.8≤CD≤8.【点评】本题考查的是勾股定理、垂线段最短以及三角形的面积计算,根据垂线段最短确定CD的最小值是解题的关键.三、解答题(本题3个小题,每小题8分,共24分)17.(8分)如图,在△ABC中,AB=AC=13cm,D是AC边上的点,DC=1cm,BD=5cm,求BC的长.【分析】先求出AD的长,再根据勾股定理的逆定理判断△ABD是直角三角形,且∠ADB =90°,然后在Rt△BCD中,根据勾股定理求出BC即可.解:∵AC=13,CD=1,∴AD=AC﹣CD=13﹣1=12.在△ABD中,∵AB=13,AD=12,BD=5,∴AB2=132=169,AD2+BD2=122+52=144+25=169,∴AD2+BD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,在Rt△BCD中,∵CD=1,BD=5,∴(cm).即BC的长为cm.【点评】本题考查了勾股定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.18.(8分)如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.【分析】根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.【解答】证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.【点评】本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.19.(8分)在平面直角坐标系中,将坐标为(0,0),(1,3),(2,0),(3,3)的点用线段依次连接起来得到一个图案N.(1)在图(1)中,分别画出图案N关于x轴和y轴对称的图案;(2)在图(2)中,将图案N先向左平移3个单位长度,再向下平移4个单位长度,画出第二次平移后的图案;(3)在图(3)中,以原点为对称中心,画出与图案N成中心对称的图案.【分析】(1)利用轴对称变换的性质作出图形即可;(2)利用平移变换的性质作出图形即可;(3)利用中心对称变换的性质作出图形即可.解:(1)图形如图所示:(2)图形如图所示:(3)图形如图所示.【点评】本题考查利用旋转设计图案,利用平移设计图案,利用轴对称设计图案,解题的关键是掌握轴对称变换,旋转变换,平移变换的性质.四、解答题(本题3个小题,每小题10分,共30分)20.若函数y=mx+|m|﹣4是正比例函数,且函数值y随自变量x的增大而减小.(1)求该函数的表达式;(2)当函数值为16时,求自变量x的值.【分析】(1)根据题意得出m<0,|m|﹣4=0,解得即可;(2)把y=16代入(1)求得的解析式,解得x=﹣5.解:(1)∵y=mx+|m|﹣4是正比例函数,∴|m|﹣4=0,∴m=±4,又∵函数值y随自变量x的增大而减小,∴m<0,∴m=﹣4,∴该函数的表达式为:y=﹣4x﹣4;(2)由已知得:16=﹣4x﹣4,解得:x=﹣5,∴当函数值为16时,自变量x的值为﹣5.【点评】本题考查了正比例函数的定义,一次函数的性质,一次函数图象上点的坐标特征,熟知一次函数的性质是解题的关键.21.为了提高学生书写汉字的能力,增强保护汉字的意识,某市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<35a第3组35≤x<4016第4组40≤x<4512第5组45≤x<5010(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率.解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.如图,已知△ABC中,∠C=90°,AB=10,BC=6,若AD为∠ACB的平分线,求AD的长?【分析】过点D作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据勾股定理求出AC,根据三角形面积公式求出CD,再根据勾股定理计算,得到答案.解:过点D作DE⊥AB于E,∵AD为∠ACB的平分线,DE⊥AB,∠C=90°,∴CD=ED,由勾股定理可得:AC===8,设CD=ED=x,则×6×8=×8x+×10x,解得:x=,即CD=,由勾股定理可得:AD===.【点评】本题考查的是勾股定理、角平分线的性质,根据角平分线的性质得出DC=DE 是解题的关键.五、解答题(本题12分)23.(12分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2…8.29.8体温计的读数y(℃)35.0…40.042.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.【分析】(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.【点评】本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.六、解答题(本题14分)24.如图,已知Rt△ABC中,∠ACB=90°,先把△ABC绕点C顺时针旋转90°至△EDC 后,再把△ABC沿射线BC平移至△GFE,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结AG,求证:四边形ACEG是正方形.【分析】(1)由旋转和平移的性质可得∠BAC=∠CED,∠ABC=∠GFE,由余角的性质可得结论;(2)由旋转和平移的性质可得AC=GE,AC∥GE,AC=CE,∠ACE=90°,可得结论.【解答】(1)解:DE⊥FG,理由如下:∵把△ABC绕点C顺时针旋转90°至△EDC,∴∠BAC=∠CED,∵把△ABC沿射线BC平移至△GFE,∴∠ABC=∠GFE,∵∠BAC+∠ABC=90°,∴∠CED+∠GFE=90°,∴∠FHE=90°,∴DE⊥GF;(2)∵把△ABC沿射线BC平移至△GFE,∴AC=GE,AC∥GE,∴四边形ACEG是平行四边形,∵把△ABC绕点C顺时针旋转90°至△EDC,∴AC=CE,∠ACE=90°,∴四边形ACEG是正方形.【点评】本题考查了旋转的性质,正方形的判定,平移的性质,掌握旋转和平移的性质是解题的关键.。
湖南省长沙市岳麓区博才小学2024年三上数学期末学业水平测试模拟试题含解析

湖南省长沙市岳麓区博才小学2024年三上数学期末学业水平测试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、认真计算。
1.算一算。
0.70.2+= 4.30.1-= 5.1 4.7+= 30.3-=567⨯+= 8193÷⨯= ()1468+⨯= 90802-÷=2.用竖式计算。
78×7= 49÷3= 105×4=3.脱式计算。
(408-385)×4 593-(271+169) (352-289)÷7 二、我会判断。
(对的画√,错的画×)4.1可以看作3个13,也可以看作5个15。
(________) 5.5个小朋友吃一个蛋糕,每个小朋友吃这个蛋糕的15。
(______) 6.502×140的积中间有2个零. (______) 7.下半年的天数一定比上半年的天数多.(______)8.直线行进中的滑雪板的运动属于平移现象。
(______)三、精挑细选。
(把正确答案的序号填在括号里)9.1时50分等于多少分?( )A .150分B .110分C .650分10.妈妈大约带多少元钱去缴费就够了?( )A .200元B .400C .300元11.小明有两套不同颜色的运动装,如果搭配起来穿,一共有( )种不同的穿法.A .2B .3C .412.199×2的积最接近( )。
A .400B .500C .300D .70013.阳阳晚上9时睡觉,第二天早上6时起床,她一共睡了()小时。
A.7 B.9 C.8四、快乐填空。
14.学校准备晚上6:30开始“迎中秋”晚会,现在要推迟15分钟开始,晚会开始的时间应该是________,8:00晚会结束,晚会一共开了________小时________分钟。
湖南省长沙市初一数学竞赛卷

湖南省长沙市初一数学竞赛卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共16分)1. (2分)一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比为()A . 3:1B . 2:1C . 1:1D . 3:22. (2分) (2018七下·大庆开学考) 如图,已知四边形ABCD中,AD∥BC,AP平分∠DAB,BP平分∠ABC,它们的交点P在线段CD上,下面的结论:①AP⊥BP;②点P到直线AD,BC的距离相等;③PD=PC.其中正确的结论有()A . ①②③B . ①②C . ①D . ②3. (2分)不等式2x-6>0的解集为()A . x>3B . x>-3C . x<3D . x<-34. (2分) (2019八上·长兴月考) 下列图形中不具有稳定性的是()A .B .C .D .5. (2分)小华的年龄与爷爷的年龄之和等于爸爸年龄的2倍,爸爸的年龄是小华年龄的3倍,则爷爷的年龄是小华年龄的()A . 4倍B . 5倍C . 6倍D . 7倍6. (2分)(2017·乐陵模拟) 若函数,则当函数值y=8时,自变量x的值是()A . ±B . 4C . ± 或4D . 4或﹣7. (1分)规定a※b= ,例如2※3= ,则[2※(-5)]※4=________8. (1分)有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是________.9. (1分)科学家最新研究表明,吸烟会导致人的寿命减少,按天计算,平均每天吸一包烟可以导致寿命减少2小时20分,如果一个人一个月有n天每天吸一包烟,则这个月他的寿命减少了________ 天.10. (1分) (2016七上·连城期末) 小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为________.参考答案一、选择题 (共10题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、。
2024年湖南省长沙市初中学业水平考试数学试题(白卷)

2024年湖南省长沙市初中学业水平考试数学试题(白卷)一、单选题1.﹣5的绝对值是( )A .5B .﹣5C .15-D .152.下列消防安全标识图既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.据国家知识产权局消息,截至2023年底,国内高校有效发明专利拥有量达794000件,将数据794000用科学记数法表示为( )A .479.410⨯B .57.9410⨯C .67.9410⨯D .60.79410⨯ 4.下列运算正确的是( )A .224a a a +=B .623a a a ÷=C .()2211a a -=-D .()32628a a -=- 5.如图,AB CD ∥,OB OD ⊥,若36ABO ∠=︒,则ODC ∠的度数为( )A .36︒B .54︒C .72°D .108°6.不等式组26020x x +≥⎧⎨-<⎩的解集在数轴上表示正确的是( ) A . B .C .D .7.某班主任对全班同学关于“最喜欢的球类运动”进行了问卷调查,并绘制了如图所示的条形统计图,则下列说法错误的是( )A .喜欢排球的人最少B .喜欢篮球的人数占24%C .全班共50人D .喜欢乒乓球人数的频率为0.68.如图,线段AB 与O e 相切于点B ,连接AO 并延长分别交O e 于点C ,D ,点E 是弧CD 上一点,连接CE BE ,,若126ABD ∠=︒,则BEC ∠的度数为( )A .36︒B .30︒C .54︒D .72︒9.浏阳金桔为湖南省长沙市浏阳市特色地方品种,全国农产品地理标志.某果农种植的金桔在采摘完后,发现大果、中果和小果的产量比为3:5:2,若每斤的售价大果定为12元,中果定为8元,小果定为6元,则该批金桔的平均售价为每斤( )A .6.5元B .8.6元C .8.8元D .10元10.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:1.414)( ) A .20.3% B .25.2% C .29.3% D .50%二、填空题11x 的取值范围是 .12.某高校建设的中华优秀传统文化传承基地围绕民族民间音乐、民族民间美术、民族民间舞蹈、戏剧、戏曲、曲艺、传统手工技艺等传统文化项目,李教授了解班上7名学生最喜欢的传统文化项目的个数分别如下:3,5,4,7,5,6,5,则这组数据的众数和中位数分别是和.13.如图,ABC V 是⊙O 的内接三角形,AB AC =,直径CD 垂直于弦AB 于点E ,连接AD .若2DE =,则AD 的长为.14.某同学在做“小孔成像”实验时,将一支长为3cm 的蜡烛(包括火焰高度)立在小孔前,蜡烛所立位置离小孔的水平距离为6cm ,此时蜡烛火焰通过小孔刚好在小孔另一侧距小孔2cm 处的投影屏上形成了一个“像”,若以小孔为坐标原点,构建如图所示的平面直角坐标系xOy ,设蜡烛火焰顶端A 点处坐标为()6,3-,则A 点对应的“像”的点的坐标为.15.若关于x 的一元二次方程2210mx x +-=有两个实数根,则实数m 的取值范围为. 16.如图,以MAN ∠的顶点A 为圆心,以任意长度为半径画弧,分别与AM AN ,交于点E ,F .再分别以点E ,F 为圆心,以大于12EF 的长度为半径画弧,两弧相交于点P ,作射线AP ,在射线AC 上取一点C ,分别以点A ,C 为圆心,以大于12AC 的长度为半径画弧,分别相交于G ,Q 两点作直线GQ ,与A M A N A C ,、分别交于点B 、D ,H .连接,BC CD ,若5AB =,8AC =,则BD =.三、解答题17.计算:()202401452-︒+18.小明和小强一起做游戏,他们面前有大小相同的三张写着分式的卡片,要求组成()B A C -⨯,或B A C ÷+的形式,再进行化简,然后两人均取一个相同的3x =,代入计算分式的值.A .22441x x x -+- B .21x x -- C .2224x x -- (1)小明发现其中有一个分式还可以进行约分,这个分式是______,约分的依据为______.(2)请你帮他们在两个形式中选择一个进行化简求值.19.蚂蚁是一种靠嗅觉寻找食物的生物,它们的嗅觉比较发达,最远能闻出距离几十米处远的食物的味道某天李华同学在户外观察蚂蚁觅食时,发现他所在位置A 点的北偏西66︒方向距A 点60cm 的B 点有一只正在觅食的蚂蚁(如图),A 点北偏东45︒方向距A 点的C 点有一块糖,蚂蚁正沿正东方向朝着C 点处的糖前进.(1)请求出蚂蚁所在位置B 点与糖所在位置C 点之间的距离;(2)若在A 点北偏东75︒方向距A 点40cm 的D 点处刚好有一只蜘蛛,求蚂蚁在找到糖时与蜘蛛的距离.(结果取整数,参数数据:sin 450.707︒≈,cos450.707︒≈,sin 660.914︒≈,cos660.407︒≈,tan 66 2.246︒≈ 1.732≈)20.为了落实教育部提出的普及急救观念、知识和技能,提升校园应急救护能力,某校在全校范围内开展了急救知识普及,并在普及后进行急救知识测试,把成绩(满分100分)分成五个等级,该校为了了解急救知识普及情况,随机抽取部分学生的测试成绩,并根据分析结果绘制了如图所示的不完整的频数分布表和扇形统计图.频数分布表扇形统计图请根据所给信息,解答下列问题:(1)本次一共随机抽取了______名学生的测试成绩,m =______;(2)请计算扇形统计图中“D ”所在扇形的圆心角度数;(3)若学校共有2000名学生,估计该校急救知识测试成绩在80分以上的学生有多少人?(4)学校从A 组中挑选了成绩最好的甲、乙两名男生和丙、丁两名女生,将这四人平均分成两组参加“急救知识”普及宣传,请用画树状图或者列表的方法求出甲和丁恰好在一组的概率.21.如图,在ABC V 中,AB CB =,点D 是边AC 上一点,点E 为ABC V 外的任意一点,连接BD BE DE ,,,其中BE BC =,ABD EBD ∠=∠.(1)求证:ABD EBD △≌△;(2)若CAB DBA ∠=∠,6BE =,8AC =,求BDC V 的周长.22.黄豆是大家比较熟悉的一种食物,它除了可以直接用来做菜以外,还可以做成其他类型的食物,比如水豆腐、豆腐皮、豆浆、豆腐脑等.某豆腐作坊每天都会根据市场需求将黄豆做成水豆腐和豆腐皮进行售卖.根据商家的统计发现:每10斤黄豆能做成30斤水豆腐或者能做成20斤豆腐皮.以下是商家两天对水豆腐和豆腐皮的销售量和销售额的统计情况:(1)求水豆腐和豆腐皮的售价分别为多少?(2)某天商家以1.8元/斤的价格购进30斤黄豆,用于制作水豆腐和豆腐皮,制做完这30斤黄豆需要支付人工费100元,请问这30斤黄豆该如何制做才能使该天的销售利润不低于346元?23.如图,在平行四边形ABCD 中,对角线AC BD ,相交于点O ,且BC OC =.点E 为OB 的中点,过点E 作OC 的平行线,交BC 于点F .在EF 的延长线上取一点G ,使得FG EF =.连接EC BG CG ,,.(1)求证:四边形ECGB 是矩形;(2)若12BD =,5EG =,求AB 的长.24.如图,AB 是O e 的直径,点C 是»AB 的中点,弦CD CE ,分别交AB 于点F ,G ,且12DCE ACB ∠=∠,连接DE .(1)设ACD α∠=,用含α的式子表示CDE ∠的度数;(2)求证:222FG AF BG =+;(3)若O e 的半径为1,记A C F B C G C F G ,,V V V 的面积分别为1S ,2S ,S ,设A F a =,BG b =,且满足221121102S S S S S ab +-+⋅=,求a ,b 的值. 25.定义;若当点()1,12a a a ⎛⎫-≠ ⎪⎝⎭在某一函数图象上时,点()11,2a a a ⎛⎫-≠ ⎪⎝⎭也在该函数图象上,则称该函数为“知返函数”,点()1,12a a a ⎛⎫-≠ ⎪⎝⎭称为“知返点”. (1)已知一次函数()0y kx b k =+≠为“知返函数”,求该一次函数的解析式;(2)若反比例函数1k y x=(1k 为整数)的函数图象上存在“知返点”,求1k 的最大值; (3)函数22y x mx =+的图象是由二次函数22y x mx =+的图象x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分保持不变得到的.若函数22y x mx =+的图象与“知返函数”y kx b =+的图象有四个交点,求m 的取值范围.。
2022-2023学年湖南省长沙市岳麓区长郡梅溪湖中学八年级(下)数学试卷+答案解析(附后)

2022-2023学年湖南省长沙市岳麓区长郡梅溪湖中学八年级(下)第一次月考数学试卷1. 下列二次根式中,是最简二次根式的是( )A. B. C. D.2. 如果二次根式有意义,那么实数a的取值范围是( )A. B. C. D.3. 三角形三边长为a,b,c满足,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 锐角三角形D. 直角三角形4. 下列计算正确的是( )A. B.C. D.5. 如图,在中,,,,则AB等于( )A. 2B. 3C.D. 46. 下列说法正确的是( )A. 矩形对角线相互垂直平分B. 对角线相等的菱形是正方形C. 一组邻边相等的四边形是菱形D. 对角线相等的平行四边形是菱形7. 如图,在矩形ABCD中,对角线AC与BD相交于点O,已知,则的大小是( )A. B. C. D.8. 由下列条件不能判定为直角三角形的是( )A. B. a:b::1:2C. D.9. 如图,数轴上点C所表示的数是( )A. B. C. D.10. 如图,在平行四边形ABCD中,,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )A. B. 1 C. D.11. 《九章算术》中有一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:如图,一根竹子原高一丈丈尺,中部有一处折断,竹梢触地面处离竹根3尺.若设折断处离地面的高度为x尺,则可以列出关于x的方程为( )A.B.C.D.12. 如图,四边形ABCD中,,,且,以AB、BC、DC为边向外作正方形,其面积分别为,,,若,,则的值为( )A. 22B. 24C. 44D. 4813.如图,在中,,,D是AB的中点,则______ .14. 在直角三角形中,两条直角边的长分别为9和12,则斜边的长为______ .15. 如图,,点C、D、E在直线m上,四边形ABED为平行四边形,若的面积为5,则平行四边形ABED的面积是______ .16. 比较大小:______填“>”,“=”,“<”号17. 如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形较短直角边长为b,若拼成的一个大正方形,设直角三角形较长直角边长为a,,大正方形的面积为16,则小正方形的面积为______ .18. 如图,菱形ABCD的边长为4,E、F分别是AB、AD上的点,连接CE、CF、EF,AC与EF相交于点G,若,,则EF的长为______ .19. 计算:;;;20. 先化简,再求值:,其中21.如图,已知中,,D是AC上一点,且,求证:是直角三角形;求AB的长.22. 如图,已知E、F分别是平行四边形ABCD的边BC、AD上的点,且求证:四边形AECF是平行四边形;在中,若,,,求BC边上的高23. 如图,某渡船从点B处沿着与河岸垂直的路线AB横渡,由于受水流的影响,实际沿着BC航行,上岸地点C与欲到达地点A相距70米,结果发现BC比河宽AB多10米.求该河的宽度AB;两岸可近似看作平行设实际航行时,速度为每秒5米,从C回到A时,速度为每秒4米,求航行总时间.24. 如图,在中,D,E分别是AB,AC的中点,延长DE到点F,使得,连接求证:四边形BCFE是菱形;若,,求菱形BCFE的面积.25. 如图,在四边形ABCD中,,,,,点P从点B出发,沿射线BC方向以每秒4个单位长度的速度运动,同时点Q从点A出发,沿AD以每秒1个单位长度的速度向点D运动,当点Q到达点D时,点P、Q同时停止运动,设点Q的运动的时间为t秒.的长为______ .求PC的长用含t的代数式表示当以点A、C、P、Q为顶点的四边形是平行四边形时,求t的值.直接写出是以CD为腰的等腰三角形时t的值.26. 已知:四边形ABCD是正方形,点E在CD边上,点F在AD边上,且如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;如图2,对角线AC与BD交于点,AC分别与AE,BF交于点G,点①求证:;②连接OP,若,,求AB的长.答案和解析1.【答案】C【解析】解:,因此不是最简二次根式,故A不符合题意;B.,因此不是最简二次根式,故B不符合题意;C.是最简二次根式,故C符合题意;D.,因此不是最简二次根式,故D不符合题意.故选:根据最简二次根式的定义进行判断即可.本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.【答案】B【解析】解:由题意得:,,故选:根据二次根式有意义的条件:被开方数为非负数,即可得出a的取值范围.本题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式有意义的条件:被开方数为非负数.3.【答案】D【解析】解:,,,,,,,,,,这个三角形是直角三角形,故选:根据已知条件可得,,,根据勾股定理的逆定理即可判断三角形的形状.本题考查了直角三角形的判定,涉及非负数的性质,勾股定理的逆定理等,求出三角形的三边长是解题的关键.4.【答案】B【解析】解:,无法合并,故此选项不合题意;B.,故此选项符合题意;C.,故此选项不合题意;D.,故此选项不合题意;故选:直接利用二次根式的加减运算法则以及二次根式的除法运算法则、二次根式的性质分别化简,进而判断得出答案.此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.5.【答案】A【解析】解:在中,,,故选:由的度数及AC的长,结合可求出AB的长,此题得解.本题考查了含30度角的直角三角形以及解直角三角形,通过解直角三角形求出AB的长是解题的关键.6.【答案】B【解析】解:矩形的对角线相等且互相平分,故A原说法错误,不符合题意;B.对角线相等的菱形是正方形,正确,符合题意;C.一组邻边相等的平行四边形是菱形,故C原说法错误,不符合题意;D.对角线相等的平行四边形是矩形,故D原说法错误,不符合题意;故选:根据矩形的性质可得A错误;正方形的判定方法可得B正确;根据菱形的判定可得C错误;根据对角线的关系判定矩形,从而得D错误.本题主要考查了矩形的性质与判定,正方形的判定,菱形的判定,解题的关键在于能够熟练掌握相关知识进行判断求解.7.【答案】C【解析】解:矩形ABCD的对角线AC,BD相交于点O,,,,,,故选:由矩形的性质得,再由等腰三角形的性质得,然后由三角形的外角性质即可得出结论.本题考查了矩形的性质、等腰三角形的性质以及三角形的外角性质,熟练掌握矩形的性质是解题的关键.8.【答案】B【解析】解:A、,,,是直角三角形,不符合题意;B、设,,,,不是直角三角形,符合题意;C、,,,是直角三角形,不符合题意;D、,是直角三角形,不符合题意;故选:根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.本题考查了勾股定理的逆定理和三角形的内角和定理,注意:①如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形,②三角形的内角和等于9.【答案】D【解析】解:,,,,,故D正确.故选:根据勾股定理求出OB的长,得出,即可得出数轴上点C所表示的数是本题主要考查勾股定理与无理数,掌握定理内容准确计算并利用数形结合思想是解题的关键.10.【答案】B【解析】解:根据题意得,CE是的角平分线,,平行四边形ABCD,,,如图所示,设AD与CE交于点F,,,,是等腰三角形,即,,同理,,且,,是等腰三角形,即,故选:根据题意可求出是等腰三角形,即,是等腰三角形,即,由此即可求解.本题主要考查平行四边形,等腰三角形的综合,掌握平行四边形的性质,等腰三角形的性质是解题的关键.11.【答案】D【解析】解:竹子原高一丈丈尺,折断处离地面的高度为x尺,竹梢到折断处的长度为尺.依题意得:故选:由竹子的原高可得出竹梢到折断处的长度为尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.12.【答案】C【解析】解:,,,,过A作交BC于E,则,,四边形AECD是平行四边形,,,,,,,,,,故选:根据已知条件得到,,过A作交BC于E,则,根据平行四边形的性质得到,,由已知条件得到,根据勾股定理得到,于是得到结论.本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.13.【答案】12【解析】解:在中,,D是AB的中点,故答案为:根据直角三角形斜边上的中线等于斜边的一半解答即可.本题主要考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.【答案】15【解析】解:在直角三角形中,两条直角边的长分别为9和12,斜边长为:故答案为:根据勾股定理直接求出斜边的长即可.本题主要考查了勾股定理,解题的关键是熟练掌握勾股定理,如果直角三角形的两条直角边长为a、b,斜边长为c,那么15.【答案】10【解析】解:连接BD,,,的面积为5,的面积为5,四边形ABED为平行四边形,平行四边形ABED的面积故答案为:连接BD,由平行线的性质得出,由平行四边形的性质可得出答案.本题考查了平行四边形的性质,平行线的性质,熟练掌握平行四边形的性质是解题的关键.16.【答案】>【解析】解:,,,,故答案为:先把根号外的因式移入根号内,再比较即可.本题考查了实数的大小比较法则和二次根式的性质,能选择适当的方法比较大小是解此题的关键.17.【答案】2【解析】解:由题意可知:每个直角三角形面积为,则四个直角三角形面积为2ab,大正方形面积为,小正方形面积为,,,大正方形的面积为16,,小正方形的面积为,故答案为:观察图形可知,小正方形的面积=大正方形的面积个直角三角形的面积,利用已知,大正方形的面积为16,可以得出直角三角形的面积,进而求出答案.本题主要考查了勾股定理的应用,熟练应用勾股定理解大正方形面积为是解题关键.18.【答案】【解析】解:过点E作于点四边形ABCD是菱形,,,,为等边三角形,,,,≌,,,,是等边三角形,,,,,,,,故答案为:利用全等三角形的性质证明是等边三角形,再利用勾股定理求出EC,可得结论.本题考查菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.19.【答案】解:;;;【解析】根据二次根式乘法运算法则进行计算即可;根据二次根式除法运算法则进行计算即可;先根据二次根式性质进行化简,然后根据二次根式加减运算法则计算即可;先根据二次根式性质进行化简,然后根据二次根式混合运算法则计算即可.本题主要考查了二次根式的运算,解题的关键是熟练掌握二次根式的性质和运算法则,准确计算.20.【答案】解:原式,当时,原式【解析】本题的关键是对整式化简,然后把给定的值代入求值.本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.21.【答案】证明:,,,,,故是直角三角形;解:设,则,,,,解得,故【解析】根据勾股定理的逆定理即可得到结论;设,则,根据勾股定理即可得到结论.本题考查了勾股定理,勾股定理的逆定理,等腰三角形的性质,熟练掌握勾股定理,勾股定理的逆定理是解题的关键.22.【答案】证明:四边形ABCD是平行四边形,,且,,,,四边形AECF是平行四边形;解:,,,,,【解析】本题主要考查了平行四边形的性质与判定,勾股定理,解题的关键是熟练掌握平行四边形的判定方法.利用平行四边形的性质得出,再得出,即可证明四边形AECF是平行四边形;根据勾股定理求出AB的长,然后根据等积法求出BC边上的高AG即可.23.【答案】解:设米,则米,在中,根据勾股定理得:,解得:,答:河宽240米.秒,秒,秒,答:航行总时间为秒.【解析】根据题意可知为直角三角形,根据勾股定理就可求出直角边AB的距离;根据时间=路程速度,求出行驶的时间即可.本题考查勾股定理的应用,熟练掌握勾股定理,列出方程是解题的关键.24.【答案】证明:、E分别是AB、AC的中点,,且又,,,四边形BCFE是平行四边形一组对边平行且相等的四边形是平行四边形又,四边形BCFE是菱形邻边相等的平行四边形是菱形解:在菱形BCFE中,,,是等边三角形.过点E作于点【解析】根据点D和E分别是AB和AC的中点,根据三角形中位线的性质,即可得到,且,再等量代换,根据平行四边形的判定定理,即可得到四边形BCFE是平行四边形,根据邻边的关系,即可得到结论;根据的大小,可判定是等边三角形,再根据等边三角形的性质,可得到边长,作于点G,运用勾股定理,即可得到EG的长,再根据菱形的面积公式,即可得到答案.本题考查菱形判定及菱形面积求解,关键是掌握菱形的判定及性质.25.【答案】5【解析】解:如图,过点D作于E,,,,,,四边形ABED是矩形,,,,,故答案为:5;,,;四边形ACPQ是平行四边形,,,即,,,或,①当时,,解得,或;②当时,则DE垂直平分PC,,即,,综上,是以CD为腰的等腰三角形时t的值为或或过点D作于E,根据题意推出四边形ABED是矩形,根据勾股定理求解即可;根据线段的和差结合绝对值性质求解即可;当四边形ACPQ为平行四边形时,,即,可将t求出;①当时,,据此求解即可;②当时,则DE垂直平分PC,则,即,据此求解即可.本题属于四边形综合题,考查了直角梯形的性质,矩形的判定和性质,平行四边形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.26.【答案】解:理由如下:四边形ABCD是正方形,,,在和中,,≌,,,,,;①证明:四边形ABCD是正方形,,,,已证,,即,在和中,,≌,;②解:如图2,过点O作于M,作于N,≌已证,,在和中,,≌,,四边形OMPN是正方形,,,,,在中,,正方形ABCD的边长【解析】根据正方形的性质可得,,然后利用“边角边”证明和全等,根据全等三角形对应角相等可得,然后求出,再求出,然后根据垂直的定义解答即可;①根据正方形的对角线互相垂直平分可得,,对角线平分一组对角可得,然后求出,再利用“角边角”证明和全等,根据全等三角形对应边相等可得;②过点O作于M,作于N,根据全等三角形对应角相等可得,再利用“角角边”证明和全等,根据全等三角形对应边相等可得,然后判断出四边形OMPN是正方形,根据正方形的性质求出,再求出AM,然后利用勾股定理列式求出OA,再根据正方形的性质求出AB即可.本题是四边形综合题型,主要利用了正方形的性质,全等三角形的判定与性质,②难度较大,作辅助线构造出全等三角形和以OP为对角线的正方形是解题的关键,也是本题的难点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岳麓区初中生数学实践与应用能力竞赛
获奖名单
经过岳麓区中学数学教学专业委员会全体理事集中评卷,初中生数学实践与应用能力竞赛成绩已经揭晓。
本次比赛,各校按在校学生人数的5%选派学生参加全区的竞赛,然后分别按各年级参赛人数的10%、20%、30%确定壹、贰、叁等奖名额,各年级获奖学生名单如下:
一、七年级获奖名单
壹等奖
坪塘镇坪塘中学:徐思旸
雨敞坪镇嵇山中学:文祯
19中:石星蒋国鹏周志鹏龙红梅
28中:柳泽宇曾迈周嘉汇袁野成了
师大附中博才实验中学:秦明航谢灵尧文健瞿佳高惟韬张振宇李钊毅王子健韩浩言
贰等奖
莲花镇五峰中学:谭豪高新区延风中学:张欣荣
湘仪学校:许国强苏贵星坪塘镇坪塘中学:饶雅婷虢俊雄坪塘镇白泉学校:戴杰王思彬莲花镇双枫中学:阎妍夏晨懿19中:詹巍李梓鑫陈钰红
28中:肖翠婷姚津鑫于润涛林岸潮
含浦镇学士中学:阎建民代卫东肖顺海欧婷
师大附中博才实验中学:李映波张艺辉文卓张淞陈李
赵泽龙唐蔚萱卞俊杰李卓康郑天歌丁谦张曦琳谭泽为
刘俊哲洪海涛张重哲李湘龙珺蒋正坤黄竞
叁等奖
雨敞坪镇嵇山中学:刘敏高新区延风中学:龚明远
坪塘镇坪塘中学:黎康何首城坪塘镇白泉学校:谢湘闽谢煦涛含浦镇学士中学:杨飘涂博为莲花镇五峰中学:李迎周静妍雨敞坪镇麻田中学:殷岳佳黄新蓉
坪塘镇太平中学:戴聪戴倩吴凡
湘仪学校:尹潇锐张杨欧阳杏金
含浦镇含浦中学:徐佳王诗菱刘尚凌帅杨思琪
28中:余苗郭宇柳宇翔李鑫悦贾正阳田诚怡谭帅程俊华清水塘中学:蒋自力任冬阳胡钰莨曾家欣刘旋黄毅刘冰莹熊国瑜
19中:蔡志雄余博涛黄智能戴雨睛陈乐虹刘鹏龚维李赛曹威李浩杰
师大附中博才实验中学:张浩钧杨家睿唐博文谭丝何人杰欧万吉
缪宗霖蒋坚孙嘉伟张弛胡凯邹怡琳杨红宇刘锦权
二、八年级获奖名单
壹等奖
19中:戴景怡坪塘镇坪塘中学:刘博
28中:李异陈章睿含浦镇学士中学:吴斯迪
湘仪学校:刘宇刘达之向雨川向思齐唐嘉博杨鸿斌徐旺博艾凌浩王文杰童恺宁任祉燕刘心忱
贰等奖
雨敞坪镇嵇山中学:吴帅清水塘中学:舒南方
莲花镇双枫中学李湘龚聘贤
坪塘镇坪塘中学:谢添傲周天傲欧阳宗帅
19中:莫明潇唐一平夏子睛张欢李雅丹
湘仪学校:刘粲仪唐滢瑾余冠英戴琪贺睿智潘邹林凡邓家欣陈静刘敬
28中:江泽星彭盛林徐弘毅谭正豪苏俊杰罗荣达邹紫曦黄茜雯陈学润唐钰铃袁键达
叁等奖
雨敞坪镇嵇山中学:陈龙坪塘镇太平中学:谢盈
雨敞坪镇麻田中学:李尚文李博文含浦镇含浦中学:刘德升童思博坪塘镇坪塘中学:陈正泉吴昀健莫家曦
坪塘镇白泉学校:徐炼锋谢煌陈源源
含浦镇学士中学:李银芳李俊杰梁佳俊
莲花镇双枫中学:李欢颜真唐麓林
清水塘中学:刘树力黎琪桂迎杨宇成陈思远李鑫臣
28中:黄修永唐奕昕付芊庞吉珊刘灏葭何希贤
19中:段仪姿张明山李艳喻巧阳龚乐杨嘉欣李镕昆李陈创马芸芸
湘仪学校:匡梦恬言思源李彩黄真李润鑫高瑛刘祎露王欢文雅菲董莳瑶杨菁
三、九年级获奖名单
壹等奖
19中:高阳 28中:刘章倩黄越
坪塘镇坪塘中学:吴浪刘作
莲花镇双枫中学:李雅倩张蒙杨鹏宁湘龙
湘仪学校:黄袆俤李盈王立舒刊余笑嫣
贰等奖
坪塘镇坪塘中学:周梦婷高新区延风中学:郑飞翔
含浦镇学士中学:黄今殊雨敞坪镇嵇山中学:冯楚文
雨敞坪镇麻田中学:彭建成含浦镇含浦中学:胡强杨意莲花镇双枫中学:李勇罗知达坪塘镇太平中学:徐馨吴将雄清水塘中学:樊清泉谷翼策杨耀 19中:周陵楚红宇
湘仪学校:刘晓旻王紫珏秦旷袁钰坤覃娟
28中:谭琳杨振宇代振兴张波魏子明任斯靓
叁等奖
坪塘镇白泉学校:陈建锌含浦镇学士中学:李鑫佩
雨敞坪镇嵇山中学:李尚锋雨敞坪镇嵇山中学:周亚文
高新区延风中学:贺蜜张聪湘仪学校:粟茜李旭光
清水塘中学:黄维陈康吴吉
坪塘镇太平中学:黄晴高琦黄鹂
19中:肖凌彭志黄小凤张子剑
坪塘镇坪塘中学:李渊龙杨誉周亚周可
含浦镇含浦中学:陈剑枫阳权曹亚军戴洁
莲花镇双枫中学:黄乐登张新果丁娇宁贺斌彭博周洁
28中:于见智蔡艺卓彭阳郭星池罗俊容张益
岳麓区中学数学教学专业委员会
岳麓区教研室 2010年元月13日。