电子产品的散热问题

电子产品的散热问题

电子机箱机壳的热设计

名词概念

黑度:实际物体的辐射力与同温度下黑体的辐射力之比。

机箱热设计的原则:

1.改善设备内部电子元件象机壳的传热能力

2.提高机箱向外界的传热能力

3.尽量降低传热路径上的热阻,形成一条低热阻的热流通路,保证设备

在允许的温度范围内正常工作。

一电子机箱机壳的热设计

1.增加机箱内外表面的黑度、开通风孔等,都可以降低温度

2.机箱内外表面高黑度的效果比低黑度的散热效果好

3.机箱两侧均为高黑度的散热效果优于一侧的散热。

4.在机箱内外表面增加黑度的基础上,合理的改进通风结构,加强冷却空气的对流,

可以明显的降低设备内部的温度。

二机箱通风面积的计算

在机壳上开通风孔是为了利用冷空气的对流换热作用,可以根据散热与电磁兼容性的要求综合考虑。由通风孔散区的热量为

Φ

HAΔ

(W)

H——自然冷却设备的高度(或进、出风口的中心距)

A——进出风孔的面积(取较小值)CM2

Δt——设备内外的温度差

开通风孔的基本原则:

1)通风孔的开设要有利于气流形成有效的对流通道

2)进风孔尽量对准发热元气件

3)进风孔要离出风孔要远,防止气流短路,应开在温差较大的相应

位置

4)进风孔要注意防尘和电磁泄露

三热屏蔽

a 尽可能将通路连接到热沉

b 减少高温与低温元件之间的辐射偶合,加热屏蔽板形成热区与冷区

c 尽量降低空气与其他冷却挤的温度梯度

d 将高温元件装在内表面具有高的黑度,外表面具有低的黑度的外壳中,这些外壳与散热器有良好的导热连接。元气件的引线是重要的导热通路引线尽可能的粗。

电子产品散热设计概述(doc 45页)

电子产品散热设计概述(doc 45页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

YEALINK 行业 dell

电子产品的散热设计 一、为什么要进行散热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。 二、散热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 三、散热设计的方法 1、冷却方式的选择 我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量 / 热通道面积。 按照《GJB/Z27-92 电子设备可靠性热设计手册》的规定(如下图1),根据可接受的温升的要求和计算出的热流密度,得出可接受的散热方法。如温升40℃(纵轴),热流密度0.04W/cm2(横轴),按下图找到交叉点,落在自然冷却区内,得出自然对流和辐射即可满足设计要求。

完整的电子产品设计流程

产品特点 工程化的高速PCB 信号完整性与电磁兼容性仿真工具,操作简便,易于掌握 支持所有PCB 环境下的设计文件 支持PCB 前仿真/后仿真分析 支持PCB 叠层结构、物理参数的提取与设定 支持各种传输线的阻抗规划与计算 支持反射、串扰、损耗、过孔效应及电磁兼容性分析 通过匹配向导为高速网络提供串行、并行及差分匹配等方案 支持多板分析,可对板间传输的信号进行反射、串扰及损耗分析 提供DDR/DDRII/USB/SATA/ PCIX 等多种 Design Kit HyperLynx :工程化的高速PCB 信号完整性与电磁兼容性分析环境 概述 电子工程师们越来越深刻地体会到:即 使电路板(PCB )上的信号在低至几十兆的 频率范围内工作,也会受到开关速度在纳秒 (ns )级的高速芯片的影响而产生大量的信 号完整性(SI )与电磁兼容性(EMC )问题。 一个优秀的电路设计,往往因为PCB 布局布 线时某些高速信号处理不当而造成严重的过 冲/下冲、延时、串扰及辐射等问题,最终导 致产品设计的失败。 Mentor Graphics 公司的HyperLynx 软件是业界应用最为普遍的高速PCB 仿真工 具。它包含前仿真环境(LineSim ),后仿真环境(BoardSim )及多板分析功能,可以帮助设计者对电路板上频率低至几十兆赫兹,高达千兆赫兹(GHz )以上的网络进行信号完整性与电磁兼容性仿真分析,消除设计隐 患,提高设计一版成功率。 操作简洁、功能齐全的信号完整性与电磁兼 容性分析环境 对于大多数工程师而言,信号完整性与 电磁兼容性分析仅仅是产品设计流程中的一 个环节,在此环节采用的工具必须与整个流 程中的其他工具相兼容,且要保证工程师能 快速掌握工具,并将其应用于实际的设计工 作。否则,性能再好的软件也很难在工程实 践中得到广泛应用。

航空器电子产品热设计

航空器电子产品热设计 现代机(弹)载电子设备由于受条件限制,都要求重量轻、体积小。另外,为了提高电子产品的工作性能,其功率往往很大,也就是说电子元器件的发热量非常大,一般电子元器件的正常工作温度要求低于100°C。根据美国空军的统计,在机(弹)载电子设备失效的原因中,有超过50%是由于温度引起的,因此电子产品的热设计是电子产品可靠性设计的最主要内容。 机(弹)载电子产品的冷却可采用循环水冷(二次冷却)和风冷,而风冷又有自然风冷和强迫风冷。 图7-1、7-2采用ANSYS CFX对某机载电子产品进行水冷分析,图示为散热冷板上的温度分布和冷却水的流线图。 传统的机(弹)载电子产品的热设计以经验设计为主,根据机(弹)载电子产品热设计手册,利用半经验、半解析的估算公式确定冷却方式、流量(压差)及流道,然后制造相应的1:1模型进行测试验证。这种热设计的成功率主要取决于设计者的经验,由于试验验证成本高、周期长,设计者只能选取少数几种自己认为最可行的设计方案进行试验,从而可能疏漏了更好的设计方案。另外,如果测试验证后发现了设计中的问题,回过来重新更改设计,再测试验证,这样的设计周期就更长,这与激烈的市场竞争不相适应。

计算流体动力学(CFD)的飞速发展和计算机性能的提高为机(弹)载电子产品热设计的数值仿真提供了保障。ANSYS CFX流体分析功能就是利用基于有限元的有限体积法求解三维湍流Navier-Stokes方程。ANSYS CFX是热、流耦合计算软件,在流体单元中求解质量、动量、能量方程,而同时在固体单元中耦合求解能量方程,由此可得出流场中的速度、压力、温度分布,固体中的温度分布,同时可得出流、固表面的对流换热系数(图7-4)和热流密度。 图7-5采用ANSYS CFX对某机载电子设备机箱进行强迫风冷分析,图示结果为机箱内外表面的对流换热系数分布。 机(弹)载电子产品的冷却效率取决于流、固表面对流换热系数的大小,因此热设计仿真分析的最主要任务是准确求解对流换热系数。对流换热系数的大小与近壁面的流体温度分布梯度成正比,而近壁面的流体温度分布梯度与近壁面的流体速度分布有关,因此,要得到准确的对流换热系数,必须精确求解流体速度分布,尤其是近壁面附面层内的速度分布。八十年代末九十年代初,由于受计算机速度的限制,直接求解三维复杂流场的湍流Navier-Stokes方程从而得到准确的流体速度分布几乎是不可能,因此发展了一些半经验、半解析的电子系统冷却分析软件,这些分析中的流体剖面速度分布是根据经验给定的解析式,对于简单流场,这样的解析表达式能较好地符合,而对于真实复杂流场,误差较大。ANSYS CFX通过直接求解三维湍流Navier-Stokes方程来得到准确的流体速度分布,从而能准确给出对流换热系数

电子产品的自然散热

电子产品的自然散热 在功率密度不高的电子产品中,如电子测量仪器、电子医疗仪器等,运用自然冷却技术比较多,且冷却成本低,可靠性高。电子产品自然冷却 的传热途径是产品内部电子元器件和印制板组装件通过 导热、对流和辐射等传向机壳,再由机壳通过对流和辐射 格热量传至周围介质(如空气、水),使产品达到冷却的目 的,如图5—16所示为一个电源的通风孔。斯麦迪电子 为了增强电子产品自然冷却的能力,应从以下几个方 面进行认真设计:⑦改善产品内部电子元器件向机壳的传 热能力;②提高机完向外界的传热能力;⑤尽量降低传热 路径各个环节的热阻,形成一条低热阻热流通路,保证产 品在允许的温度范围内正常工作。 1.电子机箱机壳的热设计电子产品的机完是接收内部热量并将其散发到周围环境中去的一个重要组成部分 机壳的热设计在采用自然冷却降温的一些密闭式电子产品中显得格外重要。许多实验和 事实证明: 0增加机壳内外表面的黑度,开通风孔等,能降低电子元器件的温度 ②机壳内外表面高黑度的散效果比低黑度开通风孔的散热效果好; ③机壳两侧均为高黑度的散热效果优于只有一侧高黑度时的散热效果,提高外表面的黑度是降低机壳表面温度的有效方法; ④在机壳内外表面增加黑度的基础上, 合理地改进通风结构,加强冷却空气的对流、可以明显地降低产品内部的温度。 2.机壳通风扎的设置 在机壳上开通风孔是为了充分利用冷却空气的对流换热作用,通风孔的结构形式很多,可根据散热与电磁兼容性的要求综合考虑。 开设通风孔的基本堆则有: ①通风孔的开设要有利于气流形成有效的自然对流通道; ②由于气体受热后膨胀,一般情况下, 出风孔面积应稍大于进风孔面积; ③进风孔尽量对准发热元器件;

电子产品设计

电子产品设计 实训报告 目录 一、实训目的 (3) 二、实训要求 (3) 三、实训环境 (3) 四、实训内容 (3) 1.电子元件的识别-------------------------------------- 3 ⑴数码管 (3) ⑵74LS48 (4) ⑶74LS160 (5) ⑷74LS00 (7)

2.手工焊接-------------------------------------------- 8 ⑴焊接的定义 (8) (2)锡焊材料 (8) (3)手工焊接操作要领 (9) (4)焊接方法9 (5)时分电路仿真图9 ( 6)产品实物图10 3安全常识-------------------------------------------- 10 ( 1 )操作安全10 4protel DXP 软件学习11 5 收获和体会------------------------- 12 一、实训目的 通过电子产品设计与制作 (实训),系统地进行电子工程实践和技能训练,培养理论与实践相结合的能力,提高独立思考、分析和解决电子电路实际问题的能 力。同时,巩固、扩展电子元器件及电子产品安装专业知识;掌握产品维修和维护的基本方法,实现知识向能力的转化,提高实践动手能力。 实训要求 1、学会看图、识图,了解简单电子产品的实现过程。 2、能够自己安装、焊接和调试简单的电子电路产品并学会使用测量仪器测量电 路。 3、学会分析电路,排除电路故障的方法。学会记录和处理实验数据、说明实验 结果,撰写实验报告。 4、能够使用计算机进行印刷电路板的设计。

5、培养严谨的科学态度,耐心细致的工作作风和主动研究的探索精神。 三、实训环境 江西工业工程职业技术学院实验楼302 实验室(焊接室)实验楼401实验室(仿真室) 四、实训内容 ( 1)数码管 七段数码管一般由8 个发光二极管组成,其中由7个细长的发光二极管组成数字显示,另外一个圆形的发光二极管显示小数点。当发光二极管导通时,相应的一个点或一个笔画发光。控制相应的二极管导通,就能显示出各种字符,尽管显示的字符形状有些失真,能显示的数符数量也有限,但其控制简单,使用也方便。发光二极管的阳极连在一起的称为共阳极数码管,阴极连在一起的称为共阴极数码管,如图所示。 数码显示管实物图 七段发光显示器结构(共阴共阳) (2)74LS48 74ls48 芯片是一种常见的七段数码管译码驱动器,常用在各种数字电路和单片机系统的显示系统中,下面我就给大家介绍一下这个元件的衣些参数和应用技术等资料。 74ls48 引脚实物图 74ls48 逻辑功能表 (3)74LS160 同步十进制计数器74LS160作用:实现计时的功能,为脉冲分配器做好准备。 74LS160 结构和功能160 为十进制计数器,直接清零。简要说明:160 为可预置的十进制计数器,共有54/74160 和54/74LS160 两种线路结构型式, 其主要电器特性的典型值。

电子产品热设计、热分析及热测试

电子产品热设计、热分析及热测试培训 各有关单位: 随着微电子技术及组装技术的发展,现代电子设备正日益成为由高密度组装、微组装所形成的高度集成系统。电子设备日益提高的热流密度,使设计人员在产品的结构设计阶段必将面临热控制带来的严酷挑战。热设计处理不当是导致现代电子产品失效的重要原因,电子元器件的寿命与其工作温度具有直接的关系,也正是器件与PCB中热循环与温度梯度产生热应力与热变形最终导致疲劳失效。而传统的经验设计加样机热测试的方法已经不适应现代电子设备的快速研制、优化设计的新需要。因此,学习和了解目前最新的电子设备热设计及热分析方法,对于提高电子设备的热可靠性具有重要的实用价值。所以,我协会决定分期组织召开“电子产品热设计、热分析及热测试讲座”。现具体事宜通知如下 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 一、课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 一、热设计定义、热设计内容、传热方法 1 热设计定义 2 热设计内容 3 传热方法简介 二、各种元器件典型的冷却方法 1 哪些元器件需要热设计

2 冷却方法的选择 3.常用的冷却方法及冷却极限各种元器件典型的冷却方法 4. 冷却方法代号 5 各种冷却方法的比较 三、自然冷却散热器设计方法 1 自然冷却散热器设计条件 2 热路图 3 散热器设计计算 4 多个功率器件共用一个散热器的设计计算 5 正确选用散热器 6 自然冷却散热器结温的计算 7 散热器种类及特点 8 设计与选用散热器禁忌 四、强迫风冷设计方法 1 强迫风冷设计基本原则 2 介绍几种冷却方法 3. 强迫风冷用风机 4. 风机的选择与安装原则 5 冷却剂流通路径的设计 6 气流倒流问题及风道的考虑 7 强迫风冷设计举例(6个示例) 五、液体冷却设计方法

电子产品散热技术最新发展(上)

堇查壁蔓ij三翌隧阉固电子产品散热技术最新发展(上) 最近几年LSI、数码相机、移 动电话、笔记本电脑等电子产品. 不断朝高密度封装与多功能化方向发展.散热问题成为非常棘手的课题。LSI等电子组件若未作妥善的散热处理.不但无法发挥LSI的性能.严重时甚至会造成机器内部的热量暴增等。然而目前不论是LSI组件厂商.或是下游的电子产品系统整合业者.对散热问题大多处于摸索不知所措的状态.有鉴于此.介绍一下国外各大公司散热对策的实际经验.深入探索散热技术今后的发展动向.是很有必要的=.散热技术的变迁 如图1所示由于“漏电”问题使得LSI的散热对策是系统整合的责任.这种传统观念正面临极大的变革。此处所谓的漏电是指晶体管(仃彻sjs【or)的source与drain之间.施加于leal(电流的电源电压大晓而言。理论上leak电力会随着温度上升不断增加.如果未有效抑制热量意味着1eal【电力会引发更多的热量.造成1eak电力持续上升恶性循环后果。 以Intel新推出的微处理器“ni唧process)而言,它的消费电力之中60%~70%是属于1eak电力+一般认为未来1~2年leak电力仍然扮演支配性角色。 图1电子组件散热对策的变化趋势 高弘毅 在此同时系统整合业者.由于 单位体积的热最不断膨胀.使 得如何将机器内部的热量排除 更是雪上加霜.因此系统整合 业者转因而要求LsI组件厂商, 提供有效的散热对策参考模式, 事实上Imel已经察觉事态的严重 性,因此推出新型微处理器的 同时.还提供下游系统整合业 者有关LsI散热设计的model case.因此未来其他电子组件厂 商未来势必跟进。 如上所述LSI等电子组件的散 热对策.成为电子业界高度嘱目 焦点.主要原因是电子产品性能 快速提升所造威。以往计算机与 数字家电业者大多忽视漏电电力 问题的存在.甚至采取增加电力 的手法补偿漏电电力造成的损失, H…1U¨o『¨Ⅸ■} ◆以往:委由系统业者自行处理 今后:组件厂商夸力支持 可再啄■面i而n22.  万方数据

电子产品热设计

目录 摘要: (2) 第1章电子产品热设计概述: (2) 第1.1节电子产品热设计理论基础 (2) 1.1.1 热传导: (2) 1.1.2 热对流 (2) 1.1.3 热辐射 (2) 第1.2节热设计的基本要求 (3) 第1.3节热设计中术语的定义 (3) 第1.4节电子设备的热环境 (3) 第1.5节热设计的详细步骤 (4) 第2章电子产品热设计分析 (5) 第2.1节主要电子元器件热设计 (5) 2.1.1 电阻器 (5) 2.1.2 变压器 (5) 第2.2节模块的热设计 (5) 电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6) 第2.3节整机散热设计 (7) 第2.4节机壳的热设计 (8) 第2.5节冷却方式设计: (9) 2.5.1 自然冷却设计 (9) 2.5.2 强迫风冷设计 (9) 电子产品热设计实例二:大型计算机散热设计: (10) 第3章散热器的热设计 (10) 第3.1节散热器的选择与使用 (10) 第3.2节散热器选用原则 (11) 第3.3节散热器结构设计基本准则 (11) 电子产品热设计实例三:高亮度LED封装散热设计 (11) 第4章电子产品热设计存在的问题与分析: (15) 总结 (15) 参考文献 (15)

电子产品热设计 摘要: 电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。 第1章电子产品热设计概述: 电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。 第1.1节电子产品热设计理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:只要有温差存在,热量就会自发地从高温物体传向低温物体,形成热交换。热交换有三种模式:传导、对流、辐射。它们可以单独出现,也可能两种或三种形式同时出现。 1.1.1 热传导: 气体导热是由气体分子不规则运动时相互碰撞的结果。金属导体中的导热主要靠自由电子的运动来完成。非导电固体中的导热通过晶格结构的振动实现的。液体中的导热机理主要靠弹性波的作用。 1.1.2 热对流 对流是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着有导热现象。流体流过某物体表面时所发生的热交换过程,称为对流换热。 由流体冷热各部分的密度不同所引起的对流称自然对流。若流体的运动由外力(泵、风机等)引起的,则称为强迫对流。 1.1.3 热辐射 物体以电磁波方式传递能量的过程称为热辐射。辐射能在真空中传递能量,且有能量方

电子产品设计

电子产品设计 实训报告 院(系):江西工院电子计算机系 专业:电气自动化班级:电气131班 学生姓名:刘群学号: 实训时间: 2014-5-24~2014-6-15 指导老师:舒为清张琴 提交时间: 2014-6-16 目录 一、实训目的 (3) 二、实训要求 (3) 三、实训环境 (3) 四、实训内容 (3) 1.电子元件的识别-----------------------------------------------------------3 (1)数码管 (3) (2)74LS48 (4) (3)74LS160 (5) (4)74LS00 (7) 2.手工焊接---------------------------------------------------------------------8 (1)焊接的定义 (8)

(2)锡焊材料 (8) (3)手工焊接操作要领 (9) (4)焊接方法 (9) (5)时分电路仿真图 (9) (6)产品实物图 (10) 3安全常识----------------------------------------------------------------------10 (1)操作安全 (10) 4 protel DXP软件学习 (11) 5收获和体会-------------------------------------------------------------------12 一、实训目的 通过电子产品设计与制作(实训),系统地进行电子工程实践和技能训练,培养理论与实践相结合的能力,提高独立思考、分析和解决电子电路实际问题的能力。同时,巩固、扩展电子元器件及电子产品安装专业 知识;掌握产品维修和维护的基本方法,实现知识向能力的转化,提 高实践动手能力。 二、实训要求 1、学会看图、识图,了解简单电子产品的实现过程。 2、能够自己安装、焊接和调试简单的电子电路产品并学会使用测 量仪器测量电路。 3、学会分析电路,排除电路故障的方法。学会记录和处理实验数据、 说明实验结果,撰写实验报告。 4、能够使用计算机进行印刷电路板的设计。

电子产品散热设计

YEALINK 产品热设计 VCS项目散热预研 欧国彦 2012-12-4 电子产品的散热设计 一、为什么要进行散热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。 二、散热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可 热设计、冷却方式、散热器、热管技术

电子产品热设计规范

电子产品热设计规范 1概述 1.1热设计的目的 采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。 1.2热设计的基本问题 1.2.1耗散的热量决定了温升,因此也决定了任一给定结构的温度; 1.2.2热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比; 1.2.3热量、热阻和温度是热设计中的重要参数; 1.2.4所有的冷却系统应是最简单又最经济的,并适合于特定的 电气和机械、环境条件,同时满足可靠性要求; 1.2.5热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决; 1.2.6热设计中允许有较大的误差; 1.2.7热设计应考虑的因素:包括 结构与尺寸 功耗 产品的经济性

与所要求的元器件的失效率相应的温度极限 电路布局 工作环境 1.3遵循的原则 1.3.1热设计应与电气设计、结构设计同时进行,使热设计、结构设计、电气设计相互兼顾; 1.3.2热设计应遵循相应的国际、国内标准、行业标准; 1.3.3热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中长期正常工作。 1.3.4每个元器件的参数选择及安装位置及方式必须符合散热要求; 1.3.5在规定的使用期限内,冷却系统(如风扇等)的故障率应比元件的故障率低; 1.3.6在进行热设计时,应考虑相应的设计余量,以避免使用过程中因工况发生变化而引起的热耗散及流动阻力的增加。 1.3.7热设计不能盲目加大散热余量,尽量使用白然对流或低转速风扇等可靠性局的冷却方式。使用风扇冷却时,要保证噪首指标符合标准要求。 1.3.8热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。 1.3.9冷却系统要便于监控与维护 2热设计基础 2.1术语 2.1.1 温升

电子产品散热技术最新发展(下)

电子产品散热技术最新发展(下) .38,僵虿丽Fi蕊面 日本IBM基于可靠性优先等考 虑仍然采用空冷方式.它是利用 小型heatpipe与冷却风扇的组合, 将微处理器产生的热量排至外部。 该公司在2003年4月推出动作频率 为3,06GHz微处理器的膝上型计算 机,就是采用冷却性能比heatpipe 更高的vapor与冷却风扇构成的散 热器,这种新型散热器可将消费电 力为84W的微处理器的热量排至机 体外部(图11)。IBM未采用水冷 方式的理由有两项,第一是可靠 性问题,由于p砌p等组件数量增 高弘毅 加,不但可靠性令人质疑.而且还 会成本上升等后果:第二是采用水 冷方式整体设计自由度相对受到限 制,因为水冷模块必需附设热交换 器,为了获得最佳化散热效率,反 而造成其它单元的1avout受到极大 限制。有关冷却风扇的噪音,IBM 认为冷却风扇的大型化可以降低转 速,进而减缓旋转造成的噪音。不 过该公司也承认未来必需开发空冷 以外的新技术。 随着数码摄影机的CCD像素 增加与记录媒体的进步,轻巧小型  万方数据

已经成为无法避免的潮流趋势。类似上述数字产品属于可携式精密电子设备,所以防尘、防水的密封性,以及防止记录时噪音混入都是必备特性,换言之未来无冷却风扇的散热设计,势必成为市场主流。 日立公司针对DVD读写头的散热设计进行整体检讨,采用全新组件控制温度,以此稳定雷射的输出.使读写头的温度能抑制于70℃以下。该公司的散热对策可分为三大项。分别是: (1)将基板产生的热量扩散至外筐散热。 (2)利用遮屏将高发热基板与读写头隔离。 (3)将基板与基板物理性距离分隔。 有关第(1)项,将热量扩散至外筐散热,具体方法是使用铜质板材外筐。 有关第(2)项,隔离高发热基板与读写,具体方法是使用葡锈钢遮屏,以此减少热量传导至读写头。 第(1)项述及的铜质板材外筐厚度与形状,根据日立表示经过最佳化模拟分析,成本可降至石墨膜片的l/5以下(图12)。 ⅣC新推出的高像素数码摄影机,由于消费电力从以往的2~3W暴增至9.7W,加上摄影机使用MPEG压缩/解压缩单芯片LSI,传统铜质外筐显然无法有效达成散热要求,因此改采小型heatpipe(图13),根据实验结果小型heatpipe可使上述LSI的工作温度降至66℃以下。 SONY的211万像素数码摄影机,基于小型化与CcD取像组件散热等考虑,同样是使用小型heatpipe,将CCD的热量传至铝质舶me,进而获得铜板无法比拟的 热传导效率(图14)。 有关平面显示器(FPD:Flat PanelDisplay)的散热设计,不论 是液晶电视与等离子电视.目前大 多延用传统散热方法,不过内建 图13数码摄影机的内部散热结 构(JVC) tuner基板,亦即所谓的tLmer一体 型FPDTV,未来若要达成无冷却 风扇目标,tuIler基板上的组件散热 对策就非常重要。SHARP的液晶 电视,设计阶段便非常积极利用热 模拟分析,仔细评估主要组件的实 际动作温度,并检讨各电路板冷却 设计,试图以此手法事先防范散热 问题(图15)。根据SHARP表示经 过散热模拟分析的tuIler一体型FPD TV,两个冷却风扇可减少一个. 散热效果则完全相同。PIONEER 颞琢i了菊石硇3璺.  万 方数据

电子产品设计方案论证报告

XXXXXX产品 设计方案论证报告拟制: 审核: 批准: XXXXXXXXXXXXXXXXXXXXX有限公司 年月日

(型号名称 3号黑体) 设计方案论证报告 1 线路设计(5号黑体) 1.1 引言(5号黑体) 瞬时中频频率(IIFM)测量组件是频率探测系统的关键部件之一,该组件完成对前端混频后的中频信号的频率的测量,直接决定了频率探测系统理论上的测频速度,精度和测量噪声指标。 1.2 项目来源及开发的意义(5号黑体) (含用途和使用范围。示例如下。格式要求,5号宋体,1.25倍行距) ××××××××××××××××××××××××××××××××××××××××××××××××。 1.3 国内外同类产品大发展动向及技术水平(5号黑体) (示例如下。格式要求,5号宋体,1.25倍行距) 考察瞬时中频测频(IIFM)组件技术在最近二十年间发展动向,传统的模拟电路鉴频器和各种比较、积分式测频电路由于受线性度较差,响应较慢,受温度漂移、噪声干扰等外部影响较难消除等固有问题的困扰,已经被逐渐淘汰,同时,随着高速数字技术的发展,多种基于现代数字系统的频率测量方法速度已经大大提高,远超过了模拟方式提供的响应速度,而且线性度高,温漂、噪声干扰小,已成为当今IIFM技术的主流。 国外IIFM的报道具体指标多数比较模糊,代表性的有美国《Journal of Electronic

Defense》 2002年报道的使用IIFM技术的IFM接收机,中频DC~30MHz,分辨率1KHz,测频时间约100nS。《Microwave Division》杂志2007年的报道,中频工作频段2~18GHz,测频时间最大400nS。国内相关研究近年较多,如2002年航天科工25所的报道,中频24~25MHz,测频时间1us,精度0.1Hz。2006年《电子测量技术》的报道,中频50~950MHz,测频时间最小400nS,误差约0.3MHz。 1.4 项目合同的技术指标要求(5号黑体) 1.工作频率70MHz±4MHz ,10.2M±1MHz 2.测频精度 2KHz,1KHz 3.测频速度 200nS 4.工作温度范围-40o C~85o C 1.5 样品解剖情况(5号黑体) (使用于仿制产品,正向设计产品略。示例如下。格式要求,5号宋体,1.25倍行距)a)样品电路原理图、基本工作原理及关键元器件的主要参数指标; b)样品主要技术指标(规范值,实测数据); c)芯片照片、面积、版图极限尺寸(最小线宽、最小间距)及封装特点; d)样品电路工艺设计、线路设计、版图设计特点及其分析。 1.6 产品电路设计和版图设计方案(5号黑体) a)功能框图和详细单元电路图及工作原理;

电子产品散热设计方法

产品的热设计方法 介绍 为什么要进行热设计? 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 介绍 热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 在本次讲座中将学到那些内容 风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 授课内容 风路的设计方法20分钟 产品的热设计计算方法40分钟 风扇的基本定律及噪音的评估方法20分钟 海拔高度对热设计的影响及解决对策20分钟 热仿真技术、热设计的发展趋势50分钟 概述 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。 产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。 热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。 热设计的发展趋势:了解最新散热技术、了解新材料。 风路设计方法 自然冷却的风路设计 设计要点 ?机柜的后门(面板)不须开通风口。 ?底部或侧面不能漏风。 ?应保证模块后端与机柜后面门之间有足够的空间。 ?机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。 ?对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,即齿槽应垂直于水平面。对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口。 风路设计方法 自然冷却的风路设计 设计案例 风路设计方法 自然冷却的风路设计 典型的自然冷机柜风道结构形式 风路设计方法 强迫冷却的风路设计 设计要点 ?如果发热分布均匀,元器件的间距应均匀,以使风均匀流过每一个发热源. ?如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件。 ?如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流

电子产品散热中的“烟囱效应”

电子产品散热中的“烟囱效应” 在做一些无风扇产品设计的时候经常会听到一个词汇“烟囱效应”,很多**希望发挥“烟囱效应”的作用来增强电子产品的散热。将建筑排烟的原理应用于电子产品的散热不失是一个聪明的做法。但仔细分析起来此效应与彼效应又不尽相同。 对于“烟囱效应”的定义普遍的说法是指空气沿着有垂直坡度的空间上升或下降,造成空气加强对流的现象。因此从结果上讲,“烟囱效应”的作用是为了增强对流。不过建筑物利用强化对流来排烟/风,而电子产品利用强化对流来散热。 从成因上讲,有人解释为是热空气的上升,冷空气的下降,即密度差的推动产生了“烟囱效应”。这种说法其实只讲出了“烟囱效应”的一部分成因。 画一个烟囱来分析一下,如下图。 气流在烟囱中的流动可归为管道流动,应该遵循伯努利方程,即 或 方程中包含3项:静压项,重力势项和动能或称动压项。 前面提到的密度差的推动体现在重力势一项,在出口处空气密度大,垂直高度大,所以烟囱的出口处重力势大于入口处,这是“烟囱效应”产生的第一推动力。 另一方面,我们看到的烟囱往往高高矗立,那么在烟囱出口端通常或强或弱的受到空气流动(风)的影响,所以出口处得气流速度比较高。而入口端通常连接室内,空气流动较弱,也就是下图中的v2大于v1,这使得烟囱出口处的动压大于入口处的动压,这是“烟囱效应”产生的第二推动力。

综合两方面原因,气流在烟囱出口处的重力势和动能都大于入口处,导致入口处的静压要强于出口处的静压,受静压的推动,气流从烟囱底部流向顶部,产生了强化对流的效果。 对于自然对流散热的电子产品,我们通常能做到的是将风道设计为有一些垂直高度,这其实只利用了重力势的推动力,而无法利用到动压的推动力。这就是此效应(电子产品散热的烟囱效应)与彼效应(真实烟囱的效应)的差别。此效应其实并非完整意义上的“烟囱效应”。 当然也有完整意义的在电子产品散热中应用,如爱立信推出的管塔基站,其将基站置于一个高高的管塔内部,管塔产生的烟囱效应增强了内部的对流,从而为内部的基站散热。

电子产品设计流程

电子产品的设计流程 一、需求调研与需求分析: 1、产品构思,市场的调度落到实处,我们应该对我们所设计的产品进行一下调查,看看产品所使用的背景、所处的条件和使用者对产品的要求等等。 2、技术方案(技术、要求、能力可行性),我们要对我们所调查的事项进行一下分析,看看产品的市场需求量是不是很大、值不值得我们生产,产品的销售途径怎么样以及我们对产品的技术可行性,并且评估市场的规模、市场的潜力、和可能的市场接受度,并开始塑造产品概念。 3、成本构成(材料、价格),这个阶段主要分析减少成本的因素,要尽可能的降低成本获得最大的效益,如在采购方面。 二、方案阶段: 经过我们对产品的需求调研与分析,我们可以了解到是不是可以对它生产。若可以,我们就需要对它进行设计方案了。我们制订产品的方案设计,我们就要对该方案进行理论分析和计算,通过优化设计和必要的试验提出完整的电路原理图,关键元器件的参数计算,初步的结构设计等。 1、系统级设计,这个阶段主要是看产品性能指标的要求以及选择芯片型号。 2、电路模块,我们在原理设计的过程中,工程师在进行实际的布局布线前对系统的时间特性、信号完整性、电源完整性、散热情况等问题做一个最优化的分析,当然这些工作大多需要由专业的PCB设计工程师来完成,原理设计工程师通常没有办法考虑到这样细致和全面。 3、项目预期、测试方案、单元划分、成本估算、风险评估、进度计划、人员分配,需要明确产品的功能规格以及产品价值的描述等方面内容,决定产品的开发可行性,对产品的估计进行严格的调研,并完成

后续阶段的计划制定。在这个阶段,参与项目的人员也要确定,每个人员都要有严格的分工,各尽其职,认真完成各自的任务,并能很好的配合团队其他人员协调工作。 4、初样制作是检验设计方案正确与否的依据,我们根据上述预研阶段中在电路搭试的基础上,制作PCB手板及样品,进行各种参数的测试,并做出完整的记录。若制作的样品取得较为满意的测试结果,则写出初样制作总结报告,此外还应制作完成一份文档,以便我们后期可以使用它;若初样评审未通过,则重新进行预研,重新制作样板,直到初样评审通过为止,这个阶段的工作一定要仔细。 三、设计环节: 1、选择材料,这时候我们已经确定了各个部分的功能和作用,在选择芯片和器件的时候要尽量正确可行,我们在软件设计的时候程序要规范化,代码能短则短,一定要有注释且要规范到函数级。 2、产品的可靠性和稳定性,因为在产品卖出去之后我们无法预测他的工作环境和使用环境,这一系列的问题都需要我们注意,并且需要我们在产品出售之前要考虑,否则,产品会出现严重的问题导致不可估量的损失。 3、我们还应该了解电子产品的认证指标,如IEC61000-4-4,5。 4、我们还要考虑怎样设计电路板可以使它稳定、可靠。 四、测试: 设计人员在测试验证阶段,一方面要验证产品的功能、性能的指标是否满足产品的设计要求;另外一方面,还要验证在PCB设计前的仿真分析阶段和PCB设计后的仿真分析阶段所做的所有的仿真工作、分析工作是否是准确、可靠,为下一个产品开发奠定很好的理论和实际相结合的基础。这个阶段的工作重点是测试和验收,即模拟各种方法测试产品的稳定性,这一阶段的活动主要包括企业内部的产品测试以及用户测试,甚至包括产品的小批量测试生产以及市场的试销等,当然,这一阶段的标志是成功的通过产品测试,完成市场推广计划,以及建立可行的

9电子产品散热技术最新发展

散热设计(九)电子产品散热技术最新发展晨怡热管https://www.360docs.net/doc/5b1707006.html,/news/42/2006-10-2 1:29:47 日期:2005-11-6 23:45:04 来源:电子设计资源网查看:[大中小] 作者:刘君恺热度: 最近几年包含LSI、数字相机、行动电话、笔记型计算机等电子产品,不断朝高密度封装与多功能化方向发展,使得散热问题成为非常棘手的课题,其中又以LSI等电子组件若未作妥善的散热对策,不但无法发挥LSI的性能,严重时甚至会造成机器内部的热量暴增等后果。然而目前不论是LSI组件厂商,或是下游的电子产品系统整合业者,对散热问题大多处于摸索不知所措的状态,有鉴于此本文将介绍国外各大公司,针对电子产品实施的散热对策实际经验,同时还要深入探索散热技术今后的发展动向。 散热技术的变迁 如图1所示由于「漏电」问题使得LSI的散热对策是系统整合的责任,这种传统观念正面临极大的变革。此处所谓的漏电是指晶体管(transistor)的source与drain之间,施加于leak 电流的电源电压大晓而言。理论上leak电力会随着温度上升不断增加,如果未有效抑制热量意味着leak电力会引发更多的热量,造成leak电力持续上升恶性循环后果。 以Intel新推出的微处理器(micro process)而言,它的消费电力之中60%~70%是属于leak电力,一般认为未来1~2年leak电力仍然扮演支配性角色。在此同时系统整合业者,由于单位体积的热量不断膨胀,使得如何将机器内部的热量排除更是雪上加霜,因此系统整合业者转因而要求LSI组件厂商,提供有效的散热对策参考模式,事实上Intel已经察觉事态的严重性,因此推出新型微处理器的同时,还提供下游系统整合业者有关LSI散热设计的model case,因此未来其它电子组件厂商未来势必跟进。

开关电源散热设计

散热设计的一些基本原则 从有利于散热的角度出发,印制版最好是直立安装,板与板之间的距离一般不应小于2cm,而且器件在印制版上的排列方式应遵循一定的规则: ·对于采用自由对流空气冷却的设备,最好是将集成电路(或其它器件)按纵长方式排列,如图3示;对于采用强制空气冷却的设备,最好是将集成电路(或其它器件)按横长方式排列. ·同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游. ·在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其它器件温度的影响. ·对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局. ·设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板.空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域.整机中多块印制电路板的配置也应注意同样的问题. 电子设备散热的重要性 在电子设备广泛应用的今天.如何保证电子设备的长时间可靠运行,一直困扰着工程师们.造成电子设备故障的原因虽然很多,但是高温是其中最重要的因素(其它因素重要性依次是振动Vibration、潮湿Humidity、灰尘Dust),温度对电子设备的影响高达60%. 温度和故障率的关系是成正比的,可以用下式来表示: F = Ae-E/KT 其中: F = 故障率, A=常数 E = 功率 K =玻尔兹曼常量(8.63e-5eV/K) T = 结点温度 随着芯片的集成度、功率密度的日愈提高,芯片的温度越来越成为系统稳定工作、性能提升的绊脚石.作为一个合格的电子产品设计人员,除了成功实现产品的功能之外,还必须充分考虑产品的稳定性、工作寿命,环境适应能力等等.而这些都和温度有着直接或间接的关系.数据显示,45%的电子产品损坏是由于温度过高.可见散热设计的重要性. 如何对产品进行热设计,首先我们可以从芯片厂家提供的芯片Datasheet为判断的基础依.如何理解Datasheet的相关参数呢?下面将对Datasheet中常用的热参数逐一说明.

相关文档
最新文档