重庆朝天门长江大桥钢桁拱桥设计简介

合集下载

【钢结构】重庆朝天门长江大桥主桥设计施工与技术特点

【钢结构】重庆朝天门长江大桥主桥设计施工与技术特点
中跨无应力状态合龙。
本节内容结束
铸钢铰支座,最大承载力145000KN。
► 布置有双层系杆,上系杆与拱肋下弦相连接,下系杆与加劲
腿处中弦及边跨下弦贯通。
主桁部分杆件采用变宽度、变高度的喇叭形截面。
下层系杆采用“钢制杆件+辅助系索”的组合式系杆。
二、主桁结构
吊杆采用高强平行钢丝成品索,上下设锚箱锚固。
三、桥面系
上、下层公路桥面采用正交异性钢桥面板,下层中间轻轨 采用纵、横梁体系,上层桥面在主桁节点外侧设置人行道托架, 上置“∏”形正交异性钢人行道板。
重庆ห้องสมุดไป่ตู้天门长江大桥主桥
设计施工与技术特点
► 工程概况 ► 主桁结构 ► 桥面系 ► 联结系 ► 主桥施工
汇报内容
一、工程概况
一、工程概况
朝天门长江大桥包括主桥和南、北两侧引桥,全长1741m。 其中主桥932m,为190+552+190m的连续钢桁系杆拱桥;北引 桥长314m,南引桥长495m,均为预应力混凝土连续箱梁桥。
四、联结系
桁拱上、下纵向平面联结系采用菱形桁式,加劲弦处纵向 平面联结系采用“K”形桁式。加劲腿区段每个节间均设置一 副桁架式横联,桁拱肋每两个节间设置一副桁架式横联,边、 中支点处设置有竖向桥门架
五、主桥施工
► 边跨采用临时墩辅助伸臂安装; ► 中跨采用扣索塔架辅助伸臂安装,先拱后梁; ► 利用结构支承体系特点,对两侧主梁进行调整,实现
一、工程概况
朝天门长江大桥为双层桥面交通。上层桥面为双向 六车道,下层桥面为双向城市轨道交通和两侧预留双向 两车道交通。
二、主桁结构
► 主桥采用连续钢桁系杆拱桥,是古典桥型与现代建桥技术的 完美结合,是目前世界上跨度最大的拱桥;

重庆朝天门长江大桥主桥钢梁安装设计

重庆朝天门长江大桥主桥钢梁安装设计
层 系杆 , 心 间 距 为 1. 3i, 层 设 有 辅 助 系 索 。纵 中 18 下 n 向支 承 体 系 布置 : 江 北侧 中支 点 ( 号 墩 ) 置 固定 铰 在 7 设
的受力 特点 。在 主跨 系杆作用 范 围 内呈 现系杆 拱 的 受 力特 征 , 余部 分 的钢 梁 则 呈现 连 续 钢桁 梁 的受 其
施 工 技 术
制工 况下 的受 力要求 , 因此 安装 步 骤是 设 计 中各 构
件 断 面 尺 寸 的 主 要 控 制 因 素 之 一 , 采 用 安 全 可 行 要 的施 工 方 案 并 尽 可 能 地 减 少 主 桁 的 施 工 控 制 杆 件 。 由 于 本 桥 最 大 悬 臂 长 度 达 到 2 6i , 层 扣 索 7 n 单 已经 不 能 满 足 主 拱 伸 臂 架 设 的 要 求 , 要 采 用 多 层 需
( iaRal y M aorBrd eReo nas a e 8 sg n tt t . d,W u a 3 0 6,Chn ) Chn i wa j ig c n isnc LDein I siu eCo Lt hn4 0 5 ia
一 ~ 归一 一~ . 一一 一一 一 一 ~ ~ 一
一一一 一 一 一 ~一 一
朝天 门长 江 大 桥 地 处 重 庆 市 朝 天 f ( 江 与 嘉 陵 1长 江交 汇处 ) 下游 约 17 m 处 , 主桥 采 用 (9+ 52 . 1k 其 10 5 +
1 安 装 设 计 思 路 及 原 则
10 m 三跨连续钢桁系杆拱桥 。主桥全宽 3. 桁 9) 6 5m, 宽 2 I中支点至拱顶高度为 12m, 91, T 4 中跨 布置上下两
力 特 征 。 因 此 可 以 认 为 本 桥 是 内部 带 有 系 杆 拱 的 三

朝天门长江大桥结构抗震和静力稳定性初步分析报告(550m钢桁架拱桥)

朝天门长江大桥结构抗震和静力稳定性初步分析报告(550m钢桁架拱桥)

重庆朝天门长江大桥结构抗震和静力稳定性初步分析目录1 采用的规范及参考依据2 抗震设防标准的确定3 结构动力特性分析3.1 计算图式3.2 边界条件3.3 动力特性分析4 结构的地震响应5 结构的静力稳定性分析6结论重庆朝天门大桥工程位于重庆市区,初步设计钢桁拱桥的跨度布置为:190+552+190=932米。

其主墩(N2、N3)均为矩形独柱墩,边墩(N1、N4)均采用矩形截面框架墩,靠近江北岸的N1墩高达78米(自承台以上),而靠近江南岸的N4墩只有36米(自承台以上)。

上下层桥面均为正交各向异性板,桁高为11.83米,上层桥面宽36.5米,下层桥面宽29米,上层桥面重16.8t/m,下层桥面重13.7t/m,主桁重27t/m。

大桥所在地区地震动峰值加速度为0.12g,为确保该桥在成桥运营状态的抗震安全和结构具有足够的静力稳定性,必须对该桥的抗震安全性和结构静力稳定性进行全面的分析。

1.采用的规范及参考依据1.1 中华人民共和国交通部部标准《公路桥涵设计通用规范》(JTJ021-89)1.2 中华人民共和国交通部部标准《公路工程抗震设计规范》(JTJ004-89)1.3 重庆市地震局《重庆市王家沱长江大桥工程场地地震安全性评价报告》(2003年12月)2.抗震设防标准的确定对于连续钢桁拱桥的抗震设防,首先是要确定一个安全经济合理的抗震设防标准,根据该桥桥址区的地震地质构造环境,近场区的地震活动性和近场区地震地质稳定性评价,结合本桥是特大型桥梁,为重要的生命线工程,按《中华人民共和国防震减灾法》第十七条规定,本工程必须进行地震安全性评价。

该项工作已由重庆市地震局完成 (见参考依据1.3)。

连续钢桁拱桥的地震响应一般采用反应谱法和时程分析法相互校核,但由于目前未得到本桥场地的地震加速度时程,因而时程分析法无法进行。

桥梁结构地震响应采用反应谱理论进行,反应谱拟采用安评报告P 115中的形式。

()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<⎪⎪⎭⎫ ⎝⎛≤<≤≤-+=sT T T T T T T T T T TT S m m gmm m m m a 0.800.122111βαβαβααγ对于本桥,上式中的各参数见安评报告P 117的表6-4(见下表)。

重庆朝天门长江大桥

重庆朝天门长江大桥

一、工程概况重庆朝天门长江大桥是重庆市城市总体规划修编中主城区规划的十六座跨江特大桥梁之一,地处重庆市主城区中央商务区,位于重庆市朝天门港下游1.7公里处,西接江北区五里店立交,东接南岸区弹子石立交,是重庆主城区向外辐射的东西向快速干道。

正桥是由主桥和南北引桥组成的公轨两用桥。

设计荷载为公路Ⅰ级、人群荷载4KN/m2、钢轮轨道车(P=140KN5个编组)。

主桥长932m,跨径组合190m+552m+190m的三跨连续中承式钢桁系杆拱桥,南北引桥长495m和314m均为双层预应力混凝土连续箱梁桥。

主桥宽36.5m,上桥面为6车道,下桥面为双向轻轨主梁、两侧各2车道。

大桥工程概算23.1亿元,工程决算造价20.7亿元,全桥钢梁重4.7万吨。

二、主桥的设计创新1.主跨552m为当今世界已建成的跨度最大的拱桥。

由于航道、防洪要求,在航道中不允许设支墩,要满足上述要求的主跨最小设计跨径为552m,超过卢浦大桥成为世界上跨度最大拱桥。

大桥技术先进,受力复杂,首次在国内采用高强、厚板、变截面钢桁构件,首次在拱脚处采用超大型整体节点,使结构受力均匀合理。

大桥建设有利地推动了我国大跨度钢桁拱桥的技术进步。

2.145000KN的球型抗震支座,是目前已建成世界同类桥型承载力最大的球型支座。

大桥摒弃了一般拱桥在拱脚处固结和铰接的结构体系,而采用三跨连续梁受力体系,在拱脚处设置145000kN抗震球型支座。

体系传力明确,结构受力合理,安装架设工艺相对成熟,施工期间受力对结构成桥受力无影响,易于保证结构成桥线形和受力状态。

3.采用预应力复合结构体系传统的钢桁梁系杆拱桥均是采用钢制杆件作为承受水平推力的系杆,近年来我国建成大部分系杆拱桥采用高强度钢丝作为系杆。

经研究主桥下系杆采用预应力复合式系杆构造,即采用钢结构焊接型钢作系杆,并利用体外预应力技术,对钢系杆施加预应力以减少钢系杆内力,达到降低钢系杆结构自重的目的,此方式的最大优点是可将体外预应力束全部锚固在主桁平面中的节点范围内,与桁梁各杆件间的内力传递在节点内完成的原理相吻合,保证锚固点受力明确,构造简捷。

重庆朝天门长江大桥

重庆朝天门长江大桥

重庆朝天门长江大桥
朝天门大桥全长约4.887公里,由主桥、南北引桥、江北对山立交、弹子石立交和黄桷湾立交以及引道等部分组成。

大桥主体工程全长1741米,其中主桥为932米(主跨为552米)的中承式钢桁架公轨两用双层拱桥,北引桥314米,南引桥495米,主桥上部结构设计为:190m+552m+190m的三跨连续中承式钢桁系杆拱桥,双层桥面,上层为双向六车道和两侧人行道,桥面总宽36.5m,下层中间为双线城市轨道交通,两侧各预留一个7m宽的汽车车行道,由于其主跨552米比世界著名拱桥——澳大利亚悉尼大桥的主跨还要长,是目前世界第一大跨径钢桁拱桥,被喻为“世界最大拱桥”。

白天,大桥除桥墩外通体红色;入夜,大桥华灯齐放,倒映于江面上。

她既是重庆最漂亮的大桥,也是重庆的新标志性建筑朝天门大桥2004年12月29日正式动工兴建。

2009年4月29日正式通车。

总投资32亿元。

朝天门长江大桥的设计创新

朝天门长江大桥的设计创新

一、工程概况重庆朝天门长江大桥是重庆市城市总体规划修编中主城区规划的十六座跨江特大桥梁之一,地处重庆市主城区中央商务区,位于重庆市朝天门港下游1.7公里处,西接江北区五里店立交,东接南岸区弹子石立交,是重庆主城区向外辐射的东西向快速干道。

正桥是由主桥和南北引桥组成的公轨两用桥。

设计荷载为公路Ⅰ级、人群荷载4KN/m2、钢轮轨道车(P=140KN 5个编组)。

主桥长932m,跨径组合190m+552m+190m的三跨连续中承式钢桁系杆拱桥,南北引桥长495m和314m均为双层预应力混凝土连续箱梁桥。

主桥宽36.5m,上桥面为6车道,下桥面为双向轻轨主梁、两侧各2车道。

大桥工程概算23.1亿元,工程决算造价20.7亿元,全桥钢梁重4.7万吨。

二、主桥的设计创新1. 主跨552m为当今世界已建成的跨度最大的拱桥。

由于航道、防洪要求,在航道中不允许设支墩,要满足上述要求的主跨最小设计跨径为552m,超过卢浦大桥成为世界上跨度最大拱桥。

大桥技术先进,受力复杂,首次在国内采用高强、厚板、变截面钢桁构件,首次在拱脚处采用超大型整体节点,使结构受力均匀合理。

大桥建设有利地推动了我国大跨度钢桁拱桥的技术进步。

2. 145000KN的球型抗震支座,是目前已建成世界同类桥型承载力最大的球型支座。

大桥摒弃了一般拱桥在拱脚处固结和铰接的结构体系,而采用三跨连续梁受力体系,在拱脚处设置145000kN抗震球型支座。

体系传力明确,结构受力合理,安装架设工艺相对成熟,施工期间受力对结构成桥受力无影响,易于保证结构成桥线形和受力状态。

3.采用预应力复合结构体系传统的钢桁梁系杆拱桥均是采用钢制杆件作为承受水平推力的系杆,近年来我国建成大部分系杆拱桥采用高强度钢丝作为系杆。

经研究主桥下系杆采用预应力复合式系杆构造,即采用钢结构焊接型钢作系杆,并利用体外预应力技术,对钢系杆施加预应力以减少钢系杆内力,达到降低钢系杆结构自重的目的,此方式的最大优点是可将体外预应力束全部锚固在主桁平面中的节点范围内,与桁梁各杆与桁梁各杆件间的内力传递在节点内完成的原理相吻合,保证锚固点受力明确,构造简捷。

朝天门大桥结构施工方案

朝天门大桥结构施工方案

常年洪水位+184.32
南岸
19000
55200
19000
步骤二、 1、利用塔吊安装第一节间钢梁;2、在钢桁梁上拼装架梁吊机;3、架梁吊机进行试吊。
北岸
施工水位
常年洪水位+184.32
南岸
19000
55200
19000
步骤三、 1、利用架梁吊机借助临时支撑依次架设边跨钢梁的所有构件至主墩; 2、在架设过程中根
待中跨桁拱合拢后,从两侧向跨中逐跨安装吊杆、横梁、系梁 和桥面板,构件利用设在过渡墩处的起重设备从栈桥上起吊, 通过下层轻轨轨道梁运输至安装位置进行安装。
北岸
扣塔
南岸
1000t.m塔吊
19000
一般施工水位
运输驳船
定位船
55200
+200.00 滨江路
19000
3.2、施工平面布置
施工作业对桥轴线上下游各250m的水域有影响,为施工水域 。
钢桁构件出厂后用驳船运输至施工现场,通过码头和栈桥运 输至堆场存放和预拼。
边跨钢桁构件利用枯水季节安装,构件直接从栈桥上起吊。
中跨桁拱用架梁吊机全悬臂安装,栈桥范围以内的构件直接 从栈桥上起吊,水上构件在安装位置下方河道上设置定位船 ,构件预拼好后用驳船运输至安装位置下方定位,垂直起吊 。
中跨桁拱安装跨越主航道上空时,通过两侧部分桁节异步安装 ,实现两次航道转换,始终保持一个不小于120m宽的航道畅通 。
码头和栈桥设在桥轴线上游侧,北侧码头设在观音梁外沿,南
码头设在现中石化油下趸游 施船工内水 域侧边 ,线 码头和构件堆场用栈桥连接。
155.00

155.00

北 河 岸 线
184.00

三跨连续中承式钢桁系杆拱桥工程项目扣塔施工方案

三跨连续中承式钢桁系杆拱桥工程项目扣塔施工方案
⑧对原设计图纸作如下调整:将扣塔顶部顺桥向和底部横桥向斜腹杆由两组合∠100×10角钢改为两组合∠160×14角钢;底部横联、中部横联端节两组合∠100×10角钢改为两组合∠100×20角钢;上下锚箱应力过大处采取局部加加劲板(如下图)。
3
3.
3.1.1
图3.1扣塔施工工艺流程图
3.1.2
步骤一:安装至18#节间,调整中支点,安装扣塔铰梁,与主桁临时固结。
>700
≤3
⑤焊接应符合下列规定:
a焊接前应将焊缝上下30mm范围内铁锈、油污、水气和杂物清除干净。
b焊条等使用前烘干,对于不同材质的材料应采取符合焊接规范的焊接材料。
c应采用多层焊,焊完每层焊缝后,应及时清除焊渣,并做外观检查。
d图中所有焊缝除有特殊要求外,均应满足钢结构工程施工质量验收规范(GB50205-2001)中的二级焊缝要求。并按该规范的要求进行焊缝探伤检验,提交检验报告。
①螺栓孔的允许偏差应符合下表1的规定。
表1螺栓孔允许偏差表
孔径(mm)
允许值(mm)
24
+0.7,0
②螺栓孔距的允许偏差应符合表2的规定。
表2螺栓孔距允许偏差表
项目
允许值(mm)
两孔邻孔距
±0.4
两端孔群中心距
±0.8
③钢管管节外形尺寸的允许偏差,应符合表3的规定。
表3管节外形尺寸允许偏差表
偏差部位
2)桁拱安装到18#节间后,开始安装扣塔。扣塔安装过程中设两对临时风缆控制扣塔垂直度。钢梁安装至26#节间后,扣塔安装完成。
3)架梁吊机移至A27节点,开始安装第一对扣索并初张拉。
4)继续安装桁拱至32#节间,架梁吊机移至A33节点,安装第二对扣索并初张拉;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计控制内力
目前设计中对主桥各构件的设计控制内力是通过
两个方面来取得:
一是对主桥成桥状态下各构件在结构自重、车辆 荷载作用,以及风力、温度变化作用下的所有按规范 规定的组合工况下进行内力分析后得到; 二是根据确定的施工架梁工艺,针对结构在架梁
过程中出现的各种控制工况的内力分析后得到。
在取得以上两方面的控制内力即成桥
温度变化对尺寸的影响)。
因此,结构整体的无应力线型主要是由工厂制造精
度来保证的,钢梁安装过程对线型的保证主要是保
证相连部位处各构件上栓钉群中心的重合,栓孔直
径和螺栓直径间存在约2~3毫米差值,在架设施工
中是不应考虑的。如果工厂制造精度出现偏差,仅
通过架梁工艺是不能消除对成桥线型的影响,因此
要求工厂杆件出厂前都需要试拼装。
的应力范围以内。
结构线型的控制
结构的容许应力各个阶段均控制在屈服强度范围,在此应力水
平中,构件受力产生变形,当构件受力消除,结构恢复原形,整个 结构在弹性范围进行应力、应变变化。设计中对结构几何尺寸的描 述以及具体施工图中各部构件的内部尺寸均为结构的无应力状态下 的尺寸。工厂制造时构件的各部分尺寸也是无应力尺寸(但需计入
重庆朝天门大桥主桥立面结构图
重庆朝天门大桥钢结构图
吊索全桥共有3种规格: 2束151丝7毫米钢丝 2束139丝7毫米钢丝 2束127丝7毫米钢丝
主桥横断面布置
主桁梁和桁拱节点绝大部分都采用
拆装式结构构造,各杆件通过节点板和
拼接板在节点构造范围,采用M30的高
均为以弹性理论为基础的容许应力法。正在进行的设
计工作中对各部分构件均按规范规定来自限制进行控制,同时考虑厚板效应,
根据不同板厚屈服强度的不同与容许应力值之间按线 型进行调整,具体的做法就是:
设计基本容许应力[σ ]= 设计中在结构的运营及安装的全过程中主体结构
各部位构件的应力均控制在规范规定的不同工况容许
强度螺栓现场连接。
为使两片主桁梁(桁拱)有机的连接成
为一体,以及桥跨结构承受的横向力(如风
力)的顺利传递,在桁拱的上、下弦,中支
点范围内的加劲弦设置有纵向平面联结系,
在主跨下层系杆层及主桁杆件中部的下层桥
面设置也有纵向平面联结系。
为使两片主桁梁(桁拱)有机的连接成为一 体,以及桥跨结构承受的横向力(如风力) 的顺利传递,在桁拱的上、下弦,中支点范 围内的加劲弦设置有纵向平面联结系,在主 跨下层系杆层及主桁杆件中部的下层桥面设
对钢梁的安装方法总体上可按传统的 钢桁梁安装,考虑实现内部系杆拱受力的
工法。
主桥钢结构采用的材料及设计中 采用的应力水平
目前本桥钢结构的施工图设计中,主体结构选择了
三种钢材,分别为Q420、Q370和Q345,三种钢材的不
同点仅在于各自强度的屈服点和极限点不同,它们的 弹性模量均相同,因此它们在一定应力范围的变形是 相互协调且相同的。 目前国内现行铁路、公路的钢结构桥梁设计规范
置也有纵向平面联结系。
纵向平面联结系杆件均采用箱形
断面,其各杆件间以及平联杆件同主 桁(拱)间,在现场采用M24的高强
度螺栓连接。
主桥行车系的构造: 上层6线机动车道采用带有纵梁及纵 肋的开口式钢桥面板,桥面板的纵梁及纵
肋的腹板与位于节点处的横梁在现场采用
M24的高强度螺栓连接,其面板与横梁面
板在现场焊接。横梁腹板也采用M30的高
钢桁拱桥设计简介
重庆朝天门长江大桥
钢桁拱桥设计简介
重 庆 交 通 科 研 设 计 院 设计单位 中铁大桥勘测设计院有限公司 联合体
汇报人:段雪炜
汇报内容
► 桥位、全桥总体布置与主要技术标准
► 主体结构的构成
► 主桥的主要设计特点 ► 主桥施工工艺流程
桥 位
全桥总体布置与主要技术标准
朝天门长江大桥包括主桥和南、北两侧引桥,全长约 1741m。其中主桥932.0米,为190+552+190m的连续钢桁系 杆拱桥;北引桥长314.0米,南引桥长495.0米,均为预应 力混凝土连续箱梁桥,最大跨径54m。 全桥为双层桥面交通。上层桥面为双向六车道,下层 桥面为双向城市轨道交通和两侧预留双向两车道交通。
控制内力和安装控制内力后,进行比较分
析后得到各构件的最终设计控制内力。这
也是作为设计者非常关心架梁步骤的原因,
施工步骤也是设计中各构件断面尺寸的主
要控制因素之一。
钢梁的安装步骤
由于南北两岸钢梁是按对称性进行安装,因此这 里主要以北岸的钢梁架设进行介绍:
介绍完毕 谢 谢 大 家!
强度螺与主桁连接,钢桥面板不与主桁连 接。
下层桥面中位于两侧的机动车道 与上层桥面构造相同,位于桥梁中间
的城市轨道交通采用“工”断面的钢
纵梁,纵梁和横梁间现场采用M24的 高强度螺栓连接。
主桥的主要设计特点
朝天门大桥钢梁在结 构设计中的一些考虑
► 主桥整体结构的受力体系
本桥钢梁是通过支座将其所承受的竖向荷载传递给桥梁桥墩、基 础,对桥墩及基础完全呈现出三跨连续梁的受力特点,上部钢结构中 也只有主跨552米中系杆作用范围的488呈现系杆拱的受力特征(见下 图)中红色范围,
相关文档
最新文档