二分图最大匹配

合集下载

Ku二分图最大权匹配(KM算法)hn

Ku二分图最大权匹配(KM算法)hn

Maigo的KM算法讲解(的确精彩)顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。

在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立。

KM 算法的正确性基于以下定理:* 若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

这个定理是显然的。

因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。

所以相等子图的完备匹配一定是二分图的最大权匹配。

初始时为了使A[i]+B[j]>=w[i,j]恒成立,令A[i]为所有与顶点Xi关联的边的最大权,B[j]=0。

如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。

这时我们获得了一棵交错树,它的叶子结点全部是X顶点。

现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。

也就是说,它原来属于相等子图,现在仍属于相等子图。

两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。

也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。

X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。

它原来不属于相等子图,现在仍不属于相等子图。

X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。

也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。

现在的问题就是求d值了。

二分图匹配(匈牙利算法)

二分图匹配(匈牙利算法)

设G=(V,{R})是一个无向图。

如顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属两个不同的子集。

则称图G为二分图。

v给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。

v选择这样的边数最大的子集称为图的最大匹配问题(maximal matching problem)v如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。

最大匹配在实际中有广泛的用处,求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。

但是这个算法的复杂度为边数的指数级函数。

因此,需要寻求一种更加高效的算法。

匈牙利算法是求解最大匹配的有效算法,该算法用到了增广路的定义(也称增广轨或交错轨):若P是图G中一条连通两个未匹配顶点的路径,并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M 的一条增广路径。

由增广路径的定义可以推出下述三个结论:v 1. P的路径长度必定为奇数,第一条边和最后一条边都不属于M。

v 2. P经过取反操作(即非M中的边变为M中的边,原来M中的边去掉)可以得到一个更大的匹配M’。

v 3. M为G的最大匹配当且仅当不存在相对于M的增广路径。

从而可以得到求解最大匹配的匈牙利算法:v(1)置M为空v(2)找出一条增广路径P,通过取反操作获得更大的匹配M’代替Mv(3)重复(2)操作直到找不出增广路径为止根据该算法,我选用dfs (深度优先搜索)实现。

程序清单如下:int match[i] //存储集合m中的节点i在集合n中的匹配节点,初值为-1。

int n,m,match[100]; //二分图的两个集合分别含有n和m个元素。

bool visit[100],map[100][100]; //map存储邻接矩阵。

bool dfs(int k){int t;for(int i = 0; i < m; i++)if(map[k][i] && !visit[i]){visit[i] = true;t = match[i];match[i] = k; //路径取反操作。

二分图相关问题

二分图相关问题

X X S X X
X X X X
X代表攻击范围,S代表骑 士
分析
对棋盘染色,设方格的坐标为(x,y),x和y同奇 偶的方格对应X集合,不同奇偶的对应Y集合。 由于骑士沿着“日”字形路线攻击,所以每个 攻击肯定是处于X集合和Y集合之间,而不可 能在两个集合内部。 显然,转化后变为求二分图的最大独立集
匈牙利算法
简要说明:find函数用于判断从k点开始是否能 够找到一条交错路。对于每个可以与k匹配的 顶点j,假如它未被匹配,交错路就已经找到; 假如j已与某顶点x匹配,那么只需调用find(x) 来求证x是否可以与其它顶点匹配,如果返回 true的话,仍可以使j与k匹配;这就是一次 DFS。每次DFS时,要标记访问到的顶点 (cover[j]=true),以防死循环和重复计算。
例题分析
Hanoi Tower Troubles Again! (OIBH Contest)
ZOJ 1239 题目大意:给定柱子数N,按编号从小到大放球, 要求:如果该球不在最底数,则该球和它下面一个 球的编号之和必须为完全平方数。 问对于给定的N,最多能放多少球上去。 N<=50
例题分析
分析
铺放方法
1.2. .333 444. ..2.
Sample Output 4
分析
最小覆盖是覆盖所有的边,因此泥地对应边 建图方式类似于皇家卫士,也是利用行连通块 和列连通块做点,单位泥地对应二分图中的边 要求放最少的板覆盖全部的泥地,转化为求最 小覆盖
二分图最大独立集
图的独立集:寻找一个点集,其中任意两点在 图中无对应边 一般图的最大独立集是NP完全问题 二分图的最大独立集=图的点数-最大匹配数
二分图最小覆盖
图的覆盖:寻找一个点集,使得图中每一条边 至少有一点在该点集中

最大权匹配KM算法

最大权匹配KM算法

最大权匹配KM算法
KM算法(Kuhn–Munkres算法,也称为匈牙利算法)是由Kuhn于
1955年和Munkres于1957年分别提出的,用于解决二分图最大匹配问题。

该算法的核心思想是基于匈牙利算法的增广路径,通过构建一个增广路径
来不断更新匹配,直到无法找到增广路径为止。

算法流程如下:
2.从G的每个未匹配顶点开始,通过增广路径将其标记为可增广点;
3.当存在增广路径时,将匹配的边进行反向操作,直到不存在增广路径;
4. 利用增广路径的反向操作可以修改lx和ly的值,使其满足特定
约束条件;
5.通过相等子图的扩展来实现增广路径的;
6.重复步骤3-5,直到不存在更多的增广路径;
7.返回找到的最大匹配。

具体实现时,对于增广路径的可以利用DFS或BFS等方法进行,当找
到一个增广路径时,通过反向操作修改匹配情况,并更新lx和ly的值。

同时,算法还可以使用增广路径来调整优化标号,以减少匹配时间。

KM算法是一种高效的解决最大权匹配问题的方法,其时间复杂度为
O(V^3),其中V为图的顶点数。

算法的核心思想是利用二分图中的相等子
图来查找增广路径,并通过修改顶点的标号来实现最大匹配。

总之,最大权匹配KM算法是一个解决带权无向二分图最大匹配问题
的高效算法,通过不断寻找增广路径并调整顶点的标号来实现最大权匹配。

它的思想简单而有效,可以广泛应用于各种实际问题中。

二分图匹配

二分图匹配

二分图匹配一、二分图的概念二分图又称作二部图,是图论中的一种特殊模型。

设G=(V,{R})是一个无向图。

如顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属两个不同的子集。

则称图G为二分图。

二、最大匹配给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。

选择这样的边数最大的子集称为图的最大匹配问题(maximal matching problem)如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。

三、匈牙利算法求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。

但是这个算法的复杂度为边数的指数级函数。

因此,需要寻求一种更加高效的算法。

1、增广路的定义(也称增广轨或交错轨):若P是图G中一条连通两个未匹配顶点的路径,并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。

由增广路的定义可以推出下述三个结论:●P的路径长度必定为奇数,第一条边和最后一条边都不属于M。

●P经过取反操作可以得到一个更大的匹配M’。

●M为G的最大匹配当且仅当不存在相对于M的增广路径。

2、用增广路求最大匹配(称作匈牙利算法,匈牙利数学家Edmonds于1965年提出)。

算法轮廓:(1)置M为空(2)找出一条增广路径P,通过取反操作获得更大的匹配M’代替M(3)重复(2)操作直到找不出增广路径为止程序清单:Function find(k:integer):integer;var st,sf,i,j,t:integer;queue,father:array[1..100] of integer;beginqueue[1] := k; st := 1; sf := 1;fillchar(father,sizeof(father),0);repeatfor i:=1 to n doif (father[i]=0)and(a[queue[st],i]=1) thenbeginif match2[i]<>0 thenbegininc(sf);queue[sf] := match2[i];father[i] := queue[st];end elsebeginj := queue[st];while true dobegint := match1[j];match1[j] := i;match2[i] := j;if t = 0 then break;i := t; j := father[t];end;find := 1;exit;end;end;inc(st);until st>sf;find := 0;end;在主程序中调用下面的程序即可得出最大匹配数。

匈牙利匹配算法的原理

匈牙利匹配算法的原理

匈牙利匹配算法的原理匈牙利匹配算法(也被称为二分图匹配算法或者Kuhn-Munkres算法)是用于解决二分图最大匹配问题的经典算法。

该算法由匈牙利数学家Dénes Kőnig于1931年提出,并由James Munkres在1957年进行改进。

该算法的时间复杂度为O(V^3),其中V是图的顶点数。

匹配问题定义:给定一个二分图G=(X,Y,E),X和Y分别代表两个不相交的顶点集合,E表示连接X和Y的边集合。

图中的匹配是指一个边的集合M,其中任意两条边没有公共的顶点。

匹配的相关概念:1.可增广路径:在一个匹配中找到一条没有被占用的边,通过这条边可以将匹配中的边个数增加一个,即将不在匹配中的边添加进去。

2. 增广路径:一个可增广路径是一个交替序列P=v0e1v1e2v2...ekvk,其中v0属于X且不在匹配中,v1v2...vk属于Y且在匹配中,e1e2...ek在原图中的边。

3.增广轨:一个交替序列形如V0E1V1E2...EkVk,其中V0属于X且不在匹配中,V1V2...Vk属于Y且在匹配中,E1E2...Ek在原图中的边。

增广轨是一条路径的特例,它是一条从X到Y的交替序列。

1.初始时,所有的边都不在匹配中。

2.在X中选择一个点v0,如果v0已经在匹配中,则找到与v0相连的在Y中的顶点v1、如果v1不在匹配中,则(v0,v1)是可增广路径的第一条边。

3. 如果v1在匹配中,则找到与v1相连的在X中的顶点v2,判断v2是否在匹配中。

依此类推,直到找到一个不在匹配中的点vn。

4.此时,如果n是奇数,则(n-1)条边在匹配中,这意味着我们找到了一条增广路径。

如果n是偶数,则(n-1)条边在匹配中,需要进行进一步的处理。

5.如果n是偶数,则将匹配中的边和非匹配中的边进行颠倒,得到一个新的匹配。

6.对于颠倒后的匹配,我们再次从第2步开始,继续寻找增广路径。

7.重复步骤2到步骤6,直到找不到可增广路径为止,此时我们得到了最大匹配。

最大二分图匹配(匈牙利算法)

最大二分图匹配(匈牙利算法)

最大二分图匹配(匈牙利算法)二分图指的是这样一种图:其所有的顶点分成两个集合M和N,其中M或N中任意两个在同一集合中的点都不相连。

二分图匹配是指求出一组边,其中的顶点分别在两个集合中,并且任意两条边都没有相同的顶点,这组边叫做二分图的匹配,而所能得到的最大的边的个数,叫做最大匹配。

计算二分图的算法有网络流算法和匈牙利算法(目前就知道这两种),其中匈牙利算法是比较巧妙的,具体过程如下(转自组合数学):令g=(x,*,y)是一个二分图,其中x={x1,x2...},y={y1,y2,....}.令m为g中的任意匹配。

1。

将x的所有不与m的边关联的顶点表上¥,并称所有的顶点为未扫描的。

转到2。

2。

如果在上一步没有新的标记加到x的顶点上,则停,否则,转33。

当存在x被标记但未被扫描的顶点时,选择一个被标记但未被扫描的x的顶点,比如xi,用(xi)标记y 的所有顶点,这些顶点被不属于m且尚未标记的边连到xi。

现在顶点xi 是被扫描的。

如果不存在被标记但未被扫描的顶点,转4。

4。

如果在步骤3没有新的标记被标记到y的顶点上,则停,否则转5。

5。

当存在y被标记但未被扫描的顶点时。

选择y的一个被标记但未被扫描的顶点,比如yj,用(yj)标记x的顶点,这些顶点被属于m且尚未标记的边连到yj。

现在,顶点yj是被扫描的。

如果不存在被标记但未被扫描的顶点则转道2。

由于每一个顶点最多被标记一次且由于每一个顶点最多被扫描一次,本匹配算法在有限步内终止。

代码实现:bfs过程:#include<stdio.h>#include<string.h>main(){bool map[100][300];inti,i1,i2,num,num1,que[300],cou,stu,match1[100],match2[300],pqu e,p1,now,prev[300],n;scanf("%d",&n);for(i=0;i<n;i++){scanf("%d%d",&cou,&stu);memset(map,0,sizeof(map));for(i1=0;i1<cou;i1++){scanf("%d",&num);for(i2=0;i2<num;i2++){scanf("%d",&num1);map[i1][num1-1]=true;}}num=0;memset(match1,int(-1),sizeof(match1)); memset(match2,int(-1),sizeof(match2)); for(i1=0;i1<cou;i1++){p1=0;pque=0;for(i2=0;i2<stu;i2++){if(map[i1][i2]){prev[i2]=-1;que[pque++]=i2;}elseprev[i2]=-2;}while(p1<pque){now=que[p1];if(match2[now]==-1)break;p1++;for(i2=0;i2<stu;i2++){if(prev[i2]==-2&&map[match2[now]][i2]){prev[i2]=now;que[pque++]=i2;}}}if(p1==pque)continue;while(prev[now]>=0){match1[match2[prev[now]]]=now; match2[now]=match2[prev[now]]; now=prev[now];}match2[now]=i1;match1[i1]=now;num++;}if(num==cou)printf("YES\n");elseprintf("NO\n");}}dfs实现过程:#include<stdio.h>#include<string.h>#define MAX 100bool map[MAX][MAX],searched[MAX]; int prev[MAX],m,n;bool dfs(int data){int i,temp;for(i=0;i<m;i++){if(map[data][i]&&!searched[i]){searched[i]=true;temp=prev[i];prev[i]=data;if(temp==-1||dfs(temp))return true;prev[i]=temp;}}return false;}main(){int num,i,k,temp1,temp2,job;while(scanf("%d",&n)!=EOF&&n!=0) {scanf("%d%d",&m,&k);memset(map,0,sizeof(map));memset(prev,int(-1),sizeof(prev)); memset(searched,0,sizeof(searched));for(i=0;i<k;i++){scanf("%d%d%d",&job,&temp1,&temp2); if(temp1!=0&&temp2!=0)map[temp1][temp2]=true;}num=0;for(i=0;i<n;i++){memset(searched,0,sizeof(searched)); dfs(i);}for(i=0;i<m;i++){if(prev[i]!=-1)num++;}printf("%d\n",num);}}。

konig 定理

konig 定理

konig 定理
Konig定理是图论中的一个重要定理,它是由匈牙利数学家Dénes Konig在1936年首次证明的。

这个定理主要应用于二分图(bipartite graph)的研究中,二分图是一种特殊的图,其中所有的顶点都可以被分成两个互不相交的子集,并且每一条边都连接这两个子集中的一个顶点。

Konig定理的表述如下:在一个二分图中,最大匹配数等于最小点覆盖数。

换句话说,一个图中的最大匹配数等于覆盖该图中所有顶点所需的最小边数。

为了更好地理解这个定理,我们可以先了解一下什么是匹配和点覆盖。

在图论中,一个匹配是一个边的集合,其中任意两条边都不共享一个顶点。

最大匹配是指一个匹配中包含的边数最多。

点覆盖是指一个顶点的集合,该集合中的任意顶点都是边的一个端点。

最小点覆盖是指覆盖所有顶点所需的最小顶点数。

根据Konig定理,在二分图中,最大匹配数等于最小点覆盖数。

这个定理的证明过程需要使用到一些图论中的技巧和结论,例如Kőnig-Egerváry定理和Hall定理等。

这个定理的应用非常广泛,它可以用于解决一些组合优化问题,例如最大匹配问题和最小点覆盖问题等。

此外,Konig定理还可以用于证明一些其他图论中的结论,例如Kőnig-Egerváry定理和Hall定理等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档