计算结构力学桁架计算

合集下载

桁架的力法计算公式

桁架的力法计算公式

桁架的力法计算公式桁架是一种结构工程中常用的结构形式,它由多个杆件和节点组成,能够有效地承受外部作用力并传递力量。

在工程实践中,我们经常需要计算桁架结构中各个杆件的受力情况,这就需要运用桁架的力法计算公式来进行计算。

本文将介绍桁架的力法计算公式及其应用。

桁架的力法计算公式主要包括平衡方程和杆件内力计算公式。

在进行桁架结构的力学分析时,我们首先需要根据平衡条件建立平衡方程,然后利用杆件内力计算公式计算各个杆件的受力情况。

首先,我们来看一下桁架的平衡方程。

对于一个静定的桁架结构,我们可以利用平衡条件建立平衡方程。

平衡方程的基本形式是∑Fx=0,∑Fy=0,∑M=0,即桁架结构在平衡状态下受到的外部力和外部力矩的合力合力矩为零。

通过解平衡方程,我们可以得到桁架结构中各个节点的受力情况。

接下来,我们来看一下桁架结构中杆件的内力计算公式。

在桁架结构中,杆件受到的内力包括拉力和压力。

根据静力学的原理,我们可以利用杆件的几何形状和受力情况建立杆件内力计算公式。

对于一般的杆件,其内力计算公式为N=±P/A,其中N为杆件的内力,P为杆件受到的外部力,A为杆件的横截面积。

当杆件处于受拉状态时,内力为正;当杆件处于受压状态时,内力为负。

通过杆件内力计算公式,我们可以计算桁架结构中各个杆件的受力情况。

在实际工程中,桁架的力法计算公式是非常重要的。

通过运用桁架的力法计算公式,我们可以有效地分析桁架结构中各个杆件的受力情况,为工程设计和施工提供重要的参考依据。

在进行桁架结构的力学分析时,我们需要注意以下几点:首先,要准确地建立桁架结构的平衡方程。

在建立平衡方程时,需要考虑到桁架结构受到的外部力和外部力矩,确保平衡方程的准确性。

其次,要正确地应用杆件内力计算公式。

在计算桁架结构中各个杆件的受力情况时,需要根据杆件的几何形状和受力情况正确地应用杆件内力计算公式,确保计算结果的准确性。

最后,要综合考虑桁架结构的整体受力情况。

5 平面桁架结构力学

5 平面桁架结构力学

高层建筑中,通过斜撑,加强结构的抗风能力。同 时也起到了跨间支撑作用。
z
x
y
计算组合结构时应注意:
① 注意区分链杆(只受轴力)和梁式杆(受轴力、剪 力和弯矩);
② 前面关于桁架结点的一些特性对有梁式杆的结点不 在适用;
③ 一般先计算支座反力、链杆的轴力,然后计算梁式 杆的内力;
④ 取隔离体时,尽量不截断梁式杆。
例1、求图示平面桁架结构中指定杆件的内力。
1‘ 2‘ 3‘ 4‘ e
a
cd
b
4d d3
A 1 2 3 4 5
B
P PP 6d
VA 1.5P
(1) Na Nb
1‘ 2‘
4
Na
d 3
1 2 Nb
1.5P
P
Y 0 M 2 0
VB 1.5P
Na P VA 0.5P
X 形结点
3、零杆的特殊类型
(1)对称桁架受正对称外力时,如对称轴上K形结点无荷载作用, 则两根斜腹杆的轴力为零。
(2)对称桁架受反对称外力时,处在对称轴上的杆件为零杆。
P
P
1
2
P
P
1
N1 0 N2 0
N1 0
判断零杆
D
7 8 9
受力分析C时可以去掉零杆, 是否说该杆在结构中是可 有可无的?
Ⅲ—Ⅲ截面 FN1
FP
A
B
C
D
综上所求,得:
X 0 FN1 2FP
FN1 2FP,FN2 2 2FP, FN3 2FP,FN4 2FP
例:计算桁架中a杆的内力?
1.3P 0.5P
由结点T
NTD

静定桁架的内力计算

静定桁架的内力计算

第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。

桁架中各杆件的连接处称为节点。

由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。

房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。

图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。

本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。

在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。

满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。

分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。

一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。

由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。

例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。

图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F以及约束反力、、作用,列平衡方程并求解:,=0,2×-=0,=,+-2=0,=2-=(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。

第五章静定平面桁架(李廉锟_结构力学)全解

第五章静定平面桁架(李廉锟_结构力学)全解

除一杆外,其余均汇交于一点(力矩法)或均平行(投影法),则该杆
内力仍可首先求得。
返回
退出
02:31
§5-3 截面法
结构力学
示例1:试求图示桁架中杆EF、ED,CD,DG的内力。
截面如何选择?
退出
返回
02:31
§5-3 截面法
解: (1) 求出支座反力FA和FB。
结构力学
(2) 求下弦杆CD内力,利用I-I截面 ,力矩法 取EF和ED杆的交点E为矩心, CD杆内力臂为竖杆 高h,由力矩平衡方程∑ME=0,可求CD杆内力。
结构力学
退出
返回
02:31
§5-1 平面桁架的计算简图
二、按外型分类
1. 平行弦桁架
结构力学
2. 三角形桁架
3. 抛物线桁架
退出
返回
02:31
§5-1 平面桁架的计算简图
三、按几何组成分类
1. 简单桁架 (simple truss)
结构力学
2. 联合桁架 (combined truss)
3. 复杂桁架 (complicated truss)
1 F A
2 F
退出
返回
02:31
§5-2 结点法
结点法计算简化的途径:
结构力学
2.对称结构受对称荷载作用, 内力和反力均为对称:
受反对称荷载作用, 内力和反力均为反对称。
E 点无荷载,红色杆不受力 垂直对称轴的杆不受力 对称轴处的杆不受力
FAy FAy
FBy FBy
退出
返回
02:31
§5-3 截面法
退出
返回
02:31
§5-2 结点法
10 kN 5 kN 2m

结构力学静定平面桁架

结构力学静定平面桁架
三角形:内力分布不均
精品课件
5.6 组合结构 是指只承受轴力的二力杆和承受弯矩、剪力、轴 力的梁式杆组合而成的结构。如屋架等
钢筋混凝土
钢筋混凝土
型钢
E D C


E E
精品课件
型钢
例 计算图示组合结构的内力。
8kN
解:1)求支反力
AD
C
FAy F
E
B
MB 0 得
FBy G
2m
FAy=5kN
FBy=3kN
2.5 1.125 0.75
1.125
剪力与轴力
FS FYcosFHsin
M图( kN.m)
FN FYsinFHcos
精品s 课件 in 0 .083c5 o s0 .99
FS FY
FN
15 A
FH
2.5 1.74
剪力与轴力
FS FYcosFHsin FN FYsinFHcos
sin 0 .083c5 o s0 .99
FN
l
ly
FN

=
FX lx
= FY ly
3)、结点上两杆均为斜杆的杆件内力计算:
F1x B b
F1
F 如图,若仍用水平和竖向投影来求F1 F2, A 则需解联立方程,要避免解联立方程可用
h
F2
力矩平衡方程求解。
a
如以C为矩心,F1沿1杆在B点处分解为F1x,
C
F2x
d
则由
MC 0得: F1x=Fhd
由图(c)所示截面左侧隔离体求出截面截断的三根杆的轴 力后,即可依次按结点法求出所有杆的轴力。
精品课件
取截面II—II下为隔离体,见图(d)

工程力学32 静定平面桁架结构的内力计算

工程力学32 静定平面桁架结构的内力计算


12kN
12kN
结 构
3m 3
6kN D
F
J
6kN
L
的 内 力
FxA
AC E G
IK
B
4m 6
FyA
FyB
计 算 1.求支座反力
FxA 0 FyA 36kN FyB 36kN
2020/10/4
重庆工程职业技术学院
11
静定桁架
结 构
12kN 12kN
12kN H 12kN
12kN
力 学
3m 3
静 定
3、注意:

(1)一般结点上的未知力不能多余两个。
构 的
(2)可利用比例关系求解各轴力的铅直、水平分量。




2020/10/4
重庆工程职业技术学院
10
静定桁架
结 三、静定平面桁架的内力计算
构 (一)结点法

以一个结点为隔离体,用汇交力系的平衡方程求解

各杆的内力的方法。

12kN
12kN H 12kN
结 构 力 学
静 定 结 构 的 内 力 计 算
结 一、概述 构 力 学
静定桁架





主桁架




2020/10/4
重庆工程职业技术学院
2
结 一、概述 构
力 学
静定桁架
静 理想桁架的三点假设:


(1)所有的结点都是无摩擦的理想铰结点;

(2)各杆的轴线都是直线,并通过铰的中心;

(3)荷载和支座反力都作用在结点上。

结构力学第五章平面桁架详解

结构力学第五章平面桁架详解

1‘ 2‘ 3‘ 4‘ e
a
cd
b
4d d3
A 1 2 3 4 5
B
P PP 6d
VA 1.5P
(1) Na Nb
1‘ 2‘
4
Na
d 3
1 2 Nb
1.5P
P
Y 0 M 2 0
VB 1.5P
Na P VA 0.5P
Nb
4 3
d
1.5P 2d
0
Nb 2.25 P
1‘ 2‘ 3‘ 4‘ e
a
cd
b
A 1 2 3 4 5
P PP 6d
4d d3
B
(2) N c
VA 1.5P
Yc 1.5P P 0.5P
Nc
5 4
Yc
0.625P
VB 1.5P
4‘ e
d
Nc
B
45
P 1.5P
A VA 1.5P
1‘
2‘
3‘
4‘
e
a
cd
b
12345 P P P 6d
4d d3
B
VB 1.5P
5-1 桁架的特点和组成分类
桁架是由链杆组成的格构体系,当荷载仅作用在结点上时,
杆件仅承受轴向力,截面上只有均匀分布的正应力,是最理想
的一种结构形式。
上弦杆
理想桁架:
腹杆
下弦杆
(1)桁架的结点都是光滑无摩擦的铰结点; (2)各杆的轴线都是直线,并通过铰的中心; (3)荷载和支座反力都作用在结点上
主应力、次应力
桁架的分类(按几何构造) 1、简单桁架
2、联合桁架
3、复杂桁架
§5-2 结点法
分析时的注意事项:

结构力学——静定桁架

结构力学——静定桁架

静定桁架的稳定性分析方法
静定桁架的稳定性分析原理
静定桁架的稳定性分析方法: 能量法、力法、位移法等
静定桁架的定义和分类
静定桁架的稳定性提高静定桁架稳定性的措施
增加桁架的刚度:通过增加桁架的截面尺寸、材料强度等方法提高桁架的刚度,从而提高桁架的 稳定性。
静定桁架的杆 件受力可以分 为轴向力、剪 力和弯矩三种, 其中轴向力和 剪力是主要的
受力形式。
静定桁架的受 力特性还与桁 架的支座条件 有关,不同的 支座条件会影 响桁架的受力 分布和变形情
况。
03
静定桁架的组成与分类
静定桁架的基本组成
桁架:由杆件组成的结构,用于 承受荷载
荷载:施加在桁架上的力,包括 集中荷载和分布荷载
优化桁架制造工艺:通过优化桁架的制造工艺,提高桁架 的质量和生产效率
优化桁架安装工艺:通过优化桁架的安装工艺,提高桁架 的安装质量和效率
THNK YOU
汇报人:XX
静定桁架的应力计算方法: 截面法、图乘法、矩阵位移 法等
矩阵位移法:利用矩阵位移 法计算桁架的位移和内力,
适用于复杂桁架结构
静定桁架的变形计算
变形计算的基本原理:利用静定桁架的平衡条件求解 变形计算的方法:图乘法、解析法、有限元法等 变形计算的应用:预测桁架的变形情况,优化桁架设计 变形计算的注意事项:考虑桁架的材质、截面尺寸、载荷等因素的影响
静定桁架的内力分布规律
桁架的内力主要由轴力和剪力组成
轴力沿桁架的轴线方向分布,剪力沿桁架的横截面方向分布
桁架的内力分布与桁架的杆件布置、荷载分布等因素有关
通过静定桁架的内力分析,可以确定桁架各杆件的内力大小和方向,为桁架的设计和优 化提供依据
内力分析中的注意事项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 -0.0016793 0.0036647 8 -0.0020633 0.0029770 9 -0.0024473 0.0000000
10 -0.0005565 0.0029770 11 -0.0008275 0.0033570 12 -0.0012993 0.0040447
13 -0.0014405 0.0041802 14 -0.0009940 0.0046211 15 -0.0020536 0.0033423
安徽建筑大学
班级:12土木2班
学号:12201010212
姓名:刘厚祥
课程:计算结构力学
指导老师:苏少卿
1.题目
如图所示,桁架及个尺寸所受荷载见图,其中F1=F3=10N,F2=15N,F4=20N,EA=6500N/m.求各节点荷载,支座反力,节点位移和各杆的轴力。
2.节点与杆件的编号图示。
3.数据输入
6 7 1 6 12 1 7 8 1 7 10 1 7 11 1 7 12 1 8 9 1 8 10 1 9 10 1 10 11 1 11 12 1 11 13 1 13 15 1
14 15 1 15 16 1
1193
6500
15 2 -10 13 2 -10 11 2 -10 9 1 -20
平面桁架结构分析
16 -0.0017254 0.0023664
杆件轴力:
杆件 结点-A 结点-B 杆件轴力
1 1 2 -1.4731
2 1 16 2.0833
3 2 3 -1.4731
4 2 16 0.0308
5 3 4 -2.4885
6 3 14 1.4142
7 3 15 -0.9846
8 3 16 -0.0218
7 6.000 0.000 8 7.000 0.000 9 8.000 0.000
10 7.000 1.000 11 6.000 2.000 12 5.000 1.000
13 4.000 2.000 14 3.000 1.000 15 2.000 2.000
16 1.000 1.000
杆件定义:
杆件 起点 终点 分组 杆件 起点 终点 分组 杆件 起点 终点 分组 杆件 起点 终点 分组
9 4 5 -2.4885
10 4 14 0.0000
11 5 6 -1.4962
12 5 12 -0.7017
13 5 13 0.0000
14 5 14 0.7017
15 6 7 -1.4962
16 6 12 0.0000
17 7 8 -2.4962
18 7 10 1.4142
19 7 11 -1.0000
21 8 9 1 22 8 10 1 23 9 10 1 24 10 11 1
25 11 12 1 26 11 13 1 27 13 15 1 28 14 15 1
29 15 16 1
抗拉刚度:
6500.000
支座信息:
结点 X方向 Y方向 结点 X方向 Y方向 结点 X方向 Y方向
1 有 有 9 无 有
20 7 12 0.0000
21 8 9 -2.4962
22 8 10 0.0000
23 9 10 3.5301
24 10 11 2.1159
25 11 12 -0.7017
26 11 13 1.9923
27 13 15 1.9923
28 14 15 -0.7125
29 15 16 2.1050
1 1 2 1 2 1 16 1 3 2 3 1 4 2 16 1
5 3 4 1 6 3 14 1 7 3 15 1 8 3 16 1
9 4 5 1 10 4 14 1 11 5 6 1 12 5 12 1
13 5 13 1 14 5 14 1 15 6 7 1 16 6 12 1
17 7 8 1 18 7 10 1 19 7 11 1 20 7 12 1
结点荷载:
15.000 2.000 -10.000 13.000 2.000 -10.000
11.000 2..52692
9 -2.49615
==========================================
ΣX= 0.0000 ΣY= 6.0308
16 29 2 1 4
0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 7 1 6 2 5 1 4 2 3 1 2 2 1 1
1 2 1 1 16 1 2 3 1 2 16 1 3 4 1 3 14 1 3 15 1 3 16 1 4 5 1 4 14 1 5 6 1 5 12 1 5 13 1 5 14 1
结点位移
结点 U V 结点 U V 结点 U V
1 0.0000000 0.0000000 2 -0.0002266 0.0023617 3 -0.0004533 0.0036452
4 -0.0008361 0.0046211 5 -0.0012189 0.0041802 6 -0.0014491 0.0040447
结点数NP= 16
杆件数NE= 29
抗拉刚度分组数NEA= 1
支座结点个数NSUP= 2
结点荷载数NPJ= 4
结点坐标:
结点 X坐标 Y坐标 结点 X坐标 Y坐标 结点 X坐标 Y坐标
1 0.000 0.000 2 1.000 0.000 3 2.000 0.000
4 3.000 0.000 5 4.000 0.000 6 5.000 0.000
相关文档
最新文档