钢筋混凝土受冲切构件承载力计算

合集下载

冲切和剪切承载力的区别对比

冲切和剪切承载力的区别对比

在进行混凝土构件设计,如板、基础、承台,经常会遇到是否要同时验算冲切和剪切的问题,规范针对不同的构件规定了必须验算的内容,但是对冲切和剪切概念上,仍有很多地方不甚清楚。

出于稳妥考虑,我们对冲切和剪切的概念和具体验算的选择做进一步的说明。

一、常见规范中对冲切和剪切承载力验算的条款下表总结了常见规范中对冲切和剪切承载力验算的条款:表一常见规范对冲切和剪切承载力的验算要求综合各现行规范,对验算冲切承载力的同时,是否要做抗剪验算,有如下结论:1.对普通板类构件,各规范未明确规定需要验算剪切承载力;2.对无筋扩展基础,各规范均要求对基地反力大于300Kpa的情况验算受剪;3.对扩展基础,国家地基规范在条文说明8.2.7和附录S中提到了柱下独立基础的斜截面受剪折算宽度,可见是应该做抗剪验算的;广东省地基基础规范9.2.7,明确要求验算墙下条基的受剪承载力,要求附加条件验算柱下矩形基础受剪承载力;4.对桩承台和梁板式筏板基础,各规范均明确要求同时验算剪切承载力。

5.由上可见,通常抗剪验算都是没法省略的。

各规范对冲切和剪切承载力验算的荷载取值、计算截面略有差别,选用公式时宜慎重。

二、对常见混凝土构件关于剪切和冲切对比的内容收集表二冲切和剪切的若干对比三、广东省建筑地基基础设计规范对冲切和剪切问题的看法广东省建筑地基基础设计规范对冲切和剪切问题的描述,参见条文说明9.2.7,摘录如下:“一般说来,柱下单独基础板双向受力,墙下条形基础板单向受力,冲切和剪切,其破坏机理类似,承载力均受混凝土的抗拉强度所控制。

不同的是剪切破坏面可视为平面,而冲切破坏面则可视为空间曲面,如截圆锥、截角锥或棱台及其他不规则曲面等。

故剪切又称单向剪切(one way sherar);冲切有时候也称冲剪,又称双向剪切(punching, two way shear)。

对于双向受力的柱下单独基础应验算控制截面的受冲切承载力,必要时应验算抗剪承载力;对于单向受力的墙下条形基础只需验算控制截面的受剪承载力……“实际工程中有这种情况,由于场地或者柱网布置所限,柱下独立基础长边与短边之比大于2,基础底板近乎单向受力,应验算基础的受剪切承载力。

国内外规范关于钢筋混凝土板冲切承载力的比较

国内外规范关于钢筋混凝土板冲切承载力的比较

国内外规范关于钢筋混凝土板冲切承载力的比较陈建伟;边瑾靓;苏幼坡;崔芳芮【摘要】由于钢筋混凝土板抗冲切破坏机理与性能的复杂性,各国规范关于冲切计算表达形式各异.文中选取我国GB 50010-2010规范与国外5种设计规范(ACI 318-08,EC4,CSA A23.3-04,DIN 1045-1,JSCE 15)进行对比分析.首先对各国钢筋混凝土板冲切承载力设计的表达式进行参数分析,结合算例进行对比(由于德国规范DIN1045-1与欧洲规范EC4差异性很小,算例选用两者中的欧洲规范).结果表明,我国规范中未考虑配筋率这一重要指标,建议参照相关规范,予以完善修订.【期刊名称】《河北联合大学学报(自然科学版)》【年(卷),期】2015(037)004【总页数】9页(P74-82)【关键词】冲切承载力;计算方法;板柱节点;设计规范【作者】陈建伟;边瑾靓;苏幼坡;崔芳芮【作者单位】华北理工大学建筑工程学院,河北唐山063009;河北省地震工程研究中心,河北唐山063009;华北理工大学建筑工程学院,河北唐山063009;华北理工大学建筑工程学院,河北唐山063009;河北省地震工程研究中心,河北唐山063009;华北理工大学建筑工程学院,河北唐山063009【正文语种】中文【中图分类】TU375.2板柱结构是由楼板和柱子组成的承重体系,与一般的肋梁楼盖相比,由于室内楼板下没有梁,不但减少了模板工程量,加快了施工的速度,并且采用了较低的楼层高度,相应地降低了建筑物的总高度,减少了房屋的建造和维护费用,具有良好的综合经济效益。

板柱结构发展和在实际工程应用中,发生了很多工程事故,这些事故是由于混凝土冲切强度不足而沿闭合表面在板内发生锥形的斜截面冲切破坏。

各国都给出了相应地设计方法去防止板的冲切破坏。

这些方法主要是以试验研究的结果为基础,大多数的混凝土结构设计规范对于受冲切承载力计算上基本采用半经验半理论的算法,缺乏对破坏机理的足够认识,致使各国规范对于冲切设计表达式形式各异。

房屋建筑混凝土结构中HRB500级钢筋应用研究

房屋建筑混凝土结构中HRB500级钢筋应用研究

第 39 卷第 5 期2023 年10 月结构工程师Structural Engineers Vol. 39 , No. 5Oct. 2023房屋建筑混凝土结构中HRB500级钢筋应用研究马宏睿1,*崔明哲1储德文1张永青2时继瑞1姜宇鑫1张秦1(1.中国建筑科学研究院有限公司,北京 100013; 2.中信金属股份有限公司, 100004)摘要HRB500高强钢筋屈服强度高,在建筑工程中合理应用可减少钢筋使用量、节约工程物资和人力投入、显著改善梁柱节点钢筋密集的情况,还可有效促进钢铁行业的节能减排。

通过对现行结构设计规范中涉及HRB500钢筋的规定进行梳理,对HRB500在建筑结构中应用的优势条件和制约因素进行分析;选取8栋多高层钢筋混凝土结构建筑实际案例,保持构件截面和混凝土强度等级不变,采用结构设计软件,将原设计中HRB400钢筋替换为HRB500钢筋进行重新设计,研究采用HRB500在建筑工程中应用中对材料用量、工程造价以及节能减排等方面影响,得到HRB500钢筋在不同结构形式,不同部位的适用性结论,可为工程中HRB500高强钢筋的设计提供参考。

关键词HRB500钢筋,经济性分析,钢筋混凝土结构,节能减排Research on Application of HRB500 Rebar in ConcreteStructures BuildingsMA Hongrui1,*CUI Mingzhe1CHU Dewen1ZHANG Yongqing2SHI Jirui1JIANG Yuxin1ZHANG Qin1(1.China Academy of Building Research, Beijing 100013, China; 2.CITIC Metal Co.,Ltd., Beijing 100004, China)Abstract HRB500 rebars with high yield strength and rational application in building structures can reduce the amount of reinforcement and,material and labor, and the reinforcement congestion at beam-column joints can be significantly improved. The optimized application of HRB500 can promote energy conservation and emission reduction in steel and iron industry. In this paper,the provisions of HRB500 rebar in current structural design codes are summarized, and the advantages and limitations of HRB500 in building structures are analyzed. Eight actual cases of multi-story or high-rise concrete buildings are selected and redesigned using structural design software with HRB500 rebars,with member sections and concrete strength grades unchanged. The influence of HRB500 on material consumption,project cost,energy conservation and emission reduction in the application of HRB500 in construction projects is studied,and the applicability conclusion of HRB500 reinforcement in different structural types and parts is obtained,which can provide reference for HRB500 high-strength reinforcement in structural design.Keywords HRB500 rebar, economic effect, reinforced concrete structure, energy conservation and emission reduetion收稿日期:2022-06-29*联系作者:马宏睿(1978-),女,河北沧州人,副研究员,主要从事结构计算分析与设计工作。

冲切与局部承压承载力验算.

冲切与局部承压承载力验算.

冲切与局部承压承载力验算请选择章节绪论第1章钢筋砼结构的力学性能第2章钢筋混凝土结构的基本计算原则第3章钢筋砼受弯构件的正截面强度第4章钢筋砼受弯构件的斜截面强度第5章钢筋混凝土梁承载能力校核与构造要求第6章钢筋混凝土受压构件承载能力计算第7章钢筋混凝土受扭及弯扭构件第8章钢筋混凝土受拉构件的强度第9章冲切与局部承压承载力验算第10章受弯构件的裂缝与变形验算第11章预应力混凝土的基本概念及其材料第12章预应力混凝土受弯构件的应力损失第13章预应力混凝土受弯构件的设计与计算第14章预应力混凝土简支梁设计第15章部分预应力混凝土受弯构件第一节冲切承载力计算一、概述二、无腹筋板的冲切承载能力计算三、有腹筋板的冲切承载能力计算四、矩形截面墩柱的扩大基础一、概述(一)破坏形态如图。

(二)构造措施1、采用增加板的厚度或柱顶加腋的方法,如图所示。

2、配置腹筋(箍筋和弯起钢筋)提高抗冲切能力。

如图所示。

3、腹筋配置要求(1)板的厚度不应小于150mm,板的厚度太小,腹筋无法设置;(2)箍筋直径不应小于8mm,其间距不应大于1/3h0。

箍筋应采用封闭式,并箍住架立钢筋;按计算所需的箍筋,应配置在冲切破坏锥体范围内,此外,应以等直径和等间距的箍筋自冲切破坏斜截面向外延伸配置在不小于0.5h0范围内(每侧布设箍筋的长度≥1.5h0)。

(3)弯起钢筋直径不应小于12mm,弯起角根据板的厚度采用30~45度,每一方向不应少于五根;弯起钢筋的倾斜段应与冲切破坏斜截面相交,其交点应在离集中反力作用面积周边以外1/2h~2/3h范围内。

二、无腹筋板的冲切承载能力计算(一)计算简图计算简图如图所示。

(二)基本公式k为修正系数,取k=0.7,代入前式,并考虑截面高度尺寸效应,得无腹筋板抗冲切承载力计算基本公式:(三)计算方法已知板面荷载设计值,板的厚度,柱截面尺寸,混凝土强度等级,验算冲切承载能力,可按下列步骤进行: 1.求冲切力Fld 2.按式计算 3.代入式进行抗冲切验算。

理正材料抗力计算表格

理正材料抗力计算表格

理正材料抗力计算表格篇一: 材料抗力刚度和材料抗力与支护形式和边界条件都有关系,在单元计算中,需要用户根据结构形式自己确定钢管所提供的抗力(材料抗力)的大小。

T=©E AfcT=©E AfyT—内撑的材料抗力A—内撑的截面积Fc—混凝土抗压强度设计值Fy—钢材抗压强度设计值①一与内撑长细比有关的调整系数实际上倾覆计算是由支撑内力与崁固深度两个条件决定的。

篇二: 钢筋混凝土抗力计算钢筋混凝土抗力计算、配筋和构造要求等需要协调统一的几个问题作者: 李进霞、, 、-前言1钢筋混凝土扩展基础的设计方法具体对包括扩展基础在内的各类基础设计作出了具体的规定。

钢筋混凝土扩展基础的设计应包括下列内容,即:1)按单向受剪承载力或(和)受冲切承载力计算,确定无腹筋扩展基础的验算截面有效高度h。

; 根据环境类别选用与混凝土强度等级相应的混凝土保护层厚度。

由此确定截面高度h;2)按正截面受弯承载力计算,确定独立基础底部、丫轴两个方向的纵向受力钢筋的截面面积A。

、A? 或条形基础的配筋;3)对扩展基础提出几何尺寸、材料和配筋等的构造要求。

上述两本规范对扩展基础设计内容的异同点大致是:1)受冲切承载力计算。

无论是基底反力(作用效应)设计值和受冲切承载力(抗力)设计值的取值,两本规范协调一88 Industrial Construction Vo1(35 ,No(2,2005致;在底板反力由柱根的弯矩设计值| 】If 和轴压力设计值(?产生的条件下,均将受冲切计算简化为类似于单向受剪承载力的计算方法。

2)单向受剪承载力计算。

“规范GB 50010”对无腹筋的一般(均布荷载为主)板类受弯构件的受剪承载力抗力设计值公式是新增的内容,“规范GB 50007”同样采纳; 但在剪力(作用效应)设计值的取值上,前者取板跨内的最大剪力设计值或支2座边缘处的剪力设计值,后者取离支座(或柱)边缘h 处的剪力设计值。

3)构造配筋要求。

新浇混凝土梁截面计算书

新浇混凝土梁截面计算书

新浇混凝土梁(550*1000)梁截面计算书计算依据:1、《建筑施工模板安全技术规范》JGJ162-20082、《混凝土结构设计规范》GB 50010-20103、《建筑结构荷载规范》GB 50009-20124、《钢结构设计规范》GB 50017-2003一、工程属性平面图立面图四、面板验算W=bh2/6=1000×14×14/6=32666.667mm3,I=bh3/12=1000×14×14×14/12=228666.667mm4q1=0.9×max[1.2(G1k+(G2k+G3k)×h)+1.4Q2k,1.35(G1k+(G2k+G3k)×h)+1.4ψcQ2k]×b=0.9×max[1.2×(0.1+(24+1.5)×1)+1.4×2,1.35×(0.1+(24+1.5)×1)+1.4×0.7×2]×1=32.868kN/mq1静=0.9×1.35×[G1k+(G2k+G3k)×h]×b=0.9×1.35×[0.1+(24+1.5)×1]×1=31.104kN/mq1活=0.9×1.4×0.7×Q2k×b=0.9×1.4×0.7×2×1=1.764kN/mq2=[1×(G1k+(G2k+G3k)×h)]×b=[1×(0.1+(24+1.5)×1)]×1=25.6kN/m计算简图如下:1、强度验算Mmax =0.125q1L2=0.125×32.868×0.2752=0.311kN·mσ=Mmax/W=0.311×106/32666.667=9.511N/mm2≤[f]=13N/mm2 满足要求!2、挠度验算νmax =0.521q2L4/(100EI)=0.521×25.6×2754/(100×9000×228666.667)=0.371mm≤[ν]=L/400=275/400=0.688mm满足要求!3、支座反力计算设计值(承载能力极限状态)R1=R3=0.375q1静L+0.437q1活L=0.375×31.104×0.275+0.437×1.764×0.275=3.42kNR2=1.25q1L=1.25×32.868×0.275=11.298kN标准值(正常使用极限状态)R1'=R3'=0.375q2L=0.375×25.6×0.275=2.64kNR2'=1.25q2L=1.25×25.6×0.275=8.8kN五、小梁验算梁底面板传递给左边小梁线荷载:q1左=R1/b=3.42/1=3.42kN/m梁底面板传递给中间小梁最大线荷载:q1中=Max[R2]/b = Max[11.298]/1=11.298kN/m梁底面板传递给右边小梁线荷载:q1右=R3/b=3.42/1=3.42kN/m小梁自重:q2=0.9×1.35×(0.3-0.1)×0.55/2 =0.067kN/m梁左侧模板传递给左边小梁荷载q3左=0.9×1.35×0.5×(1-0.3)=0.425kN/m梁右侧模板传递给右边小梁荷载q3右=0.9×1.35×0.5×(1-0.3)=0.425kN/m梁左侧楼板传递给左边小梁荷载q4左=0.9×Max[1.2×(0.5+(24+1.1)×0.3)+1.4×2,1.35×(0.5+(24+1.1)×0.3)+1.4×0.7×2]×(0.6-0.55/2)/2×1=1.872kN/m梁右侧楼板传递给右边小梁荷载q4右=0.9×Max[1.2×(0.5+(24+1.1)×0.3)+1.4×2,1.35×(0.5+(24+1.1)×0.3)+1.4×0.7×2]×((1.2-0.6)-0.55/2)/2×1=1.872kN/m左侧小梁荷载q左=q1左+q2+q3左+q4左=3.42+0.067+0.425+1.872=5.784kN/m中间小梁荷载q中= q1中+ q2=11.298+0.067=11.365kN/m右侧小梁荷载q右=q1右+q2+q3右+q4右=3.42+0.067+0.425+1.872=5.784kN/m小梁最大荷载q=Max[q左,q中,q右]=Max[5.784,11.365,5.784]=11.365kN/m正常使用极限状态:梁底面板传递给左边小梁线荷载:q1左'=R1'/b=2.64/1=2.64kN/m梁底面板传递给中间小梁最大线荷载:q1中'=Max[R2']/b = Max[8.8]/1=8.8kN/m梁底面板传递给右边小梁线荷载:q1右'=R3'/b=2.64/1=2.64kN/m小梁自重:q2'=1×(0.3-0.1)×0.55/2 =0.055kN/m梁左侧模板传递给左边小梁荷载q3左'=1×0.5×(1-0.3)=0.35kN/m梁右侧模板传递给右边小梁荷载q3右'=1×0.5×(1-0.3)=0.35kN/m梁左侧楼板传递给左边小梁荷载q4左'=[1×(0.5+(24+1.1)×0.3)]×(0.6-0.55/2)/2×1=1.305kN/m梁右侧楼板传递给右边小梁荷载q4右'=[1×(0.5+(24+1.1)×0.3)]×((1.2-0.6)-0.55/2)/2×1=1.305kN/m左侧小梁荷载q左'=q1左'+q2'+q3左'+q4左'=2.64+0.055+0.35+1.305=4.35kN/m中间小梁荷载q中'= q1中'+ q2'=8.8+0.055=8.855kN/m右侧小梁荷载q右'=q1右'+q2'+q3右'+q4右' =2.64+0.055+0.35+1.305=4.35kN/m小梁最大荷载q'=Max[q左',q中',q右']=Max[4.35,8.855,4.35]=8.855kN/m为简化计算,按简支梁和悬臂梁分别计算,如下图:1、抗弯验算Mmax =max[0.125ql12,0.5ql22]=max[0.125×11.365×1.22,0.5×11.365×0.22]=2.046kN·mσ=Mmax/W=2.046×106/11410=179.29N/mm2≤[f]=310N/mm2 满足要求!2、抗剪验算Vmax =max[0.5ql1,ql2]=max[0.5×11.365×1.2,11.365×0.2]=6.819kNτmax =Vmax/(8Izδ)[bh2-(b-δ)h2]=6.819×1000×[50×702-(50-6)×642]/(8×399300×6)=23.046N/mm2≤[τ]=180N/mm2 满足要求!3、挠度验算ν1=5q'l14/(384EI)=5×8.855×12004/(384×206000×39.93×104)=2.907mm≤[ν]=l1/400=1200/400=3mmν2=q'l24/(8EI)=8.855×2004/(8×206000×39.93×104)=0.022mm≤[ν]=2l2/400=2×200/400=1mm满足要求!4、支座反力计算承载能力极限状态Rmax =[qL1,0.5qL1+qL2]=max[11.365×1.2,0.5×11.365×1.2+11.365×0.2]=13.638kN同理可得:梁底支撑小梁所受最大支座反力依次为R1=6.941kN,R2=13.638kN,R3=6.941kN正常使用极限状态Rmax '=[q'L1,0.5q'L1+q'L2]=max[8.855×1.2,0.5×8.855×1.2+8.855×0.2]=10.626kN同理可得:梁底支撑小梁所受最大支座反力依次为R1'=5.22kN,R2'=10.626kN,R3'=5.22kN六、主梁验算1、抗弯验算主梁弯矩图(kN·m)σ=M/W=0.797×106/4490=177.535N/mm2≤[f]=205N/mm2 max满足要求!2、抗剪验算主梁剪力图(kN) Vmax=5.091kNτmax =2Vmax/A=2×5.091×1000/424=24.012N/mm2≤[τ]=125N/mm2满足要求!3、挠度验算主梁变形图(mm) νmax=0.444mm≤[ν]=L/400=600/400=1.5mm 满足要求!4、支座反力计算承载能力极限状态支座反力依次为R1=1.85kN,R2=23.819kN,R3=1.851kN七、可调托座验算两侧立柱最大受力N=max[R1,R3]=max[1.85,1.851]=1.851kN≤0.67×8=5.36kN单扣件在扭矩达到40~65N·m且无质量缺陷的情况下,单扣件能满足要求!2、可调托座验算可调托座最大受力N=max[R2]=23.819kN≤[N]=30kN满足要求!八、立柱验算l=h=1500mmλ=l/i=1500/15.9=94.34≤[λ]=150长细比满足要求!查表得,φ=0.6342、稳定性计算R1=1.85kN,R2=23.819kN,R3=1.851kN立柱最大受力N=max[R1+N边1,R2,R3+N边2]+0.9×1.35×0.1×(4-1)=max[1.85+0.9×max[1.2×(0.5+(24+1.1)×0.3)+1.4×1,1.35×(0.5+(24+1.1)×0.3)+0.7×1.4×1]×(1.2+0.6-0.55/2)/2×1.2,23.819,1.851+0.9×max[1.2×(0.5+(24+1.1)×0.3)+1.4×1,1.35×(0.5+(24+1.1)×0.3)+0.7×1.4×1]×(1.2+1.2-0.6-0.55/2)/2×1.2]+0.365=24.183kNf=N/(φA)=24.183×103/(0.634×424)=89.963N/mm2≤[f]=205N/mm2满足要求!九、高宽比验算根据《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 第6.9.7:支架高宽比不应大于3H/B=4/8.4=0.476≤3满足要求,不需要进行抗倾覆验算!十、立柱支承面承载力验算11、受冲切承载力计算根据《混凝土结构设计规范》GB50010-2010第6.5.1条规定,见下表h t0um =2[(a+h)+(b+h)]=800mmF=(0.7βh ft+0.25σpc,m)ηumh=(0.7×1×0.858+0.25×0)×1×800×100/1000=48.048kN≥F1=24.183kN满足要求!2、局部受压承载力计算根据《混凝土结构设计规范》GB50010-2010第6.6.1条规定,见下表c cβl =(Ab/Al)1/2=[(a+2b)×(b+2b)/(ab)]1/2=[(300)×(300)/(100×100)]1/2=3,Aln=ab=10000mm2F=1.35βc βlfcAln=1.35×1×3×7.488×10000/1000=303.264kN≥F1=24.183kN满足要求!。

板的冲切承载力验算

板的冲切承载力验算

结构构件计算书
板的冲切承载力验算
项目名称_____________日期_____________
设计者_____________校对者_____________
一、构件编号: B-1
二、依据规范:
《混凝土结构设计规范》 (GB 50010-2002)
三、计算参数
1.几何参数:
柱的截面直径: d=48mm
板的截面高度: h=110mm
板的截面有效高度: ho=90mm
2.材料信息:
混凝土强度等级: C35 ft=1.57N/mm2
3.荷载信息:
局部荷载设计值: Fl=30.000kN
4.其他信息:
结构重要性系数: γo=0.9
四、计算过程
1.计算βs:
βs=2.000
2.确定板柱结构中柱类型的影响系数αs:
对于中柱αs=40。

3.计算临界截面的周长Um:
Um=π(d+ho)=π(48+90)=434mm
4.计算影响系数η:
η1=0.4+1.2/βs=0.4+1.2/2.000=1.000
η2=0.5+αs*ho/(4*Um)=0.5+40*90/(4*434)=2.576
η=min(η1, η2)=min(1.000,2.576)=1.000
5.计算截面高度影响系数βh:
h=110≤800,取βh=1.0。

6.验算冲切承载力(不配筋):
0.7*βh*ft*η*Um*ho=0.7*1.0*1.57*1.000*434*90=42.881kN
γo*Fl=27.000kN≤0.7*βh*ft*η*Um*ho=42.881kN,冲切承载力满足规范要求。

第1页,共1页。

抗冲切验算部分

抗冲切验算部分

承台抗冲切验算所有承台厚度取 1.2m ,近似取钢筋混凝土保护层厚度 50mm ,则0h 1150mm = 。

1.承台受柱冲切承载力验算根据《建筑桩基技术规范》 (JGJ94-2008),冲切破坏锥体应采用自柱(墙)边或承台变阶处至相应桩顶边缘连线所构成的锥体,锥体斜面与承台底面之夹角不应小于45°对于柱下两桩承台,宜按深受弯构件( lo/h<5.0, lo = 1.15 ln , ln 为两桩净距) 计算受弯、 受剪承载力, 不需要进行受冲切承载力计算。

为安全起见,以下仍然将两桩承台纳入冲切承载力验算。

对于柱下矩形独立承台受柱冲切的承载力可按下列公式计算(图5.9.7):[]0)()(2h f a h a b F t hp ox c oy oy c ox l βββ+++≤∑-=i l Q F F式中 l F ——不计承台及其上土重,在荷载效应基本组合下作用于冲切破坏锥体上的 冲切力设计值;x 0β、y 0β—— —由公式2.084.00+=λβ求得,000/h a x x =λ,000/h a y y =λ;x 0λ、y 0λ 均应满足0.25~1.0的要求;c h 、c b —— 分别为x 、y 方向的柱截面的边长;hp β——承台受冲切承载力截面高度影响系数,当h ≤800mm 时,βhp 取1.0, h≥2000mm 时,βhp 取0.9,其间按线性内插法取值;oxa 、oya ——分别为x 、y 方向柱边离最近桩边的水平距离。

柱对承台冲切力:对CT1 ,l k F 3510kN 1.35F == 对CT2 ,l k F 5130kN 1.35F ==对CT3,l k F 2430kN 1.35F ==经验算,承台均满足冲切承载力要求。

计算过程见下表。

注:(1)对CT1,CT3,0x c a (900h )/2=- , 0y c a (1000b )/2=- (2)对CT2, 0y c 0x 0x10x2a 450b /2,a (a a )/2=-=+其中0x1c c a 14232/3225h /2723.7h /2=⨯--=-,0x2c c a 14231/3225250h /2949.3h /2=⨯++-=-x 0β:由0x10x2a ,a 计算得到的0β取平均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Icx
0 y M unb,yay
Icy
③当考虑不同的荷载组合时 应取其中的较大值作为板柱节点受冲切承载力 计算用的等效集中反力设计值
与等效集中荷载 F1,eq 有关参数的计算: ①中柱 6
2h0
am
(
at 2
)2
a AB
aCD
at 2
0
1
1
1
2
3
hc h0 b h0
2h0 am
( at 2
)2
a AB
aCD
at 2
aCD at a AB
eg 0
0
1 1
2
3
1
hc h0 bc h0 / 2
③角柱处 (d)图:
Ic
h0 at3 12
h0
am
a
2 AB
h0
at
(
at 2
aAB )2
a AB
at2 2(am at )
aCD at a AB
eg
aCD
柱支承无梁楼板、无梁楼盖、水池顶盖、柱下独 立基础、无梁平板式片筏基础等
8.2 冲切破坏特征
1、冲切破坏的试验分类:
1)集中力的反力只沿板周边作用 2)集中力的反力满布板面
2、冲切破坏特征:
正截面裂缝较细,径向裂缝多而宽,无明显主裂缝,挠度较 小。破坏表现为柱头连同截锥体突然从余部错动般冲脱,并 在板的受拉面形成一圈撕开状裂痕,在挠度陡增时荷载骤降, 是一种脆性破坏。
8.3 影响冲切承载力的因素
1、材料性能
1)砼强度:冲切承载力
V

f
2/ cu
3
成正比,即
v
f 2/3 cu
2)纵向配筋:纵向配筋量加大,抗剪承载力提高
2、几何特征:
1)板柱尺寸:冲切破坏荷载与柱截面尺寸约成正比,与有效 板厚呈指数大于1的幂函数关系
2)板柱形状:圆柱截面构件的冲切承载力比矩形截面构件的 抗冲切承载力大
0.4 kN/m2
20mm厚混合砂浆抹面
0.34 kN/m2
结构自重4.74 kN/m2 ×1.2 =5.69 kN/m2
楼面荷载 7.8 kN/m2 ×1.3 =10.14 kN/m2
荷载设计值总计
p=15.83 kN/m2
有效板厚h0=160-25=135mm (按两个方向平均)
计算截面周长μm=4 ×(1000+135)=4540mm
3:作用条件
主动约束﹙无关约束﹚ 1)边界约束:
被动约束﹙相关约束﹚ 抗冲切承载力随主动约束的加强而提高;当板自身约束较弱 时也随被动约束的加强而提高。
2)冲跨比:
1 c
2h0 ﹙C为柱截面尺寸,h0为有效板厚﹚
当λ< 2.5时,破坏锥越陡,承载力提高越快
当λ> 2.5时,影响较小,可忽略
3)荷载或反力分布:
②边柱处 (b)图:弯矩作用平面垂直于自由边
Ic
h0 at3 6
h0
am
a
2 AB
2h0
at
(
at 2
aAB )2
a AB
at2 am 2at
aCD at a AB
eg
aCD
hc 2
0
1 1
2
3
1
hc h0 / 2 bc h0
②边柱处 (c)图:弯矩作用平面平行于自由边
Ic
h0 at3 12
第八章
钢筋混凝土受冲切构件 承载力计算
8.1 概述
1、剪切破坏:
剪切破坏面贯穿构件的整个宽度,几何 上呈柱面。如普通梁和单向板的剪切破坏。
2、冲切破坏:
斜裂破坏面围绕集 中荷载区域形成大致 呈空间回转截锥面或 喇叭状时的破坏。它 是钢筋混凝土双向板 在集中荷载作用下特 有的一种剪切破坏形 式。
3、常见的钢筋混凝土受冲切构件:
配预应力筋: pc1l1 pc2l2
σpc,m:
l1 l2
未配预应力筋:0
F1 :局部荷载设计值或集中反力设计值
1)柱网均匀布置的中柱节点 按轴心受压柱板考虑:
F1 pA (b 2h0 )(h 2h0 )
m 2(b h 2H0 )
2)板柱节点有不平衡弯矩(如内柱两侧 跨度不等、边柱、角柱、有水平荷载作用) ① 传递单向不平衡弯矩: 不平衡弯矩指向AB边:
F1,eq
F1
0M unbaAB
Ic
mh0
M unb M unb,c F1eg
不平衡弯矩指向CD边:
F1,eq
F1
0M unbaCD
Ic
m h0
M unb M unb,c F1e g
② 传递双向不平衡弯矩:
F1,eq F1 unb,maxmh0
unb,max
0xM a unb,x x
冲切剪力
F1 p A (b 2h 2h0)2 15.83 55 (1 2 0.135)2 370.22KN
因370.22<376.30,故中柱柱帽上缘处楼板满足抗冲切要求
2)抗冲切配筋设计: 当验算不满足时 可在柱周板内配抗剪钢筋,提高抗冲切能力。
截面尺寸限制条件: F1 1.05 ftmh0
hc 2
0
1 1
2
3
1
hc h0 / 2 bc h0 / 2
[例8-2] 已知一无梁楼盖柱距5m,板厚160mm,砼:C20, 楼面竖向均布活荷载标准值7.8kN/m2 试验算中柱柱帽上缘 处楼板的抗冲切承载力。
解:荷载:楼板自重 0.16m×25 kN/m3 =4.0 kN/m2
20mm厚水泥砂浆抹面
配筋面积:
配置箍筋 F1 (0.35 ft 0.15 pc,m)mh0 0.8 f yv Asvu
配置弯起钢筋 F1 (0.35 ft 0.15 pc,m)mh0 0.8 f yv Asbu sin
构造要求:
[例8-2] 将例题8-1所示无梁楼盖取消柱帽做为屋盖,板厚 砼 强度不变,屋面承受均布活荷载标准值1.5KN/m2 试板的抗 冲切设计。
解:荷载:屋面板自重
4.0 kN/m2
刚性防水层
0.96kN/m2
因h0<800mm,取βh=1.0;
βs=1<2,取βs=2 η1=0.4+1.2/ βs=1.0
作为中柱,αs=40, η2=0.5+ αs h0 /4 μm =0.8
η=min( η1, η2)=0.8 抗冲切能力为
0.7βhftημm h0=0.7 ×1.0 ×1.1 ×0.8 ×4540 ×135/1000=376.30 kN
反力沿周边支承的板其承载力小于反力满布的板的承载力
8.4 抗冲切承载力设计
1、板的抗冲切设计
1)无腹筋板的抗冲切验算: 如图
F1 (0.7h ft 0.15 pc,m)mh0
式中:η取
1
0.4
1.2
s

2
0.5
sh0 4m
中的小值
μm:板临界截面周长
未开孔洞:图中2临界截面周长 开有孔洞:临界截面周长减图中4的长度
相关文档
最新文档