最新三维坐标变换

合集下载

三维坐标 欧拉角变换

三维坐标 欧拉角变换

三维坐标欧拉角变换
三维坐标的欧拉角变换指的是通过欧拉角来表示和描述三维空间中的旋转变换。

通常情况下,三维空间中的旋转可以通过绕着三个互相垂直的轴进行,这些轴通常被称为欧拉角的轴。

具体来说,三维坐标的欧拉角变换可以由以下三个欧拉角组成:
1. Roll(滚动角):绕X轴旋转的角度。

也称为绕前后轴旋转的角度。

2. Pitch(俯仰角):绕Y轴旋转的角度。

也称为绕左右轴旋转的角度。

3. Yaw(偏航角):绕Z轴旋转的角度。

也称为绕上下轴旋转的角度。

这三个欧拉角可以用来描述物体相对于初始位置的旋转变换。

需要注意的是,欧拉角变换存在一个问题,即所谓的“万向节死锁”现象。

当一个物体进行连续的多次旋转操作时,有时无法准确地还原初始位置。

为了解决这个问题,可以使用四元数或旋转矩阵等其他表示方法来进行旋转变换。

三维空间直角坐标系的平移和旋转变换

三维空间直角坐标系的平移和旋转变换

三维空间直角坐标系的平移和旋转变换下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三维空间直角坐标系的平移和旋转变换引言在三维空间中,我们经常需要对物体进行平移和旋转等变换操作。

三维空间几何坐标变换矩阵课件

三维空间几何坐标变换矩阵课件

3
缩放变换的应用:在计算机图形学中,缩放变换 常用于物体的形状调整和场景构建。04坐标变源自矩阵推导过程平移变换矩阵推导
平移变换定义
将点$P(x,y,z)$沿$x$轴、$y$轴 、$z$轴分别平移$t_x$、$t_y$、
$t_z$个单位。
平移变换矩阵
$begin{bmatrix} 1 & 0 & 0 & t_x 0 & 1 & 0 & t_y 0 & 0 & 1 & t_z 0 & 0 & 0 & 1 end{bmatrix}$
02
三维空间几何基础
三维空间坐标系
01
02
03
右手坐标系
在三维空间中,通常采用 右手坐标系,其中x轴正 向向右,y轴正向向前,z 轴正向向上。
坐标原点
三维坐标系的原点O是三 个坐标轴的交点,其坐标 为(0,0,0)。
坐标表示
在三维空间中,任意一点 P的位置可以用一个三元 组(x,y,z)来表示,其中x、 y、z分别是点P在x轴、y 轴、z轴上的投影。
|1000|
```
01
03 02
旋转变换原理及方法
| 0 sin(θ) cos(θ) 0 |
|0001|
旋转变换原理及方法
```
旋转变换的应用:在计算机图形学中,旋转变换常用于物体的姿态调整和场景构 建。
缩放变换原理及方法
缩放变换定义
将三维空间中的点沿着某一方向进行放大或缩小,改变点的形状和大小。
平移变换过程
将点$P$的齐次坐标$(x,y,z,1)$与平 移变换矩阵相乘,得到平移后的坐 标$(x+t_x,y+t_y,z+t_z,1)$。

wgs84转2000国家坐标公式

wgs84转2000国家坐标公式

wgs84转2000国家坐标公式
WGS84和2000国家坐标之间的转换可以使用七参数变换公式
来实现。

七参数变换是一个坐标系统转换模型,它通过将
WGS84坐标系的三维坐标转换为2000国家坐标系的三维坐标。

七参数变换公式如下:
X2 = X1 * Scale - Y1 * Rx + Z1 * Ry + Dx
Y2 = X1 * Rx + Y1 * Scale - Z1 * Rz + Dy
Z2 = -X1 * Ry + Y1 * Rz + Z1 * Scale + Dz
其中,X1、Y1、Z1是WGS84坐标系下的三维坐标,X2、Y2、Z2是2000国家坐标系下的三维坐标。

Scale、Rx、Ry、Rz、Dx、Dy、Dz是七个参数,需要根据具
体地区和转换方法来确定。

需要注意的是,七参数变换仅适用于局部区域,对于全球范围内的坐标转换可能会引入较大的误差。

为了能够准确地进行坐标转换,建议使用专业的坐标转换软件或服务。

三维四参数空间直角坐标转换计算方法

三维四参数空间直角坐标转换计算方法

一、引言在地图制图、航空航天、导航定位等领域,经常需要进行三维空间直角坐标的转换计算。

在进行这类计算时,常常会涉及到三维四参数空间直角坐标的转换。

本文将介绍三维四参数空间直角坐标转换的计算方法及其应用。

二、三维四参数空间直角坐标的定义三维空间中,直角坐标系通常用(x, y, z)表示。

在进行坐标转换时,需要考虑到可能存在的平移、旋转、缩放等变换。

三维四参数空间直角坐标则包括了平移在x、y、z三个方向上的位移和绕某个轴的旋转角度。

三、三维四参数空间直角坐标转换的计算方法1. 平移变换的计算方法平移变换是指在x、y、z三个方向上的位移。

假设平移量分别为tx、ty、tz,那么进行平移变换后的坐标可以表示为:x' = x + txy' = y + tyz' = z + tz2. 旋转变换的计算方法绕某个轴的旋转变换通常用旋转矩阵来表示。

以绕z轴的旋转为例,旋转角度为θ,那么进行旋转变换后的坐标可以表示为:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθz' = z3. 综合变换的计算方法综合平移和旋转变换后,坐标的变换可以表示为:x' = (x - xs)*cosθ - (y - ys)*sinθ + xty' = (x - xs)*sinθ + (y - ys)*cosθ + ytz' = z + zt四、三维四参数空间直角坐标转换的应用在实际应用中,三维四参数空间直角坐标转换通常用于地图制图、航空航天、导航定位等领域。

在地图制图中,需要将世界坐标系中的地理坐标转换为局部坐标系中的平面坐标,就需要进行三维四参数空间直角坐标的转换。

在航空航天领域,导航定位系统也需要进行三维坐标的转换计算,以确定飞行器的位置和姿态。

五、结论三维四参数空间直角坐标转换是现代科学技术中常见的数学计算方法,具有广泛的应用价值。

三维坐标变换

三维坐标变换

第二章三维观察1.三维观察坐标系1.1观察坐标系为了在不同的距离和角度上观察物体,需要在用户坐标系下建立观察坐标系x v,y v,z v(通常是右手坐标系)也称(View Reference Coordinate)。

如下图所示,其中,点p0(x o, y o, z0)为观察参考点(View Reference Point),它是观察坐标系的原点。

图1.1 用户坐标系与观察坐标系依据该坐标系定义垂直于观察坐标系z v轴的观察平面(view palne),有时也称投影平面(projection plane)。

图1.2 沿z v轴的观察平面1.2观察坐标系的建立观察坐标系的建立如下图所示:图1.3 法矢量的定义观察平面的方向及z v轴可以定义为观察平面(view plane)N法矢量N: 在用户坐标系中指定一个点为观察参考点,然后在此点指定法矢量N,即z v轴的正向。

法矢量V:确定了矢量N后,再定义观察正向矢量V,该矢量用来建立y v轴的正向。

通常的方法是先选择任一不平行于N的矢量V',然后由图形系统使该矢量V'投影到垂直于法矢量N的平面上,定义投影后的矢量为矢量V。

法矢量U:利用矢量N和V,可以计算第三个矢量U,对应于x z轴的正向。

的指定视图投影到显示设备表面上的过程来处理对象的描述。

2.世界坐标系在现实世界中,所有的物体都具有三维特征,但是计算机本身只能处理数字,显示二维的图形,将三维物体和二维数据联系到一起的唯一纽带就是坐标。

为了使被显示的物体数字化,要在被显示的物体所在的空间中定义一个坐标系。

该坐标系的长度单位和坐标轴的方向要适合被显示物体的描述。

该坐标系被称为世界坐标系,世界坐标系是固定不变的。

OpenGL 中世界坐标用来描述场景的坐标,Z+轴垂直屏幕向外,X+从左到右,Y+轴从下到上。

世界坐标系是右手笛卡尔坐标系统。

我们用这个坐标系来描述物体及光源的位置。

世界坐标系以屏幕中心为原点(0,0,0),长度单位这样来定: 窗口范围按此单位恰好是(-1,-1)到(1,1)。

三维坐标变换

三维坐标变换

z
2E F 2A B x
2024/9/5
z
3
H
1
G
Dy
C
1
x
图7-6 比例变换
1 y
13
(2)整体比例变换
1 0 0 0
TS
0 0
1 0
0 1
0 0
0
0
0
s
2024/9/5
14
3. 旋转变换
z
y
X
图7-7 旋转变换的角度方向
2024/9/5
15
(1)绕z轴旋转
cos sin 0 0
TRZ
sin
53
将α值代入(7-1)式得到正二测图的投影变换矩阵:
2
T
2 0
2 sin
2
cos
0 0
0 0
2
2 0
2 sin
2 0
0 0
0 1
特点分析:
2024/9/5
54
7.3.2 斜投影
斜投影图,即斜轴测图,是将三维形体向一个单 一的投影面作平行投影,但投影方向不垂直于投 影面所得到的平面图形。 常用的斜轴测图有斜等测图和斜二测图。
Y
侧视图
Y
46
3. 俯视图 三维形体向xoy面(又称H面)作垂直投影得到俯视图, (1) 投影变换 (2)使H面绕x轴负转90° (3)使H面沿z方向平移一段距离-z0
Z
z
2024/9/5
主视图
O
y
X
俯视图
7-13 三维形体及其三视图
Y
侧视图
Y
47
x
4. 侧视图 获得侧视图是将三维形体往yoz面(侧面W)作垂直投影。 (1) 侧视图的投影变换 (2)使W面绕z轴正转90° (3)使W面沿负x方向平移一段距离x0

三维坐标平面展开转二维坐标方法

三维坐标平面展开转二维坐标方法

三维坐标平面展开转二维坐标方法嘿,朋友们!今天咱就来讲讲这超酷的三维坐标平面展开转二维坐标方法!比如说,咱就把一个正方体想象成是三维坐标,那它的各个面不就是二维坐标嘛!想象一下,就好像把这个正方体给“拆开”,平铺在地上,这就是从三维到二维的转变呀!
其实这过程就像是我们整理房间,把立体的东西都摆放整齐变成平面的布局。

那具体怎么做呢?首先得找好关键的点呀!比如说正方体的顶点,这就好比是我们收拾房间时找到最重要的物品位置。

然后呢,通过一些计算和标记,就像给房间里的东西贴上标签一样,把三维的坐标信息转到二维上。

哇塞,这多有趣呀!这样一想,是不是觉得也没那么难理解了?这不就像是从一个复杂的三维世界进入到了我们熟悉的二维平面嘛!我觉得呀,只要咱用心去研究,肯定能轻松掌握这个方法!不试试怎么知道呢!这就是我的观点,就是这么简单易懂又有意思!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.2.3 绕任意轴旋转变换的简单算法 给定具有单位长的旋转轴A=[ax,ay,az]和旋转角 ,
则物体绕OA轴旋转变换的矩阵表示可确定如下:

a a
x y
a a
x x
a z a x
0
A
az
axa y a ya y aza y
az 0
a a
x y
a a
z z
a z a z
axax axay axaz
y y
y
z
x
z (a)
xz
xz
(b)
R T R xT 1
(d) x
(c)
2. 绕任意轴旋转的变换
3. (1)平移物体使旋转轴通过坐标原点;
y
y
P2 •
• P’2
P1 •
P• ’1
x
xz
z
(1)
(2)旋转物体使旋转轴与某个坐标轴(如z轴)重合;
(3)关于该坐标轴进行指定角度的旋转;
y
y
P• ’1
z
V’
(1)将V绕x轴旋转到xz 平面上;
(2)再绕y轴旋转使之与z轴正向重合。
旋转角度的确定:绕x轴旋转的角度 等于向量V在yz 平
面上的投影向量与z 轴正向的夹角。
y
V1=(0,b,c)
V=(a,b,c)
x
z
根据矢量的点乘与叉乘,可以算出:
s in b ,c os c
b 2 c2
b 2 c2
1 0
0 0
cos 0
0
0
0
1
这就是说,绕y轴的旋转变换的矩阵与绕x轴和z轴 变换的矩阵从表面上看在符号上有所不同。
7.2.2 组合变换
1. 物体绕平行于某一坐标轴的旋转变换。基本步骤:
(1) 平移物体使旋转轴与所平行的坐标轴重合;
(2) 沿着该坐标轴进行指定角度的旋转;
(3) 平移物体使旋转轴移回到原位置。
tx
ty
tz
s
(1)三维线性变换部分 (2)三维平移变换部分 (3)透视变换部分 (4)整体比例因子
7.3 三维坐标变换
几何变换:在一个参考坐标系下将物体从一个 位置移动到另一个位置的变换。
坐标变换: 一个物体在不同坐标系之间的坐标 变换。如从世界坐标系到观察坐标系的变换; 观察坐标到设备坐标之间的变换。再如,对物 体造型时,我们通常在局部坐标系中构造物体, 然后重新定位到用户坐标系。
设新坐标系o’x’y’z’ 原点的 y 坐标为(x0,y0,z0),相对 原坐标系其单位坐标矢量 为:
u x u x 1 ,u x 2 ,u x 3
a2b2c2
0
0
a
0
a2b2c2
0
0
b2c2
0
a2b2c2
0
1
A V R xR y
利用这一结果,则绕任意轴旋转的变换矩阵可表示为:
y
P2 •
P1 • x
z
y
• P’2
P• ’1
x
z
1) T
y
P• ’1
x
P2’’• z
2) RxRy
P2’’• z
P• ’1
x
3) Rz
R T R x R y R z R y 1 R x 1 T 1
三维坐标变换
7.1 简介
三维平移变换、比例变换可看成是二维情况的 直接推广。但旋转变换则不然,因为我们可选 取空间任意方向作旋转轴,因此三维变换处理 起来更为复杂。
与二维变换相似,我们也采用齐次坐标技术 来描述空间的各点坐标及其变换,这时,描 述空间三维变换的变换矩阵是4×4的形式。 由此,一系列变换可以用单个矩阵来表示。
1 0 0 0
xyz1xyz10
0
cos sin
sin 0 cos 0
0 0
0 1
(3) 绕y轴正向旋转 角,y坐标值不变,z、x的坐标相当 于在zox平面内作正 角旋转,于是
cos 0 sin 0
zyx1zyx1s0in
1 0
0 0
cos 0
0
0 0 1
cos 0 sin 0

xyz1xyz1s0 in
坐标变换的构造方法:
与二维的情况相同,为将物体的坐标描述从一个系统转 换为另一个系统,我们需要构造一个变换矩阵,它能使 两个坐标系统重叠。具体过程分为两步: (1)平移坐标系统oxyz,使它的坐标原点与新坐标系 统的原点重合; (2)进行一些旋转变换,使两坐标系的坐标轴重叠。
有多种计算坐标变换的方法,下面我们介绍一种简单的 方法。
z
yA
• P’2
P• ’1
x
z
R TM TT 1
其中旋转轴A=[ax,ay,az]为
P2 P1 P2 P1
传统的方法通过绕坐标轴旋转变换的乘积表示绕任意轴旋 转的变换。与之相比,这种方法更直观。
7.2.4 三维变换矩阵的功能分块
a11 a21 a32
py
a13 a23 a33 pz
因此,
1
0
0
Rx0
c
b2 c2 b
b2 c2
0
0
0 0
b
b2 c2 c
0
0
b2 c2
0 1
V V x R a , 0 ,b 2 c 2
类似地,可以求出:
sin a ,co sb 2 c 2
a 2 b 2 c 2
a 2 b 2 c 2
b2c2
0
a2b2c2
Ry
0 a
1 0
x
P2’’•
z
(2)
P• ’1
x
P2’’•
z
(3)
(4) 应用逆旋转变换将旋转轴回到原方向; (5) 应用逆平移变换将旋转轴变换到原位置。
y
• P’2
P• ’1
x
z
(4)
y
P2 •
P1 • x
z
(5)
例. 求变换AV,使过原点的向量V=(a,b,c)与z轴的 正向一致。
y
y
V
实现步骤:
x
x
z
V’
a y Aˆ ayax axax axax axax axax axax
a
x
A
y
a y a x
0
o
M Aˆ cos I Aˆ sin A * z 轴角旋转
x
P' P M T
其中 MT 表示M的转置矩阵。
利用这一结果,则绕任意轴旋转的变换矩阵可表示为:
y
P2 •
P1 • x
坐标的变化相当于在xoy平面内作正 角旋转。
cos sin 0 0
xy z
xyz1xyz1sin cos0 0
0 0 1 0
0
0 0 1
x 1 0 0 0 y 0 1 0 0 z 0 0 1 0
0 0 0 1
(2)绕x轴正向旋转 角,旋转后点的x坐标值不变, Y、z坐标的变化相当于在yoz平面内作正 角旋转。
旋转变换矩阵规律: xy z
x 1 0 0 0
对于单位矩阵
y 0 1 z 0 0
0 1
0 0
,绕哪个坐标轴
0 0 0 1
旋转,则该轴坐标的一列元素不变。按照二维图
形变换的情况,将其旋转矩阵 csoins csions
中的元素添入相应的位置中,即
(1) 绕z轴正向旋转 角,旋转后点的z坐标值不变, x、y
相关文档
最新文档