北师大版初三(下)数学第14讲:圆内接正多边形教案

合集下载

北师大版数学九年级下册3.8《圆内接正多边形》教案

北师大版数学九年级下册3.8《圆内接正多边形》教案

北师大版数学九年级下册3.8《圆内接正多边形》教案一. 教材分析《圆内接正多边形》是北师大版数学九年级下册第3.8节的内容。

本节主要让学生了解圆内接正多边形的性质,并会运用这些性质解决一些简单问题。

教材通过引入正多边形和圆的关系,引导学生探究圆内接正多边形的性质,培养学生的观察、思考和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了正多边形的性质,对正多边形的对称性、边角关系等有了一定的了解。

但学生对圆内接正多边形的性质可能较为陌生,需要通过实例和操作来逐步理解和掌握。

三. 教学目标1.了解圆内接正多边形的性质。

2.学会运用圆内接正多边形的性质解决一些简单问题。

3.培养学生的观察、思考和解决问题的能力。

四. 教学重难点1.圆内接正多边形的性质。

2.如何运用圆内接正多边形的性质解决实际问题。

五. 教学方法采用问题驱动法、案例分析法和合作学习法。

通过提出问题,引导学生观察、思考和讨论,从而得出结论。

同时,通过案例分析和合作学习,让学生在实践中掌握圆内接正多边形的性质。

六. 教学准备1.PPT课件。

2.相关案例和练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的圆内接正多边形图片,如足球、奖杯等,引导学生关注这些现象,并提出问题:“这些图形有什么共同特点?它们与圆有什么关系?”2.呈现(10分钟)呈现圆内接正多边形的定义,并通过动画展示圆内接正多边形的形成过程。

同时,引导学生观察和总结圆内接正多边形的性质。

3.操练(10分钟)让学生分组讨论,每组选择一个圆内接正多边形,观察并记录其性质。

然后,各组汇报讨论结果,师生共同总结圆内接正多边形的性质。

4.巩固(10分钟)出示一些练习题,让学生运用圆内接正多边形的性质解决问题。

教师及时给予解答和指导,确保学生掌握所学知识。

5.拓展(10分钟)出示一些实际问题,如设计一个圆内接正多边形的图案,让学生思考如何应用圆内接正多边形的性质解决问题。

北师大版九年级数学下册:第三章 3.8《圆内接正多边形》精品教学设计

北师大版九年级数学下册:第三章 3.8《圆内接正多边形》精品教学设计

北师大版九年级数学下册:第三章 3.8《圆内接正多边形》精品教学设计一. 教材分析北师大版九年级数学下册第三章3.8《圆内接正多边形》是本章的重要内容,主要让学生了解圆内接正多边形的性质,并学会运用这些性质解决实际问题。

本节内容是在学生已经掌握了正多边形的性质和圆的性质的基础上进行学习的,通过对圆内接正多边形的研究,让学生进一步理解正多边形与圆的关系,为后续学习圆的内接四边形、圆的内接六边形等知识打下基础。

二. 学情分析九年级的学生已经掌握了正多边形的性质和圆的性质,具备一定的逻辑思维能力和探究能力。

但是,对于圆内接正多边形的性质,学生可能较为抽象,难以理解。

因此,在教学过程中,需要教师通过生动的例子、直观的图示和丰富的教学活动,帮助学生理解和掌握圆内接正多边形的性质。

三. 教学目标1.让学生了解圆内接正多边形的性质,并学会运用这些性质解决实际问题。

2.培养学生观察、分析、归纳的能力,提高学生的逻辑思维能力。

3.培养学生合作学习、积极探究的精神,提高学生的数学素养。

四. 教学重难点1.圆内接正多边形的性质及其证明。

2.如何运用圆内接正多边形的性质解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生观察、分析、归纳圆内接正多边形的性质。

2.运用数形结合法,通过直观的图示,帮助学生理解圆内接正多边形的性质。

3.采用案例分析法,让学生学会运用圆内接正多边形的性质解决实际问题。

4.学生进行合作学习,培养学生的团队协作能力。

六. 教学准备1.准备相关的图示和案例,用于教学演示和分析。

2.准备练习题,用于巩固所学知识。

3.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)教师通过展示一些常见的圆内接正多边形的图片,如正五边形、正六边形等,引导学生关注这些图形的特点,激发学生的学习兴趣。

2.呈现(10分钟)教师通过数形结合的方式,呈现圆内接正多边形的性质,如正多边形的外角和为360度,圆的内接正多边形的每个外角等于圆周率的值等。

九年级数学下册 3.8 圆内接正多边形教案 (新版)北师大版

九年级数学下册 3.8 圆内接正多边形教案 (新版)北师大版

圆内接正多边形一、教学目标(1)掌握正多边形和圆的关系;(2)理解正多边形的中心、半径、中心角、边心距等概念; (3)能运用正多边形的知识解决圆的有关计算问题; (4)会运用多边形知和圆的有关知识画多边形. 二、教学重点和难点重点:掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.难点:正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题 三、教学过程 (一)情境引入:多媒体出示正多边形和圆组合的美丽图案(二)学习新知:1.正多边形概念:各边相等、各角也相等的多边形叫做正多边形. 如果一个正多边形有n(n ≥3)条边,就叫正n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.2.圆内接正多边形的概念:顶点都在同一个圆上的正多边形叫做圆内接正多边形. 这个圆叫做该正多边形的外接圆.3.把一个圆n 等分(3≥n ),依次连接各分点,我们就可以作出一个圆内接正多边形.4.如图,五边形ABCDE 是圆O 的内接正五边形,圆心O 叫做这个正五边形的中心;OA 是这个正五边形的半径;AOB ∠是这个正五边形的中心角;BC OM ⊥,垂足为M ,OM 是这个正五边形的的边心距.在其他的正多边形中也有同样的定义.(三)学以致用:例1:如图,在圆内接正六边形ABCDEF 中,半径4=OC ,BC OG ⊥,垂足为G ,求这个正六边形的中心角、边长和边心距.小结:例2:1、用尺规作一个已知圆的内接正六边形.2、用尺规作一个已知圆的内接正四边形.3、思考:作正多边形有哪些方法?(四)巩固提升:1.判断⑴各边相等的多边形是正多边形()⑵各角相等的多边形是正多边形()⑶正十边形绕其中心旋转36°和本身重合()2.填空⑴正多边形都是对称图形,一个正n边形有条对称轴,每条对称轴都通过正n边形的;一个正多边形,如果有偶数条边,那么它既是对称图形,又是对称图形。

⑵正十二边形的每一个外角为°每一个内角是°该图形绕其中心至少旋转°和本身重合⑶用一张圆形的纸剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小应为__ cm⑷正方形ABCD的外接圆圆心O叫做正方形ABCD的______.⑸正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.⑹若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.⑺正n边形的一个外角度数与它的______角的度数相等.3.解答题如图,PA和PB分别与⊙O相切于A,B两点,作直径AC,并延长交PB于点D.连结OP,CB.(1)求证:OP∥CB;(2)若PA=12,DB:DC=2:1,求⊙O的半径.。

《圆内接正多边形》示范公开课教学设计【九年级数学下册北师大】

《圆内接正多边形》示范公开课教学设计【九年级数学下册北师大】

第三章圆3.8圆内接正多边形一、教学目标1.了解圆内接正多边形的概念2.会用尺规作圆的内接正方形和正六边形.二、教学重点及难点重点:了解有关概念,会进行计算.难点:探索正多边形的中心角、边心距、边长之间的关系.三、教学用具多媒体课件,圆规。

四、相关资源多张《生活中的正多边形》图片,引入视频五、教学过程【情境导入】观看下列美丽的图案:这些美丽的图案,都是在日常生活中我们经常能看到的、利用正多边形得到的物体.你能从这些图案中找出正多边形来吗?设计意图:结合美丽的图片,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,并从中感受数学美.【探究新知】如下图,我们把顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.把一个圆n等分(n≥3),依次连接各分点,我们就可以作出一个圆内接正多边形.如下图,五边形ABCDE是⊙O的内接正五边形,圆心O叫做这个正五边形的中心;OA是这个正五边形的半径;∠AOB是这个正五边形的中心角;OM⊥BC,垂足为M,OM 是这个正五边形的边心距.注:还可以借助其他正多边形对这些概念举一反三。

实际上,正多边形的中心指的是其外接圆(或内切圆)的圆心,半径指的是其外接圆的半径,边心距是指的是其内切圆的半径,中心角指的是其每一边所对的外接圆的圆心角.做一做利用尺规作一个已知圆的内接正六边形.师生活动:教师出示问题,学生思考、讨论,教师鼓励学生探索用多种方法作出圆的内接正六边形.答:方法1,因为正六边形的中心角为60°,因此它的边长就是其外接圆的半径R.所以,在半径为R的圆上,依次截取等于R的弦,就可以六等分圆,进而作出圆内接正六边形.方法2,为了减少累积误差,通常像下图这样,作⊙O的任意一条直径FC,分别以F,C为圆心,以⊙O的半径R为半径作弧,与⊙O相交于点E,A和D,B,则A,B,C,D,E,F是⊙O的六等分点,顺次连接AB,BC,CD,DE,EF,F A,便得到正六边形ABCDEF.设计意图:通过画正多边形,培养学生的画图能力.利用尺规作圆内接正六边形的方法不止一种,可鼓励学生探索多种方法.想一想你能利用尺规作一个已知圆的内接正四边形吗?你是怎么做的?与同伴进行交流.师生活动:教师出示问题,学生思考、讨论并尝试完成.答:在⊙O中,用直尺和圆规作两条互相垂直的直径,在圆周上得到四个点,依次连接这四个点,就得到了圆内接正四边形.议一议如何用直尺和圆规作一个已知圆的内接正五边形呢?师生活动:教师出示问题,学生思考、讨论,教师分析、引导,师生共同完成.答:(1)作⊙C;(2)作直径AB;(3)过点C作AB的垂线交⊙C于点P;(4)取BC的中点D;(5)以点D为圆心,以DP为半径作弧交AB于点E;(6)以点P为圆心,以PE为半径作弧交⊙C于点F;(7)在⊙C上依次截取等于PF的弦,就可以作出圆的内接正五边形.设计意图:加深学生对正多边形与圆相关知识的理解,进一步熟悉如何画正多边.【典例精析】例如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.师生活动:教师出示例题,学生思考、讨论,教师分析、引导,师生共同完成解题过程.解:如图,连接OD.∵六边形ABCDEF为正六边形,∴∠COD=3606︒=60°.∴△COD为等边三角形.∴CD=OC=4.在Rt△COG中,OC=4,CG=12BC=12×4=2,∴OG∴正六边形ABCDEF的中心角为60°,边长为4,边心距为.设计意图:教师通过引导学生将半径、中心角、边心距等数量,在一个直角三角形中联系起来,将多边形化归为三角形,体现了化归思想.正n边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.【课堂练习】1.P是正六边形ABCDEF的外接圆上的一点,则∠APB的度数为().A.60°B.120°C.30°D.30°或150°2.已知⊙O的面积为2π,则其内接正三角形的面积为().A.B.C D3.正六边形的边心距与边长之比为().A∶3 B∶2C .1∶2 D∶24.如图,正六边形内接于⊙O ,⊙O 的半径为10,则圆中阴影部分的面积为___________.5.如图,点M ,N 分别是正八边形相邻两边AB ,BC 上的点,且AM =BN ,则∠MON =_______度.6.分别求出半径为6 cm 的圆内接正三角形的边长和边心距.师生活动:教师先找几名学生板演,然后讲解出现的问题.参考答案1.D .2.C .3.B .4.100π-5.45.6.解:如图所示,连接OB ,OC .过点O 作OG ⊥BC 交BC 于点G .∵△ABC 为圆内接正三角形,∴∠BAC =60°.∴∠BOC =120°.∴∠COG =60°.∴∠OCG =30°.在Rt △COG 中,边心距OG =6322OC ==(cm), 由勾股定理,得CG==.∴边长BC =2CG=.设计意图:让学生在练习过程中,进一步熟悉本节课的重点内容.六、课堂小结1.圆内接正多边形及其相关概念顶点都在同一圆上的正多边形叫做圆内接正多边形;这个圆叫做该正多边形的外接圆.2.正多边形的有关概念一个正多边形的外接圆的圆心叫做这个正多边形的中心;外接圆的半径叫做正多边形的半径;正多边形每一边所对的圆心角叫做正多边形的中心角;中心到正多边形的一边的距离叫做正多边形的边心距.师生活动:教师引导学生归纳总结本节课所学内容.设计意图:通过总结使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计3.8圆内接正多边形1.圆内接正多边形及其相关概念2.正多边形。

3.8 圆内接正多边形 课件 (29张PPT) 2023-2024学年北师大版数学九年级下册

3.8 圆内接正多边形  课件 (29张PPT)  2023-2024学年北师大版数学九年级下册

归纳
圆内接正多边形的辅助线
F
E
A

D
rR
BMC
1.连半径,得中心角; 2.作边心距,构造直角三角形.
半径R
O 中心角一半 边心距r
C
M
边长一半
例2 如图2,正六边形的边长为2,分别以正六边形的六条边为直径向外
作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分
面积)是( A ) A.6 3-π
.O
分析:因为正六边形每条边所对的圆心角为 60º ,所以正六边形的边长 与圆的半径 相等 .因此, 在半径为r的圆上依次截取等于 r 的弦, 即可将圆六等分.
作法:(1)作⊙O的任意一条直径FC;
(2)分别以F,C 为圆心,以 r 为半径作弧,与⊙O 交于点E,A和D,B;
(3)依次连接AB、BC、CD、DE、EF、FA,便得到正六边形ABCDEF
2
2
F
E
A
O
D
4m
r
B PC
5.(2023武汉)如图,在圆内接四边形ABCD中,AB=AD,
即为所求.
E
D
F
.O C
A
B
针对训练
1.下列说法中,不正确的是( D ) A.正多边形一定有一个外接圆和一个内切圆 B.各边相等且各角相等的多边形是正多边形 C.正多边形的内切圆和外接圆是同心圆 D.正多边形既是轴对称图形,又是中心对称图形
二 圆内接正多边形的有关计算
正n边形的一个内角的度数是多少? 中心角呢?正多边形的中心角与外角 的大小有什么关系?
A. 2
B. 4
C. 2 2
D. 4 2
A
D
O

九年级数学下册第三章圆8圆内接正多边形教案(新版)北师大版

九年级数学下册第三章圆8圆内接正多边形教案(新版)北师大版

8 圆内接正多边形【知识与技能】1.掌握圆内接正多边形、外接圆、中心角、边心距的概念.2.正多边形的画法.【过程与方法】通过作图的过程,提高学生的几何语言表达能力和合情推理能力.【情感态度】在学生动手操作的过程中,增强学生的数学应用意识,提高学生学习数学的兴趣和积极性,培养学生主动探索的精神,培养学生合作交流和创新意识.【教学重点】圆内接正多边形、外接圆、中心角、边心距的概念.【教学难点】圆内接正多边形、外接圆、中心角、边心距的概念.一、情景导入,初步认知请同学们回答下面两个问题:1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形是否具有对称轴、是不是中心对称图形?其对称轴有几条,对称中心是哪一点?【教学说明】复习旧知识,为本节课的学习作准备.二、思考探究,获取新知1.画出圆的内接正五边形.我们前面已经学习了,圆的基本性质,知道点O是圆的圆心,OA、OB是圆的半径,角AOB 是圆的圆心角.这个图形中还包含哪些知识呢?顶点都在同一个圆上的正多边形叫做圆内接正多边形,这个圆叫做该正多边形的外接圆.圆心O是这个正五边形的中心;∠AOB是这个正五边形的中心角;OH是这个正五边形的边心距.【教学说明】学生观察圆的内接正五边形,从而得出相关概念.2.怎样画特殊的正多边形?【归纳结论】利用同圆中相等的圆心角所对的弧相等,作相等的圆心角就可以等分圆,从而作出相应的正多边形.三、运用新知,深化理解1.见教材P 97例题.2.正三角形的高、外接圆半径、边心距之比为 ( )A. 3 : 2 : 1B. 4 : 3 : 2 B. 4 : 2 : 1 D. 6 : 4 : 3解析:设正三角形的边长为a ,则高为32a ,外接圆半径为33a ,边心距为36a ,所以它们之比为3 :2: 1.答案:A 3.若正方形的边长为6,则其外接圆半径与内切 圆半径的大小分别为( )A. 6,32B. 32,3C. 6,3D. 62,32 解析:∵正方形的边长为6,∴AB =3,又∵∠AOB =45°,∴OB=3,∴AO=223332+=答案:B.4.已知⊙O 和⊙O 上的一点A.(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O ⊙O 内接正十二边形的一边,由定理知,只需证明 DE 所对圆心角等于360°÷12 =30°.解:(1)作法:①作直径AC ;②作直径BD 丄AC ;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形;④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于 E 、H 、F 、G ;⑤顺次连结A 、E 、F 、C 、G 、H 各点.六边形AEFCGH 即为⊙O 的内接正六边形(2)证明:连结OE 、DE.∵∠AOD=3604︒=90°∠AOE=3606︒=60° .∴∠DOE=∠AOD =∠AOE=30° .∴DE为⊙O的内接正十二边形的一边.【教学说明】教师出示问题,学生可独立完成,也可小组合作完成.四、师生互动,课堂小结谈谈你本节课的收获或体会:知识、方法、反思、猜想、交流、愉快、困惑、生活.1.布置作业:教材“习题3.10”中第1、2题.2.完成练习册中本课时的练习.本节课的教学坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,以“引导——探究——发现”教学法为主,辅之直观演示、讨论交流,让学生真正动手操作,动脑思考,动口交流,动心关注.。

3.8 圆内接正多边形(教案)-北师大版数学九下

3.8 圆内接正多边形(教案)-北师大版数学九下

第8节圆内接正多边形1.了解圆内接正多边形的概念及相关概念.2.能运用正多边形的知识解决圆的有关计算问题.3.会用尺规作圆的内接正多边形.学生在探讨正多边形和圆的关系的学习过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力.1.通过合作交流、探索、实践培养学生的主体意识.2.通过学习,体验数学与生活的紧密联系,感受圆的对称美,正多边形与圆的和谐美,从而更加热爱生活,珍爱生命.【重点】掌握圆内接正多边形的性质并能加以熟练运用.【难点】用尺规作圆内接正多边形.【教师准备】多媒体课件和圆规.【学生准备】1.复习勾股定理和垂径定理等相关知识.2.圆规、直尺.导入一:如图所示的向日葵图案是用等分圆周画出的,图中的多边形是什么图形?它与圆的内接三角形有什么相同之处吗?学生分析:图中的多边形是正六边形,它与圆的内接三角形一样顶点都在圆上.【问题】它有哪些性质?它又是如何画出来的呢?[设计意图]利用类比的方法,使学生初步感知圆内接多边形的模型,利用学生急于知道答案的心理设计问题,增加了它的神秘感,更加激发了学生的求知欲望.导入二:如图所示的是正六边形的蓝色纸板,如果以它的中心为圆心,以中心到顶点的距离为半径画圆,你会有什么发现?【师生活动】学生利用直尺和圆规动手操作,进行画图,教师巡视,对于发现的问题及时予以纠正,学生完成后与同伴交流,然后教师出示课件,供学生参考.让学生说出自己发现的结论,师生共同订正.【问题】六边形和圆有什么样的位置关系?如果先给你一个圆,你能在圆中画出正六边形吗?[设计意图]在教学中创设问题情境,激发学生对探索圆内接正多边形的兴趣.通过学生的作图活动,使学生明确这节课的学习任务,利于学生集中精力学习重点内容.[过渡语]前面我们探究了圆内接三角形的概念及性质,和圆有关的其他多边形又有什么样的特征呢?课件出示:如图所示:【问题】1.你能从这四幅图中找出多边形吗它们都是几边形?2.它们都是什么样的多边形?3.这些正多边形的顶点都具有什么样的特征?【学生活动】学生观察,与同伴交流,思考后得出结论.【教师点评】每个多边形的边长都相等,所以它们都是正多边形,并且这些正多边形的顶点都在圆上.1.如何作圆内接正三角形?正四边形?正五边形?正六边形?2.如何作圆内接正n边形?【活动方式】分组活动,全班分成四个组分别作四种图形.【师生活动】学生思考后讨论,教师巡视,并参与到学生的讨论中去.然后学生作出圆的内接正多边形.请代表发言,说出他们的作法.【教师点评】利用平分圆的方法作圆内接正多边形的方法:课件出示:如图所示,五边形ABCDE是☉O的内接五边形.【活动方式】让学生通过图形,结合课本,自己了解圆内接正五边形的相关概念.【教师点评】圆心O叫做这个正五边形的中心;OA是这个正五边形的半径,∠AOB是这个正五边形的中心角;OM⊥BC,垂足为M,OM是这个正五边形的边心距.[设计意图]学生经历观察、猜想、操作的过程,逐步掌握了圆内接正多边形的相关概念和作法,并利用类比推理的方法得到其性质,提高了学生解决问题的综合能力.[知识拓展]正n边形的性质:1.正n边形的每个中心角都相等,都等于;2.正n边形的每个外角都相等,都等于;3.正n边形的每个内角都相等,都等于180°-.课件出示:如图所示,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.〔解析〕在由半径OC、边长的一半CG、边心距OG组成的Rt△OGC中,利用勾股定理进行解决是解题的关键,而求解边长,则连接OD得出△OCD是等边三角形就可以得出OC=CD=4.解:连接OD.∵六边形ABCDEF为正六边形,∴∠COD==60°.∴△COD为等边三角形,∴CD=OC=4.在Rt△COG中,OC=4,CG=BC=×4=2,∴OG===2.∴正六边形ABCDEF的中心角为60°,边长为4,边心距为2.[设计意图]此例是教材上的例题,紧扣这堂课的知识点,重点是对基础知识的巩固,并在巩固重点之余又培养了灵活应用能力.[知识拓展]特殊的圆内接正多边形的边长、半径、边心距之比:正多边形图形边长、半径、边心距之比正三角形2∶2∶1正四边形2∶∶1正六边形2∶2∶[过渡语]前面我们已经掌握了利用平分圆的方法作圆内接正多边形的方法,你能用尺规作圆内接正多边形吗?课件出示:【做一做】你能用尺规作一个已知圆的内接正六边形吗?教师引导学生思考下面的问题:1.通过例题探究圆的内接正六边形的边长与圆的半径有什么关系.2.你能利用圆的内接正六边形的边长与圆的半径的关系利用尺规进行作图了吗?【学生活动】学生首先独立作图,然后小组交流,代表展示.【教师点评】利用尺规作圆内接正多边形的思路还是等分圆.以作圆内接正六边形为例.作法:(1)作☉O的任意一条直径FC.(2)分别以F,C为圆心,以☉O的半径R为半径作弧,与☉O相交于点E,A和D,B.(3)顺次连接AB,BC,CD,DE,EF,FA,便得到正六边形ABCDEF.[设计意图]操作性强又富有挑战性的数学活动,有利于激发学生的学习兴趣,掌握尺规作图的【想一想】你能借助尺规作出圆内接正四边形吗?你是怎么做的?与同伴进行交流.【学生活动】学生自己独立完成.代表说出作法:作一个☉O,取☉O直径为AB,作AB的垂直平分线交☉O于C,D,顺次连接A,C,B,D,四边形ACBD即为☉O的内接正四边形.[设计意图]通过动手操作不但提高了学生的作图能力,还进一步巩固了本节课所学的知识,一举两得.1.圆内接正多边形的概念及相关概念.2.圆内接正多边形的性质.3.圆内接正多边形的尺规作法.1.如图所示,☉O是正方形ABCD的外接圆,点P在☉O上,则∠APB等于()A.30°B.45°C.55°D.60°解析:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°.故选B.2.如图(1)所示,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为()A.6mmB.12mmC.6mmD.4mm解析:如图(2)所示,设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∴AC⊥OB,AM=MC,∵AB=6mm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3,∴AC=2AM=6(mm).故选C.3.(2014·南京中考)如图所示,AD是正五边形ABCDE的一条对角线,则∠BAD=.解析:如图所示,设O是正五边形的中心,作出正五边形ABCDE的外接圆,连接OD,OB,则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°.故填72°.4.(2014·江西中考)如图所示,△ABC内接于☉O,AO=2,BC=2,则∠BAC的度数为.解析:连接OB,OC,作OD⊥BC于D,如图所示,∵OD⊥BC,∴BD=BC=×2=,在Rt△OBD中,OB=OA=2,BD=,∴cos∠OBD==,∴∠OBD=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴∠BAC=∠BOC=60°.故填60°.5.已知正六边形ABCDEF的外接圆的半径为2cm,求这个正六边形的边长、周长和面积.解:∵正六边形的外接圆的半径等于边长,∴正六边形的边长=2cm;正六边形的周长l=6×2=12(cm);正六边形的面积S=6××2×=6(cm2).8圆内接正多边形1.圆内接正多边形:顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.2.正n边形的性质:(1)正n边形的每个中心角都相等,都等于;(2)正n边形的每个外角都相等,都等于;(3)正n边形的每个内角都相等,都等于180°-.一、教材作业【必做题】1.教材第98页随堂练习.2.教材第99页习题3.10第1,2,3题.【选做题】教材第99页习题3.10第4,5题.二、课后作业【基础巩固】1.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,3B.3,3C.6,3D.6,32.(2014·天津中考)正六边形的边心距为,则该正六边形的边长是()A. B.2 C.3 D.23.(2014·德阳中考)半径为1的圆内接正三角形的边心距为.4.如图所示,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(-1,0),则点C的坐标为.【能力提升】5.(2014·玉林中考)蜂巢的构造非常美丽、科学,如图所示的是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC 是直角三角形的个数有()A.4个B.6个C.8个D.10个6.已知☉O的面积为2π,则其内接正三角形的面积为.7.如图所示,已知正方形ABCD的边心距OE=cm,求这个正方形外接圆☉O的面积.8.作已知圆的内接正八边形.9.如图①所示,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②所示),点O为中心.(下列各题结果精确到0.1m)(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,那么塑像底座的半径最大是多少?【拓展探究】10.小敏在作☉O的内接正五边形时,先做了如下几个步骤:(1)作☉O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图(1)所示;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连接BD,如图(2).若☉O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()A.BD2=ODB.BD2=ODC.BD2=ODD.BD2=OD【答案与解析】1.B(解析:如图所示,∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3.∴AO==3.故选B.)2.B(解析:如图所示,∵正六边形的边心距为,∴OB=,又AB=OA,OA2=AB2+OB2,∴OA2=+()2,解得OA=2.)3.(解析:如图所示,△ABC是☉O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴OB平分∠ABC,则∠OBD=30°.∵OD⊥BC,∴∠BDO=90°,又∵OB=1,∴OD=.)4.(解析:连接OE,由正六边形是轴对称图形知:在Rt△OEG中,∠GOE=30°,OE=1.∴GE=,OG=,∴E,∴C.)5.C(解析:如图所示,AB是直角边时,点C共有6个位置,即有6个直角三角形,AB是斜边时,点C共有2个位置,即有2个直角三角形.综上所述,△ABC是直角三角形的个数有6+2=8个.故选C.)6.(解析:如图所示,连接OB,OC,过O作OD⊥BC于D,∵☉O的面积为2π,∴☉O的半径为.∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB·sin∠BOD=·sin60°=,∴BC=2BD=,又OD=OB·cos∠BOD=·cos60°=,∴△BOC的面积=·BC·OD=××=,∴△ABC的面积=3S=3×=.)△BOC7.解:如图所示,连接OC,OD,∵圆O是正方形ABCD的外接圆,∴O是对角线AC,BD的交点,∴∠ODE=∠ADC=45°,∵OE⊥CD,∴∠OED=90°,∴∠DOE=180°-∠OED-∠ODE=45°,∴OE=DE=,由勾股定理得OD==2,∴这个正方形外接圆☉O的面积是π·22=4π.答:这个正方形外接圆☉O的面积是4π.8.作法:(1)画任意一条直径;(2)把直径看做一个平角作其角平分线,把平角分成两个直角,再作每个直角的角平分线;(3)将角平分线反向延长在圆上得到八等分点;(4)顺次连接即得正八边形.9.解:(1)作OM⊥AB于点M,连接OA,OB,则OM为边心距,∠AOB是中心角.由正五边形性质得∠AOB=360°÷5=72°.又AB=×26=5.2,∴AM=2.6,∠AOM=36°,在Rt△AMO中,边心距OM==≈3.6(m).答:地基的中心到边缘的距离约为3.6m.(2)3.6-1-1.6=1(m).答:塑像底座的半径最大约为1m.10.C(解析:如图所示,连接BM,根据题意得OB=OA=1,AD⊥OB,BM=DM,∵OA的垂直平分线交OA于点M,∴OM=AM=OA=,∴BM==,∴DM=,∴OD=DM-OM=-=,∴BD2=OD2+OB2===OD.)利用现实生活中的素材,使学生产生一种亲切感,有效激发学生的求知和探索的欲望,取得了极佳的效果.本节课由于知识比较简单,所以前三个探究活动都完全要给学生去处理,老师要相信学生,他们完全有能力完成这些探究任务,事实证明学生完成得非常出色;对于第四个利用尺规作圆内接正多边形的探究,对部分学生来说有一定难度,教师重点在于引导学生弄清楚尺规作图的依据和方法,千万不能越俎代庖,直接告诉学生利用尺规作圆内接正多边形的方法,这样只能解决现实问题,不利于学生后面探究过程的顺利进行.本节课设计的探究活动比较多,并且还拓展了一部分知识,所以时间略显紧张.对于拓展的内容,再讲时可以酌情减少一些内容或放到课下留给学生探究.随堂练习(教材第98页)解:如图所示,△ABC是☉O的内接正三角形,OB=6cm,OD⊥B C.∵正三角形的内心和外心重合,∴BO平分∠ABC,则∠OBD=30°.∵OD⊥BC,∴BD=DC,又∵OB=6cm,∴OD=3cm,BD=3cm,则BC=6cm.习题3.10(教材第99页)1.解:∵剪去三个三角形,得到正六边形,∴剪去的三个三角形是全等的等边三角形,且被剪的正三角形的边长为6,∴得到正六边形的边长为=2.如图所示,正六边形的边长HK =2,∠HOK ==60°,∵OH =OK ,∴△HOK 是等边三角形,∴OH =HK =2.∵OM ⊥HK ,∴∠HOM =30°,OM =OH ·cos 30°=2×=,S △HOK =HK ·OM =×2×=,∴S 正六边形=6S △HOK =6.∴这个正六边形的面积为6.2.解:边长为6cm ,边心距为3cm ,面积为72cm 2.3.解:各边相等的圆内接四边形是正方形.各角相等的圆内接四边形不一定是正方形,也可能是矩形.4.解:(1)如图(1)所示,连接OB ,过O 作OD ⊥BC 于D ,则∠OBC =30°,BD =OB ·cos 30°=r ,故a =BC =2BD =r.如图(2)所示,连接OB ,OC ,过O 作OE ⊥BC 于E ,则△OBE 是等腰直角三角形,2BE 2=OB 2,即BE =r ,故b =BC =r.如图(3)所示,连接OA ,OB ,过O 作OG ⊥AB ,则△OAB 是等边三角形,AG =OA ·sin 30°=r ,故c =AB =2AG =r.(2)以a ,b ,c 为边可以构成直角三角形.因为(r )2+r 2=3r 2,(r )2=3r 2,所以(r )2+r 2=(r )2.5.可以得到一个“五角星”的图案,图略.1.由于本节课的知识比较简单,所以可以让学生通过自主探究掌握大部分内容,运用观察、猜想的方法可以得出圆内接正多边形的概念.2.利用类比圆内接正五边形的方法可以总结出圆内接正多边形的中心角、边心距等相关概念.3.利用转化的思想把正多边形的问题转化为直角三角形的问题是进行圆内接正多边形的计算的重中之重,是求中心角、边心距、半径的关键所在.4.动手操作、掌握方法则是探究尺规作圆内接正多边形的根本,要重点掌握.有一个亭子,它的地基是半径为8m 的正六边形,求地基的周长和面积.〔解析〕连接OB ,OC 求出∠BOC 的度数,再由等边三角形的性质即可求出正六边形的周长;过O 作△OBC 的高OG ,利用等边三角形及特殊角的三角函数值可求出OG 的长,利用三角形的面积公式即可解答.解:连接OB ,OC.∵六边形ABCDEF 是正六边形,∴∠BOC ==60°,∴△OBC 是等边三角形,∴BC =OB =8m ,∴正六边形ABCDEF 的周长=6×8=48(m ).过O 作OG ⊥BC 于G ,∵△OBC 是等边三角形,OB =8m ,∴∠OBC =60°,∴OG =OB ·sin∠OBC =8×=4(m ),∴S △OBC =BC ·OG =×8×4=16(m 2),∴S 六边形ABCDEF =6S △OBC =6×16=96(m 2).。

九年级数学下册 3.8 圆内接正多边形教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案

九年级数学下册 3.8 圆内接正多边形教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案

《圆内接正多边形》教学目标:知识目标:(1)掌握正多边形和圆的关系;(2)理解正多边形的中心、半径、中心角、边心距等概念;(3)能运用正多边形的知识解决圆的有关计算问题;(4)会运用多边形知和圆的有关知识画多边形.能力目标:学生在探讨正多边形和圆的关系学习中,体会到要善于发现问题、解决问题,培养学生的概括能力和实践能力.情感目标:通过学习,体验数学与生活的紧密相连;通过合作交流,探索实践培养学生的主体意识.教学重难点:教学重点:掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.教学难点:正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题.教学设计 :本节课设计了以下教学环节:情境引入、圆内接正多边形的概念、例题学习、尺规作图、练习与提高、课堂小结、布置作业.第一环节 情境引入活动内容:各小组展示自己课前所调查得到的正多边形形状的物体并解说从中获取的知识(自然引出课题)第二环节圆内接正多边形的概念活动内容:学习圆内接正多边形及有关概念顶点都在同一个圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆. 把一个圆n 等分(3≥n ),依次连接各分点,我们就可以作出一个圆内接正多边形.如图3-35,五边形ABCDE 是圆O 的内接正五边形,圆心O 叫做这个正五边形的中心;OA 是这个正五边形的半径;AOB ∠是这个正五边形的中心角;BC OM ⊥,垂足为M ,OM 是这个正五边形的的边心距.在其他的正多边形中也有同样的定义.活动目的:让学生了解有关正多边形的概念,引导学生逐步深入的学习.第三环节例题学习活动内容:例:如图3-36,在圆内接正六边形ABCDEF 中,半径4=OC ,BC OG ⊥,垂足为G ,求这个正六边形的中心角、边长和边心距.解:连接OD∵六边形ABCDEF 为正六边形 ∴︒=︒=∠606360COD ∴COD ∆为等边三角形.∴4==OC CD在COG Rt ∆中,4=OC ,2=CG ∴32=OG∴正六边形ABCDEF 中心角为︒60,边长为4,边心距为32.活动目的:题目是有关正多边形的计算的具体应用,通过例题的学习,巩固有关正多边形的概念,能运用正多边形的知识解决圆的有关计算问题.第四环节 尺规作图活动内容:1、用尺规作一个已知圆的内接正六边形.2、用尺规作一个已知圆的内接正四边形.3、思考:作正多边形有哪些方法?第五环节练习与提高分别求出半径为6cm 的圆内接正三角形的边长和边心距.第六环节课堂小结师生互相交流总结正多边形和圆的关系、正多边形的对称性和边数相同的正多边形相似的性质、正多边形的中心、半径、中心角、边心距等概念、如何计算正多边形的半径、边心距及边长,社会调查时学到的课外知识及切身感受等.第七环节布置作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆内接正多边形教学目标:1.掌握圆内接多边形的性质;2.掌握内接圆的性质;3.掌握圆内接多边形和内接圆的应用.知识梳理:1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形__________的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形__________的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.2.三角形的内切圆、外接圆三角形的内切圆:对比三角形的外接圆来学习三角形的内切圆三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆三角形外接圆的圆心叫三角形的外心三角形的外心到三角形______________相等三角形的外心是三角形三边中垂线的交点三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆三角形内切圆的圆心叫三角形的内心三角形的内心到_________的距离相等三角形的内心是三角形三角平分线的交点3.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角________,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形______________.4.正多边形与圆在正多边形的有关计算中,如果分别以αn、a n、r n、R n、P n和S n表示正n(n≥3,n为整数)边形的中心角、边长、边心距、半径、周长和面积,则有:①αn=;②a n=2R n·sin;③r n=R n·cos;④+;⑤P n=na n;⑥S n=P n r n;⑦S n=n sin.(因为一个三角形的面积为:h·OB)注意两点:1.构造直角三角形(弦心距、边长的一半、半径组成的)求线段之间的关系等;2.准确记忆相关公式。

参考答案:1.(1)三个角平分线(2) 三边中垂线2.三个顶点的距离, 三角形三边3.(1)互补(2) 对边之和相等经典例题解析:1. 利用三角形的内心求角度【例1】(2018湖北宜昌一模)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130° B.100°C.50°D.65°【解析】此题解题的关键是弄清三角形内切圆的圆心是三角形内角平分线的交点.【答案】A练习1.如图,I是△ABC内心,则∠BIC与∠A的关系是( D )A. ∠BIC=2∠AB. ∠BIC=180°-∠AC. ∠BIC=D. ∠BIC=【答案】B练习2.(2017湖北恩施一模)如图,圆O是△ABC的内切圆,与三角形三边分别切于D、E、F,知∠B=50°,∠C=60°,则∠EDF= 。

【答案】55°2. 三角形外接圆问题【例2】正三角形的外接圆半径是R,则它的边长是()A.0.5RB. RC. RD. R【解析】正三角形的外接圆边长是半径的3倍,圆心与三角形两个顶点的连线是一个顶角为120°的等腰三角形,可证倍数关系,带入即可。

【答案】B练习3. 若三角形的三边长分别为1,1和,则外接圆的半径为____________。

【答案】练习4. 等边三角形的边长为4cm,它的外接圆的面积为____________。

【答案】3.内切、外接、外切问题的综合【例3】正方形ABCD的四个顶点分别在⊙O上,点P在劣弧上不同于点C得到任意一点,则∠BPC的度数是()A. B. C. D.。

【解析】圆的内接正方形,内心外心重合,可求∠BOC的度数,利用同弧所对的圆周角是圆心角的一半,∠BPC是∠BOC的一半即可。

【答案】A练习5.同一个圆的外切正方形和内接正方形的相似比是()A. 2:1B. 1:2C.D.【答案】C练习6.△ABC中设I是△ABC的内心,O是△ABC的外心,⑴若∠A=80°,则∠BIC=________,∠BOC=________.⑵若∠A=a,则∠BIC=________,∠BOC=________.【答案】(1)130°,160°(2)90°+,2a4.内切圆综合题【例4】已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC 的面积S.【解析】连接圆心和切点,把三角形分成三个小三角形,而且有现成的底和高就可以求出每个小三角形的面积,加起来可得大三角形的面积。

【答案】解:设△ABC与⊙O相切与点D、E、F.连接OA、OB、OC、OD、OE、OF.则OD⊥AB,OE⊥BC,OF⊥AC.∵S△AOB=AB•OD=AB•r,同理,S△OBC=BC•r,S△OA C=AC•r.∵S△ABC=S△AOB+S△OBC+S△OA C,即S=AB•r+BC•r+AC•r,则S=(a+b+c)•r.练习7.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC 的长.【答案】解:∵⊙O是△ABC的内切圆,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠BOC=105°,∴∠OBC+∠OCB=180°-105°=75°,∴∠ABC+∠ACB=2×75°=150°,∴∠A=180°-(∠ABC+∠ACB)=30°,∵∠C=90°,AB=20cm,∴BC=AB=10cm,AC=10cm练习8.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.【答案】解:如图;(1)在Rt△ABC,∠C=90°,AC=12cm,BC=9cm;根据勾股定理AB=AC2+BC2=15cm;四边形OFC D中,OD=OF,∠ODC=∠OFC=∠C=90°;则四边形OFC D是正方形;由切线长定理,得:AD=AE,CD=CF,BE=BF;则CD=CF=(AC+BC-AB);即:r=(12+9-15)=3.(2)当AC=b ,BC=a ,AB=c , 由以上可得: CD =CF =(AC+BC-AB );即:r=(a+b-c ).则⊙O 的半径r 为:(a+b-c ).5. 正多边形和圆【例5】正六边形两条对边之间的距离是2,则它的边长是( )A.B.C.D.【解析】正六边形是正多边形中最重要的多边形,要注意正六边形的一些特殊性质。

△ABF是含120°角的等腰三角形,以△ABF 为研究对象即可求。

【答案】解:如图所示,BF =2,过点A 作AG ⊥BF 于G ,则FG =1又∵∠FAG =60°故选B练习9. 求证圆的外切正多边形的面积等于其周长与圆的半径的积的一半.【答案】证明:设外切多边形周长为P ,内切圆⊙O 半径为R,连结O 与正多边形的各顶点及切点,如图∵ OM ⊥AB,ON ⊥BC,……,3323323223D∴=∠==AF FG FAG sin 132233∴ S△OAB=OM·AB=R·AB,=ON·BC=R·BC……,S△OBC∴正多边形ABCD……面积为S=R(AB+BC+……)=R·P.练习10.如图,若正六边形的面积为6,求正六边形内切圆的内接正三角形的面积.【解析】如下图,线段OC是正六边形的边心距,由内接正三边形的边长,则线段OC可以将两图形联系起来。

【答案】解:如图,设AB是正六边形的一条边长,C点为切点,CD为正六边形内切⊙O的内接正三角形的一条边长,过O点作OE⊥CD于E,分别连结OA、OB、OC、OD.∴ OC=R,AB=a6,BC=a6,∠BOC=30°,CD=a3,CE=a3,OE=r3,∠COE=60°,∵ S6=6·S△OAB,∴ S6=6×a6·OC=6,∵ OC=BC·cot30°,∴ OC=a6,∴ 6×a6·a6=6,∴ a6=2,∴OC=,∵ OE=OC·cos60°, ∴ OE=,∵ CE=OC·sin60°, ∴ CE=, ∴ CD=2CE=3,∴S 3=3×CD·OE, ∴S 3=3××3×=.练习11. 正三角形的边心距、半径和高的比是( )A. 1∶2∶3B.C. D.【答案】解:如图所示,OD 是正三角形的边心距,OA 是半径,AD 是高设,则AO =2r ,AD =3r∴OD ∶AO ∶AD =r ∶2r ∶3r =1∶2∶3 故选A【例6】周长相等的正三角形、正四边形、正六边形的面积之间的大小关系是()A. B. C.D.【解析】设它们的周长为,则正三角形的边长是,正四边形的边长为,正六边形的边长为【答案】B练习12. 如图所示,正五边形的对角线AC 和BE 相交于点M ,求证:(1);123∶∶123∶∶123∶∶OD r =S S S 346、、S S S 346>>S S S 643>>S S S 634>>S S S 463>>l a l 313=a l 414=a l 616=∴=︒=⨯⨯=S a l l 332221260121932336sin S a l S a l l44226622211661260612136323372===⨯︒=⨯⨯⨯=sin ∴>>S S S 643ME AB =(2)【答案】证明:(1)正五边形必有外接圆,作出这个辅助圆,则∴∠BEA =36°(2)又∵公共角∠ABM =∠EBA ∴△ABM ∽△EBA练习13. 已知正六边形ABCDEF 的半径为2cm ,求这个正六边形的边长、周长和面积。

【解析】本题的关键是正六边形的边长等于半径。

【答案】解:∵正六边形的半径等于边长∴正六边形的边长 正六边形的周长 正六边形的面积 练习14. 已知正方形的边长为2cm ,求它的外接圆的外切正三角形的边长和面积。

【解析】本题的重点是正方形的边长、圆的半径和正三角形的半径之间的关系。

相关文档
最新文档