最新苏教版初中数学10.4 探索三角形相似的条件(2)同步练习(含答案)
新苏教版初三中考相似寻找相似三角形的方法精品练习

BD BE AD AF 相似练习2【相似解题技巧】预备定理:平行于三角形一边的直线所截得的三角形与原三角形相似;(平行线) 定理1:两角对应相等的两个三角形相似;(AA )定理2:两边对应成比例且夹角相等的两个三角形相似;(SAS )定理3:三边对应成比例的两个三角形相似;(SSS )直角三角形相似的判定定理:一组直角边和斜边对应成比例的两个直角三角形相似。
(HL ) 寻找相似三角形的技巧:方法1:三点定型法:基本方法就是找出与结论中的线段有关的两个三角形,然后证明这两个三角形相似,利用“相似三角形对应边成比例”推出结论。
(横看竖找)例:如图所示,AD 是直角三角形ABC 斜边上的高,DE ⊥DF ,且DE 和DF 交AB 、AC 于E 、F .求证:方法2:等线段代换法:有时求证比例式中的四条线段都在图形的同一条直线上,不能组成三角形,或即使四条线段能构成两个三角形,但这两个三角形根本不相似,此时可以根据已知条件找到与比例式中某条线段相等的一条线段来代替,再用三点定型法确定相似三角形.例:如图,在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 且交AC 于F ,过F 作FG ∥AB ,交AE 于G .求证:AG ²=AF*FC .方法3:等式代换法:当用三点定型法不能确定三角形,或虽然能确定三角形,但这两个三角形不可能相似,同时也无等线段代换时,可考虑用等比代换法,即用“中间比”进行转换,然后再用“三点定型法”确定三角形例:如图,在△ABC 中,∠BAC=90°,AD ⊥BC ,E 为AC 中点,ED 的延长线交AB 的延长线于F ,求证:AB:AC=DF:AF【练习】1.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB=1,CD=3,那么EF 的长是( )CE AE BF AF 2.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,连接CE ,DE .AC 与DE 相交于点F .(1)、求证:△ADF ∽△CEF ;(2)、若AD=4,AB=6,求AC/AF 的值.3.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。
苏科版九年级数学下册探索相似的条件(2)课后作业

探索相似的条件(2)课后作业1.下列叙述中,不正确的是( ) A.在Rt△ABC中,∠C=90°,∠B=20°,在Rt△A′B′C′中,∠C′=90°,∠A′=20°,则△AB C∽△A′B′C′B.△ABC的两个角分别是35°和100°,△A′B′C′的两个角分别是45°和35°,则这两个三角形相似C.等腰△ABC和等腰△A′B′C′都有一个角为90°,则△ABC与△A′B′C′相似D.等腰△ABC和等腰△A′B′C′都有一个角为105°,则△ABC与△A′B′C′相似2.如图,在△ABC中,点D在边AB上,满足∠ACD=∠ABC,则△_______∽△_______,若AC=2,AD=1,则DB=_______.(2)(3)(4)3.已知在△ABC中,∠A=40°,∠B=75°,则在如图所示的三角形中,与△ABC相似的是_______.4.如图,D、E分别是△ABC的边AC、AB上的点,请你添加一个条件,使△ADE与△ABC相似.你添加的条件是_______________.5.如图,A、B两地被池塘隔开,在AB外取一点C,连接AC、BC,在AC上取点M,使AM=3MC,作MN∥AB,交BC于N,量得MN=38 m,则AB的长为_______.(5)(6)(7)(8)6.如图,零件的外径为25 mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC:OA=1:2,量得CD=10 mm,则零件的厚度x=_______mm.7.如图,在正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF相交于点M,则图中与△ABM相似的三角形有____________________.8.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC 的延长线于点E,则CE的长为( )A.32B.76C.256D.2三、解答题9.如图,∠1=∠2,∠D=∠C.试说明:△AB C∽△EBD.10.如图,E 是矩形ABCD 的边CD 上的一点,BF ⊥AE 于点F .试说明:△ABF ∽△EAD .11.如图,D 、E 分别是△ABC 的边AC 、AB 上的点,若∠A=38°,∠C=82°,∠1=60°,则AD AB AE AC成立吗?为什么?12.请设计三种不同的分法,将如图所示的直角三角形分割成四个小三角形,使得每个小三角形与原三角形都相似(要求画出分割线段,标出能够说明分法的必要记号,不要求写出画法,不要求说明理由).13.如图,在ABCD 中,E 为BC 边上的一点,连接A E 、DE ,F 为线段DE 上的一点,且∠AFE =∠B .求证:△ADF ∽△DEC .14.如图,在Rt △ABC 中,AD ⊥BC ,垂足为D .求证:(1)△ABC ∽△DBA (2)AB ²=BD ·BC初中数学试卷灿若寒星制作。
2020—2021年新苏科版九年级数学下册《图形的相似-相似三角形的性质》专题练习及答案.docx

2017-2018学年苏科版(新课标)九年级下册第六章《图形的相似》(相似三角形的性质)一.选择题1.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:22.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:163.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C. D.24.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.5.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.6.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:257.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F 在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.8.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB 的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S △ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个9.如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A.B.C.D.10.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1 B.2 C.3 D.411.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.412.如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③二.填空题13.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= °.14.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC=3,则S△BCF= .15.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC= .16.如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为.17.如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是.18.如图,在△ABC中,D、E分别是边AB、AC上的点,且DE ∥BC,若△ADE与△ABC的周长之比为2:3,AD=4,则DB= .19.如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI= .20.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.21.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF 上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三.解答题22.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.23.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.24.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC 的长.25.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.26.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.27.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.28.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.29.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P 为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.30.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.参考答案与解析一.选择题1.(2016•临夏州)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.2.(2016•重庆)△ABC与△DEF的相似比为1:4,则△ABC 与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:16【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.3.(2016•淄博)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C. D.2【分析】根据题意得出△PAM∽△QBM,进而结合勾股定理得出AP=3,BQ=,AB=2,进而求出答案.【解答】解:连接AP,QB,由网格可得:∠PAB=∠QBA=90°,又∵∠AMP=∠BMQ,∴△PAM∽△QBM,∴=,∵AP=3,BQ=,AB=2,∴=,解得:AM=,∴tan∠QMB=tan∠PMA===2.故选:D.【点评】此题主要考查了勾股定理以及相似三角形的判定与性质以及锐角三角函数关系,正确得出△PAM∽△QBM是解题关键.4.(2016•兰州)已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.【分析】根据相似三角形的对应中线的比等于相似比解答.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选:A.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.5.(2016•金华)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【分析】由△DAH∽△CAB,得=,求出y与x关系,再确定x的取值范围即可解决问题.【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.6.(2016•随州)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:25【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到=,==,结合图形得到=,得到答案.【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴=,∵DE∥AC,∴==,∴=,∴S△BDE与S△CDE的比是1:4,故选:B.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.7.(2016•泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2 ∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.8.(2016•丹东)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S△ABC=2S△ABD=4S△ADF.④正确;故选:D.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的判定与性质;本题综合性强,有一定难度,证明三角形相似和三角形全等是解决问题的关键.9.(2016•台湾)如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A.B.C.D.【分析】由DE∥BC可得求出AE的长,由GF∥BN可得,将AE的长代入可求得BN.【解答】解:∵四边形DEFG是正方形,∴DE∥BC,GF∥BN,且DE=GF=EF=1,∴△ADE∽△ACB,△AGF∽△ANB,∴①,②,由①可得,,解得:AE=,将AE=代入②,得:,解得:BN=,故选:D.【点评】本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.10.(2016•深圳)如图,CB=CA,∠ACB=90°,点D在边BC 上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ •AC,其中正确的结论的个数是()A.1 B.2 C.3 D.4【分析】由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.11.(2016•日照)如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.4【分析】先作辅助线DH⊥AB于点D,然后根据特殊角的三角函数值可以求得DH的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得S1+S2+S3的值.【解答】解:作DH⊥AB于点H,如右图所示,∵AD=2,AB=2,∠A=60°,∴DH=AD•sin60°=2×=,∴S ▱ABCD=AB•DH=2=6,∴S2+S3=S△PBC=3,又∵E、F分别是PB、PC(靠近点P)的三等分点,∴,∴S△PEF=×3=,即S1=,∴S1+S2+S3=+3=,故选A.【点评】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,画出合适的辅助线,利用数形结合的思想解答问题.12.(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③【分析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.【解答】解:假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③由②得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.【点评】本题考查了相似多边形的判定和性质,对于有中点的三角形可以利用三角形中位线定理得出;本题线段比较多要依次相加,做到不重不漏.二.填空题13.(2016•宁德)如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= 37 °.【分析】根据相似三角形的对应角相等,可得答案.【解答】解:由△ADE∽△ABC,若∠ADE=37°,得∠B=∠ADE=37°,故答案为:37.【点评】本题考查了相似三角形的性质,熟记相似三角形的性质是解题关键.14.(2016•梅州)如图,在平行四边形ABCD中,点E是边AD 的中点,EC交对角线BD于点F,若S△DEC=3,则S△BCF= 4 .【分析】根据平行四边形的性质得到AD∥BC和△DEF∽△BCF,由已知条件求出△DEF的面积,根据相似三角形的面积比是相似比的平方得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴,=()2,∵E是边AD的中点,∴DE=AD=BC,∴=,∴△DEF的面积=S△DEC=1,∴=,∴S△BCF=4;故答案为:4.【点评】本题考查的是平行四边形的性质、相似三角形的判定和性质;掌握三角形相似的判定定理和性质定理是解题的关键,注意:相似三角形的面积比是相似比的平方.15.(2016•遵义)如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S △BDE=,则AC= 2 .【分析】设BC=4x,根据面积公式计算,得出BC=4BD,过E作AC,BC的垂线,垂足分别为F,G;证明CFEG为正方形,然后在直角三角形ACD中,利用三角形相似,求出正方形的边长(用x表示),再利用已知的面积建立等式,解出x,最后求出AC=BC=4x即可.【解答】解:过E作AC,BC的垂线,垂足分别为F,G,设BC=4x,则AC=4x,∵CE是∠ACB的平分线,EF⊥AC,EG⊥BC,∴EF=EG,又S△ACE=,S△BDE=,∴BD=AC=x,∴CD=3x,∵四边形EFCG是正方形,∴EF=FC,∵EF∥CD,∴=,即=,解得,EF=x,则×4x×x=,解得,x=,则AC=4x=2,故答案为:2.【点评】本题考查的是相似三角形的性质、角平分线的性质,掌握相似三角形的对应边的比相等、角的平分线上的点到角的两边的距离相等是解题的关键.16.(2016•山西)如图,已知点C为线段AB的中点,CD⊥AB 且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为3﹣.【分析】根据AB=CD=4、C为线段AB的中点可得BC=AC=2、AD=2,再根据EH⊥DC、CD⊥AB、BE⊥AB得EH∥AC、四边形BCGH为矩形,BC=GE=2,继而由AE是∠DAB的平分线可得∠DAE=∠HEA即HA=HE,设GH=x得HA=2+x,由△DHG∽△DAC得=,列式即可求得x.【解答】解:∵AB=CD=4,C为线段AB的中点,∴BC=AC=2,∴AD=2,∵EH⊥DC,CD⊥AB,BE⊥AB,∴EH∥AC,四边形BCGH为矩形,∴∠HEA=∠EAB,BC=GE=2,又∵AE是∠DAB的平分线,∴∠EAB=∠DAE,∴∠DAE=∠HEA,∴HA=HE,设GH=x,则HA=HE=HG+GE=2+x,∵EH∥AC,∴△DHG∽△DAC,∴=,即=,解得:x=3﹣,即HG=3﹣,故答案为:3﹣.【点评】本题主要考查勾股定理、平行线的性质和判定、等腰三角形的判定与性质、矩形的判定与性质及相似三角形的判定与性质等知识点,根据相似三角形的性质得出对应边成比例且表示出各边长度是关键.17.(2016•舟山)如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是7 .【分析】根据题意,易得△CDF与四边形AFEB的面积相等,再根据相似三角形的相似比求得它们的面积关系比,从而求DF的长.【解答】解:∵△ABC与△DEC的面积相等,∴△CDF与四边形AFEB的面积相等,∵AB∥DE,∴△CEF∽△CBA,∵EF=9,AB=12,∴EF:AB=9:12=3:4,∴△CEF和△CBA的面积比=9:16,设△CEF的面积为9k,则四边形AFEB的面积=7k,∵△CDF与四边形AFEB的面积相等,∴S△CDF=7k,∵△CDF与△CEF是同高不同底的三角形,∴面积比等于底之比,∴DF:EF=7k:9k,∴DF=7.故答案为:7.【点评】此题考查了相似三角形的判定与性质,解题的关键是会用割补法计算面积.18.(2016•乐山)如图,在△ABC中,D、E分别是边AB、AC 上的点,且DE∥BC,若△ADE与△ABC的周长之比为2:3,AD=4,则DB= 2 .【分析】由DE∥BC,易证△ADE∽△ABC,由相似三角形的性质即可求出AB的长,进而可求出DB的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵△ADE与△ABC的周长之比为2:3,∴AD:AB=2:3,∵AD=4,∴AB=6,∴DB=AB﹣AD=2,故答案为:2.【点评】此题主要考查的是相似三角形的性质:相似三角形的一切对应线段(包括对应边、对应中线、对应高、对应角平分线等)的比等于相似比,面积比等于相似比的平方.19.(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI 是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI= .【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.20.(2016•安顺)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH 的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.【解答】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.21.(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F 处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt △ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F 处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.【点评】本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三.解答题22.(2016•广州)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到或,代入数据即可得到结论.【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BEC相似,∴或,∴==或,∴BE=2,CE=,或CE=,∵BC•EF=BE•CE,∴EF=2,CF==1,∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.23.(2016•宁波)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.24.(2016•泰州)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC 的长.【分析】(1)由AB=AC,AD平分∠CAE,易证得∠B=∠DAG=∠CAG,继而证得结论;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AD平分∠CAE,∴∠DAG=∠CAG,∵AB=AC,∴∠B=∠ACB,∵∠CAG=∠B+∠ACB,∴∠B=∠CAG,∴∠B=∠DAG,∴AD∥BC;(2)解:∵CG⊥AD,∴∠AFC=∠AFG=90°,在△AFC和△AFG中,,∴△AFC≌△AFG(ASA),∴CF=GF,∵AD∥BC,∴△AGF∽△BGC,∴GF:GC=AF:BC=1:2,∴BC=2AF=2×4=8.【点评】此题考查了等腰三角形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意证得△AGF∽△BGC是关键.25.(2016•怀化)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【分析】(1)根据EH∥BC即可证明.(2)如图设AD与EH交于点M,首先证明四边形EFDM是矩形,设正方形边长为x,再利用△AEH∽△ABC,得=,列出方程即可解决问题.【解答】(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.【点评】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是利用相似三角形的相似比对于高的比,学会用方程的思想解决问题,属于中考常考题型.26.(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型.27.(2016•大庆)如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.【分析】根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∴∠F=∠FCD,在△ADG与△CDG中,,∴△ADG≌△CDG,∴∠EAG=∠DCG,∴AG=CG;(2)∵△ADG≌△CDG,∴∠EAG=∠F,∵∠AGE=∠AGE,∴△AEG∽△FGA,∴,∴AG2=GE•GF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.28.(2016•梅州)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.【分析】(1)由已知条件得出AB=10,.由题意知:BM=2t,,,由BM=BN得出方程,解方程即可;(2)分两种情况:①当△MBN∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;②当△NBM∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;(3)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t.四边形ACNM的面积y=△ABC的面积。
苏科版数学八年级下册10.4探索三角形相似的条件同步练习

10.4探索三角形相似的条件(2) 同步练习【目标与方法】1.进一步通过实践与探索,得出两个三角形具备有两边对应成比例, 并且夹角相等的条件,即可判断两个三角形相似的方法.2.能选择适当的方法判断三角形相似,灵活解决与三角形相似有关的问题.【基础与巩固】1.如图,P 是△ABC 的边AC 上的一点,连接BP .以下条件中,不能判定△ABP ∽△ACB 的是( ).(A )()AB ACAC BCB AP ABAB BP==(C )∠ABP=∠C (D )∠APB=∠ABC2.已知:在△ABC 和△A ′B ′C ′中,∠B=∠B ′,AB=6,BC=8,B ′C ′=4,当A ′B ′=_______时,△ABC ∽△A ′B ′C ′. 3.如图,在△ABC 中,∠C=90°,点D 、E 分别在AB 、AC 上,且AD ·AB=AF ·AC .ED 与AB 垂直吗?请说明理由.4.如图,四边形ABEG 、GEFH 、HFCD 都是正方形,请你在图中找出一对相似比不等于1的相似三角形,并说明理由.【拓展与延伸】5.如图,D 是△ABC 内的一点,E 是△ABC 外的一点,且∠1=∠2,∠3=∠4, 图中有与∠ACB 相等的角吗?如果有,请找出来,并说明理由.6.如图,AB⊥MN,CD⊥MN,垂足分别为B、D,AB=2,CD=4,BD=3.在直线MN 上是否存在点P,能使△PAB∽△PCD?如果存在,满足上述条件的点P有几个?说明点P 与点B、 D的距离,并把图形画出来.7.已知:如图,△ABC、△DCE、△FEG是3个全等的等腰三角形,边BC、CE、EG 在一条直线上,且BC=1,连接BF,分别交AC、DC、DE于点P、Q、R.(1)△BFG与△FEG相似吗?请说明理由;(2)求BF的长;(3)观察图形,请你提出一个与点P相关的问题,并进行解答.【后花园】妙趣角著名科学家爱因斯坦早在12岁时就利用相似三角形独立地证明了勾股定理.他认为:直角三角形的边的关系,必然是由其一锐角完全决定.爱因斯坦的方法是首先作出Rt△ABC(∠ACB=90°)的高CD.请你先找出图中的相似三角形,再利用它们来说明勾股定理:AC2+BC2=AB2.试试看!你也能行!答案: 1.(B ) 2.3. 3.垂直.由△ADE ∽△ACB ,得∠ADE=∠C=90°4.△AEF ∽△CEA .由勾股定理,得a ,则AE ECEF AE=AEF=∠CEA ,所以△AEF ∽△CEA 5.∠ACB=∠DEB .理由是:因为∠1=∠2,∠3=∠4, 所以△ABD ∽△CBE ,所以AB BCBD BE=.又∠1+∠DBC=∠2+∠DBC , 即∠ABC=∠DBE ,所以△ABC ∽△DBE ,所以∠ACB=∠DEB6.存在.满足条件的点有2个: 一个是CA 的延长线与MN 的交点P 1(P 1B=3),另一个是取点A 关于MN 的对称点,CA ′与MN 的交点是P 2(P 2B 2=1).略略7.(1)相似.因为FG EGBG FG ==3;(2)3; (3)问题可以是:①线段间的平行关系, 如:PC ∥FG ;②线段长度与比值,如:BP 的长度为多少,BP 与PF 长度的比值是多少,PC 与AP 的比值是多少等;③三角形的相似,如:△BPC ∽△ABC ,△PQC ∽△PAB 等; ④三角形的全等,如△QPC ≌△QRD 等.。
苏科版八下104探索三角形相似的条件同步测试题4套.docx

10.4探索三角形相似的条件(1)同步练习【目标与方法】1. 通过探索与交流,得出两个三角形只要具备有两个角对应相等,即可判断两个三角 形相似的方法.2. 尝试判断两个三角形相似,并解决生活中的实际问题.【基础与巩固1. (1)已知:如图1,在AABC 中,ZA=40° , ZB=75° ,图中各三角形中与AABC 相(2)如图2,锐角△ ABC 的边AB 、AC±的高CE 和BF 相交于点D,请写出图中的 两对相似三角形: ___________________ (用相似符号连接).2. (1)具备下列各组条一件的两个三角形中,不一定相似的是().(A )有一个角是40°的两个等腰三角形;(B )两个等腰直角三角形;(C )有一个角为100°的两个等腰三角形;(D )两个等.边三角形(2)如图3, E 是 ABCD 的边BC 的延长线上的一点,连接AE 交CD 于点F,图中的 相似三角形有().4. 如图,在Z\ABC 中,DE//BC, EF 〃AB,试说明△ ADE^AEFC.(3)如图4,在AABC 中,ZBAC=90° , D 是BC 的中点, 点E.下列结论正确的是(.). AE±AD 交CB 的延长线于 (A) AAED^AACB (C) ABAE^AACE (B) AAEB^AACD(D) AAEC^ADAC 3.如图,在ZsABC 中,AB=AC, 相似吗?请说明理由.ZA=36°, BD 是ZABC 的角平分线.ZsABC 与厶BDC (A) 1 对 3对 (D) 4 对Ac5.已知:如图,ZkABC、ZkDEF均.为等边三.角形,点D、E分别在AB、BC±.(1)如图①,当D、E分别在AB、BC的中点时,图中有与ADBE相似的三角形吗? 请你找出来,并选择.一个说明理由;(2)如图②,当D、E分别从AB、BC的中点向点A、C以相同的速度运动时,图中有与ADBE相似的三角形吗?如果有,请你.找出来,并选择一个说明理由;(3)如图③,当D、E分别是AB、BC上的任意一点,(2)中的结果是否仍然成立?如果成立,请你找出来,并选择一个说明理由【拓展与延伸】6.(1)你能将一个直角三角形分割成两个三角形,并且使它们都与原三角形相似吗?试试看,在图①中画出你的设计方案;(2)如果要将这个直角三角形分割成四个三角形,并且它们仍然都与原三角形相似, 你还能做到吗?在图②中画画看!①②7.如图,已知正方形ABCD与正方形A' B' C' D'的边长比为1:2,请你利用这两个正方形,通过割补的方法,得到两个相似三角形,且相似比是1: 3.要.求:(1)借助原图拼图;(2)简要说明方法;(3)指明相似的两个三角形.【后花园】智力操在美国的一堂数学课上,老师给同学们布置了一道“任意等分一条线段”的题.其中有一个学生用了一种与众不同的方法.他在纸上做出了如图所示的一个图形,他以老师给的已知线段AB为一条边作矩形ABCD,设AC、BD交于点O2,作O2P2±AB,则垂足P2就是AB 的二等分点:连接CP2交BD于点。
苏教版初中数学相似三角形专题 有答案有解释

苏教版初中数学相似三角形专题有答案有解释苏教版初中数学相似三角形专题--有答案有解释江苏教育版初中数学相似三角形专题一.填空题(共7小题)1.已知△ 坐标平面上的ABC为a(0,2)、B(3,3)和C(2,1)。
以B为位置相似中心,画一个与△ ABC(与图方向相同),相似比为3。
其三个对应顶点的坐标分别为2.如图,将△abc放在每个小正方形的边长为1的网格中,点a、b、c均落在格点上.(一)面积△ ABC等于;(ⅱ)若四边形defg是△abc中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明).3.如图所示,有两张不同尺寸的4×4方形纸。
它们都由16个小正方形组成。
图中小型和中型广场的面积比① 和数字② 现在是5:4。
请在图中画方格efgh② 使其等于图中栅格正方形ABCD的面积①第1页(共48页)4.如图所示,在RT中△ 美国广播公司,∠ C=90°,CD⊥ AB,垂直脚是D,ad=8,DB=2,那么CD的长度是5.如图,在rt△abc中,∠acb=90°,cd⊥ab于点d,cd=2,bd=1,则ad的长是,ac的长是.6.如图所示,如果CD是RT斜边CD上的高度△ ABC,ad=3cm,CD=4cm,那么BC的长度等于厘米7.如图,在平面直角坐标系中,已知a(1,0),d(3,0),△abc与△def位似,原点o是位似中心.若ab=1.5,则de=.第2页,共48页二.解答题(共23小题)8.如图所示,求出从四边形ABCD到四边形a′B′C′d′α的X和Y边的长度和角度,即9.已知矩形abcd中,在bc上取一点e,沿ae将△abe向上折叠,使b点落在ad上的f点,且四边形efdc与矩形abcd相似.(1)求证:四边形abef是正方形;(2)求证:f点是ad的黄金分割点.10.从三角形(不是等腰三角形)的顶点绘制光线,使其与另一侧相交。
(精品)最新九年级数学图形的相似第59讲相似三角形的判定课后练习新苏教版
第59讲相似三角形的判定(二)题一:根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:(1)∠B=50°,AB= 4,AC=3.2,∠B′=50°,A′B′=2,A′C′=1.6;(2)AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25.题二:根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:(1)∠C=90°,AC=6,BC= 4,∠C’=90°,A′C′=9,B′C′=6;(2)AB=1,BC=1.5,AC=2,A′B′=8,B′C′=10,A′C′=16.题三:已知一个三角形三边长为8,6,12,另一个三角形有一条边为4,要使这两个三角形相似,它的另外两边长应当是多少?题四:如图,一个三角形钢筋框架三边长分别为20cm、50cm、60cm,要做一个与其相似的钢筋框架.现有长为30cm和50cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为另外两边,你认为有几种不同的截法?并分别求出.第59讲相似三角形的判定(二) 题一:不一定相似;相似.详解:(1)∵AB= 4,AC=3.2,A′B′=2,A′C′=1.6,∴AB ACA B A C='''',∵∠B=∠B′=50°,但∠B与∠B′不是已知对应边的夹角,∴△ABC与△A′B′C′不一定相似;(2)∵AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25,∴AB AC BCA B A C B C=='''''',∴△ABC∽△A′B′C′.题二:相似;不相似.详解:(1)∵∠C=90°,AC=6,BC= 4,∠C’=90°,A′C′=9,B′C′=6,∴AC BCA CB C='''',∠C=∠C′,∴△ABC∽△A′B′C′;(2)∵AB=1,BC=1.5,AC=2,A′B′=8,B′C′=10,A′C′=16,∴12 1.581610=≠,即AB AC BCA B A C B C=≠'''''',∴△ABC与△A′B′C′不相似.题三:3和6或163和8或83和2.详解:设另外两边分别为x、y,题中没有指明边长为4的边与原三角形的哪条边对应,所以应分别讨论:①若边长为4的边与边长为8的边相对应,86124x y==,解得x=3,y=6,则另两边为3和6;②若边长为4的边与边长为6的边相对应,68124x y==,解得x=163,y=8,则另两边为163和8;③若边长为4的边与边长为12的边相对应,12864x y==,解得x=83,y=2,则另两边为83和2.故三角形框架的两边长可以是3和6或163和8或83和2.题四:两种;30,25,10或36,30,12.详解:有两种不同的截法:①如图(一),以30cm长的钢筋为最长边,设中边为x,短边长为y,则30605020x y==,解得x=25,y=10,所以从50cm长的钢筋上分别截取10cm、25cm的两段;②如图(二),以30cm长的钢筋为中边,设长边为x,短边长为y,则30506020x y==,解得x=36,y=12,所以从50cm长的钢筋上分别截取12cm、36cm的两段;③若以30cm长的钢筋为短边,设长边为x,中边长为y,则306020x=,解得x=90(不合题意,舍去).。
最新九年级数学图形的相似第59讲相似三角形的判定课后练习新苏教版【优选】
第59讲相似三角形的判定(二)题一:根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:(1)∠B=50°,AB= 4,AC=3.2,∠B′=50°,A′B′=2,A′C′=1.6;(2)AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25.题二:根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:(1)∠C=90°,AC=6,BC= 4,∠C’=90°,A′C′=9,B′C′=6;(2)AB=1,BC=1.5,AC=2,A′B′=8,B′C′=10,A′C′=16.题三:已知一个三角形三边长为8,6,12,另一个三角形有一条边为4,要使这两个三角形相似,它的另外两边长应当是多少?题四:如图,一个三角形钢筋框架三边长分别为20cm、50cm、60cm,要做一个与其相似的钢筋框架.现有长为30cm和50cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为另外两边,你认为有几种不同的截法?并分别求出.第59讲相似三角形的判定(二) 题一:不一定相似;相似.详解:(1)∵AB= 4,AC=3.2,A′B′=2,A′C′=1.6,∴AB ACA B A C='''',∵∠B=∠B′=50°,但∠B与∠B′不是已知对应边的夹角,∴△ABC与△A′B′C′不一定相似;(2)∵AB=10,BC=12,AC=15,A′B′=1.5,B′C′=1.8,A′C′=2.25,∴AB AC BCA B A C B C=='''''',∴△ABC∽△A′B′C′.题二:相似;不相似.详解:(1)∵∠C=90°,AC=6,BC= 4,∠C’=90°,A′C′=9,B′C′=6,∴AC BCA CB C='''',∠C=∠C′,∴△ABC∽△A′B′C′;(2)∵AB=1,BC=1.5,AC=2,A′B′=8,B′C′=10,A′C′=16,∴12 1.581610=≠,即AB AC BCA B A C B C=≠'''''',∴△ABC与△A′B′C′不相似.题三:3和6或163和8或83和2.详解:设另外两边分别为x、y,题中没有指明边长为4的边与原三角形的哪条边对应,所以应分别讨论:①若边长为4的边与边长为8的边相对应,86124x y==,解得x=3,y=6,则另两边为3和6;②若边长为4的边与边长为6的边相对应,68124x y==,解得x=163,y=8,则另两边为163和8;③若边长为4的边与边长为12的边相对应,12864x y==,解得x=83,y=2,则另两边为83和2.故三角形框架的两边长可以是3和6或163和8或83和2.题四:两种;30,25,10或36,30,12.详解:有两种不同的截法:①如图(一),以30cm长的钢筋为最长边,设中边为x,短边长为y,则30605020x y==,解得x=25,y=10,所以从50cm长的钢筋上分别截取10cm、25cm的两段;②如图(二),以30cm长的钢筋为中边,设长边为x,短边长为y,则30506020x y==,解得x=36,y=12,所以从50cm长的钢筋上分别截取12cm、36cm的两段;③若以30cm长的钢筋为短边,设长边为x,中边长为y,则306020x=,解得x=90(不合题意,舍去).。
苏教版初中数学相似三角形专题有答案有解释
苏教版初中数学相似三角形专题一.填空题(共7小题)1.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C (2,1).以B为位似中心,画出及△ABC相似(及图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是.2.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明).3.如图是两张大小不同的4×4方格纸,它们均由16个小正方形组成,其中图①及图②中小正方形的面积比为5:4,请在图②中画出格点正方形EFGH,使它及图①中格点正方形ABCD的面积相等.4.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=1,则AD的长是,AC的长是.6.如图,若CD是Rt△ABC斜边CD上的高,AD=3cm,CD=4cm,则BC的长等于cm.7.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC及△DEF位似,原点O是位似中心.若AB=1.5,则DE= .二.解答题(共23小题)8.如图,四边形ABCD∽四边形A′B′C′D′,求边x、y的长度和角α的大小.9.已知矩形ABCD中,在BC上取一点E,沿AE将△ABE向上折叠,使B 点落在AD上的F点,且四边形EFDC及矩形ABCD相似.(1)求证:四边形ABEF是正方形;(2)求证:F点是AD的黄金分割点.10.从三角形(不是等腰三角形)一个顶点引出一条射线及对边相交,顶点及交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个及原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD是△ABC的完美分割线;(2)如图②,在△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.11.如图,BD∥AC,AB及CD相交于点O,△OBD∽△OAC,=,OB=4,求AO和AB的长.12.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.13.已知:如图,D是BC上一点,△ABC∽△ADE,求证:∠1=∠2=∠3.14.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ及△CBA相似,所需要的时间是多少秒?15.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.16.如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.(1)求证:△ACE≌△DCB;(2)求证:△ADF∽△BAD.17.如图:已知AB⊥DB于B点,CD⊥DB于D点,AB=6,CD=4,BD=14,在DB上取一点P,使以CDP为顶点的三角形及以PBA为顶点的三角形相似,则DP的长.18.如图,在△ABC中,∠C=90°,DM⊥AB于点M,DN⊥BC于点N,交AB 于点E.求证:△DME∽△BCA.19.在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△EBD.20.如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF :S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.22.如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AD2=DG•DE,求证:=.23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC≌△ADC;(2)AE•AB=BC•DE.24.已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.25.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点及“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像及镜面上的标记重合,这时,测得小亮眼睛及地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.26.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小及光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C 的长度和为6cm.那么灯泡离地面的高度为.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)27.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?28.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.29.如图,要在宽为22米的大道两边安装路灯,路灯的灯臂CD长2米,且及灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO及灯臂CD 垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,求路灯的灯柱BC高度.30.如图,以原点O为位似中心,把△OAB放大后得到△OCD,求△OAB及△OCD的相似比.苏教版初中数学相似三角形专题参考答案及试题解析一.填空题(共7小题)1.(2014•黄冈模拟)已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出及△ABC相似(及图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是(﹣6,0)、(3,3)、(0,﹣3).【考点】作图—相似变换.【专题】作图题.【分析】根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,在改变的过程中保持形状不变(大小可变)即可得出答案.【解答】解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应顶点的坐标分别是:(﹣6,0)、(3,3)、(0,﹣3).故答案为:(﹣6,0)、(3,3)、(0,﹣3).【点评】本题考查了相似变换作图的知识,注意图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数.2.(2013•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于 6 ;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,及BC交于点Q,连接PQ及AC相交得点D,过点D画CB的平行线,及AB相交得点E,分别过点D、E画PC的平行线,及CB相交得点G,F,则四边形DEFG即为所求.【考点】作图—相似变换;三角形的面积;正方形的性质.【专题】计算题;压轴题.【分析】(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,及BC交于点Q,连接PQ及AC相交得点D,过点D 画CB的平行线,及AB相交得点E,分别过点D、E画PC的平行线,及CB 相交得点G,F,则四边形DEFG即为所求【解答】解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,及BC交于点Q,连接PQ及AC相交得点D,过点D画CB的平行线,及AB相交得点E,分别过点D、E画PC的平行线,及CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,及BC交于点Q,连接PQ及AC相交得点D,过点D画CB的平行线,及AB相交得点E,分别过点D、E画PC的平行线,及CB相交得点G,F,则四边形DEFG即为所求.【点评】此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.3.(2012•鼓楼区一模)如图是两张大小不同的4×4方格纸,它们均由16个小正方形组成,其中图①及图②中小正方形的面积比为5:4,请在图②中画出格点正方形EFGH,使它及图①中格点正方形ABCD的面积相等.【考点】作图—相似变换.【专题】压轴题.【分析】根据图①及图②中小正方形的面积比为5:4,求出图①中正方形ABCD的面积为8,进而得出正方形EFGH的面积即可.【解答】解:根据图①及图②中小正方形的面积比为5:4,图①中正方形ABCD的面积为8,使它及图①中格点正方形ABCD的面积相等,则图②中正方形EFGH的面积为10,如图所示:【点评】此题主要考查了图形相似的性质,根据图①及图②中小正方形的面积比为5:4得出两个大正方形面积之比是解题关键.4.(2016春•苏州期末)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为 4 .【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.【点评】本题考查了射影定理.Rt△ABC中,∠BAC=90°,AD是斜边BC 上的高,则有射影定理如下:①AD2=BD•DC;②AB2=BD•BC;AC2=CD•BC.5.(2015春•成都校级期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB 于点D,CD=2,BD=1,则AD的长是 4 ,AC的长是2.【考点】射影定理.【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根据同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可证得△ACD∽△CBD,然后利用相似三角形的对应边成比例,即可求得AD,然后根据勾股定理即可求得AC.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4,在Rt△ACD中,AC===2,故答案为:4,2.【点评】此题考查了相似三角形的判定及性质以及直角三角形的性质.此题难度不大,解题的关键是掌握有两角对应相等的三角形相似及相似三角形的对应边成比例定理的应用.6.(2015秋•太原校级期末)如图,若CD是Rt△ABC斜边CD上的高,AD=3cm,CD=4cm,则BC的长等于cm.【考点】射影定理.【分析】根据射影定理求出BD的长,再根据射影定理计算即可.【解答】解:∵CD是Rt△ABC斜边CD上的高,∴CD2=AD•DB,∴BD=,则AB=AD+BD=,∵BC2=BD•BA=×,∴BC=,故答案为:.【点评】本题考查的是射影定理的应用,射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.7.(2016•三明)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC及△DEF位似,原点O是位似中心.若AB=1.5,则DE= 4.5 .【考点】位似变换;坐标及图形性质.【分析】根据位似图形的性质得出AO,DO的长,进而得出==,求出DE的长即可.【解答】解:∵△ABC及DEF是位似图形,它们的位似中心恰好为原点,已知A点坐标为(1,0),D点坐标为(3,0),∴AO=1,DO=3,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.【点评】此题主要考查了位似图形的性质以及坐标及图形的性质,根据已知点的坐标得出==是解题关键.二.解答题(共23小题)8.(2016秋•长春期中)如图,四边形ABCD∽四边形A′B′C′D′,求边x、y的长度和角α的大小.【考点】相似多边形的性质.【分析】直接根据相似多边形的性质即可得出结论.【解答】解:∵四边形ABCD∽四边形A′B′C′D′,∴,∠C=α,∠D=∠D′=140°.∴x=12,,α=∠C=360°﹣∠A﹣∠B﹣∠D=360°﹣62°﹣75°﹣140°=83°.【点评】本题考查的是相似多边形的性质,熟知相似多边形的对应边成比例,对应角相等是解答此题的关键.9.(2015秋•萧县校级月考)已知矩形ABCD中,在BC上取一点E,沿AE 将△ABE向上折叠,使B点落在AD上的F点,且四边形EFDC及矩形ABCD 相似.(1)求证:四边形ABEF是正方形;(2)求证:F点是AD的黄金分割点.【考点】相似多边形的性质;黄金分割.(1)根据题意证明四边形ABEF是矩形,根据折叠的性质得到AB=AF,【分析】证明结论;(2)根据相似多边形的性质得到AB2=FD•AB,根据正方形的性质得到答案.【解答】证明:(1)∵∠B=∠BAF=∠AFE=90°,∴四边形ABEF是矩形,由折叠的性质可知AB=AF,∴四边形ABEF是正方形;(2)∵四边形EFDC及矩形ABCD相似∴=,又AB=CD,∴AB2=FD•AB,又AB=AF,∴AF2=FD•AB,∴F点是AD的黄金分割点.【点评】本题考查的是相似多边形的性质和黄金分割的概念,掌握相似多边形的性质为:对应角相等;对应边的比相等是解题的关键,注意把线段分成两条线段,且使较长是已知线段和较短的比例中项,叫做把线段AB 黄金分割.10.(2016秋•滦南县期中)从三角形(不是等腰三角形)一个顶点引出一条射线及对边相交,顶点及交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个及原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD是△ABC的完美分割线;(2)如图②,在△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的性质;等腰三角形的判定及性质.【分析】(1)根据三角形内角和定理求出∠ACB=80°,根据角平分线的定义得到∠ACD=40°,证明△BCD∽△BAC,证明结论;(2)根据△BCD∽△BAC,得到,设BD=x,解方程求出x,根据相似三角形的性质定理列式计算即可.【解答】解:(1)∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD是等腰三角形,∵∠BCD=∠A=40°,∠CBD=∠ABC∴△BCD∽△BAC,∴CD是△BAC的完美分割线;(2)∵△BCD∽△BAC,∴,∵AC=AD=2,BC=,设BD=x,则AB=4+x,∴,解得x=﹣1±,∵x>0,∴BD=x=﹣1+,∵△BCD∽△BAC,∴,∵AC=2,BC=,BC=﹣1+∴CD==﹣.【点评】本题考查的是相似三角形的性质、等腰三角形的判定及性质,掌握相似三角形的判定定理和性质定理是解题的关键.11.(2016秋•莲都区校级月考)如图,BD∥AC,AB及CD相交于点O,△OBD∽△OAC,=,OB=4,求AO和AB的长.【考点】相似三角形的性质.【分析】由相似比可求得OA的长,再利用线段的和可求得AB长.【解答】解:∵△OBD∽△OAC,∴==,∴=,解得OA=6,∴AB=OA+OB=4+6=10.【点评】本题主要考查相似三角形的性质,掌握相似三角形的对应边成比例是解题的关键.12.(2015秋•佛山期末)如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.【考点】相似三角形的性质.【分析】根据等边三角形的性质得到∠PCD=60°,根据相似三角形的判定定理证明△ACP∽△ABP,根据相似三角形的性质得到答案.【解答】解:∵△PCD是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP∽△PDB,∴∠APC=∠B,又∠A=∠A,∴△ACP∽△ABP,∴∠APB=∠ACP=120°.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的对应角相等是解题的关键.13.(2015秋•延庆县期末)已知:如图,D是BC上一点,△ABC∽△ADE,求证:∠1=∠2=∠3.【考点】相似三角形的性质.【分析】由相似三角形的性质易证∠1=∠2,再由三角形内角和定理易证∠2=∠3,进而可证明∠1=∠2=∠3.【解答】证明:∵△ABC∽△ADE,∴∠C=∠E,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠1=∠2,在△AOE和△DOC中,∠E=∠C,∠AOE=∠DOC(对顶角相等),∴∠2=∠3,∴∠1=∠2=∠3.【点评】本题考查了相似三角形的性质,熟记相似三角形的各种性质是解题关键.14.(2015秋•泗县期中)如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s 的速度向点A移动,如果动点P、Q同时出发,要使△CPQ及△CBA相似,所需要的时间是多少秒?【考点】相似三角形的性质;一元一次方程的应用.【专题】动点型;分类讨论.【分析】若两三角形相似,则由相似三角形性质可知,其对应边成比例,据此可解出两三角形相似时所需时间.【解答】解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ及△CBA相似,所需要的时间为1.2或秒.【点评】本题综合考查了相似三角形的性质以及一元一次方程的应用问题,并且需要用到分类讨论的思想,解题时应注意解答后的验证.15.(2016•兴化市校级二模)如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.【考点】相似三角形的判定;正方形的性质;平行线分线段成比例.【专题】计算题;证明题.【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长.【解答】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【点评】此题考查了相似三角形的判定(有两边对应成比例且夹角相等三角形相似)、正方形的性质、平行线分线段成比例定理等知识的综合应用.解题的关键是数形结合思想的应用.16.(2016•萧山区模拟)如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.(1)求证:△ACE≌△DCB;(2)求证:△ADF∽△BAD.【考点】相似三角形的判定;全等三角形的判定及性质.【专题】证明题.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)利用(1)中全等三角形的对应角相等,平行线的判定及性质以及两角法证得结论.【解答】解:(1)∵△ACD和△BCE都是等边三角形,∴AC=CD,CE=CB,∠ACD=∠BCE=60°∴∠ACE=∠DCB=120°.∴△ACE≌△DCB(SAS);(2)∵△ACE≌△DCB,∴∠CAE=∠CDB.∵∠ADC=∠CAD=∠ACD=∠CBE=60°,∴DC∥BE,∴∠CDB=∠DBE,∴∠CAE=∠DBE,∴∠DAF=∠DBA.∴△ADF∽△BAD.【点评】本题考查了全等三角形的判定及性质.有两组边对应相等,并且它们所夹的角也相等,那么这两个三角形全等;有两组角分别相等,且其中一组角所对的边对应相等,那么这两个三角形全等;全等三角形的对应边相等,对应角相等.17.(2016•厦门校级模拟)如图:已知AB⊥DB于B点,CD⊥DB于D点,AB=6,CD=4,BD=14,在DB上取一点P,使以CDP为顶点的三角形及以PBA 为顶点的三角形相似,则DP的长.【考点】相似三角形的判定.【分析】根据已知可以分△PDC∽△ABP或△PCD∽△PAB两种情况进行分析.【解答】解:∵AB⊥DB,CD⊥DB∴∠D=∠B=90°,设DP=x,当PD:AB=CD:PB时,△PDC∽△ABP,∴=,解得DP=2或12,当PD:PB=CD:AB时,△PCD∽△PAB,∴=,解得DP=5.6∴DP=5.6或2或12.【点评】此题考查了相似三角形的判定,①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形及原三角形相似.18.(2016•云南模拟)如图,在△ABC中,∠C=90°,DM⊥AB于点M,DN ⊥BC于点N,交AB于点E.求证:△DME∽△BCA.【考点】相似三角形的判定.【专题】证明题.【分析】先证明∠DEM=∠A,再由∠C=∠DME=90°,根据有两组角对应相等的两个三角形相似即可证明△DME∽△BCA.【解答】证明:∵∠C=90°,DM⊥AB于点M,DN⊥BC于点N,∴∠C=∠ENB=∠DME=90°,∴AC∥DN,∴∠BEN=∠A,∵∠BEN=∠DEM,∴∠DEM=∠A.在△DME及△BCA中,,∴△DME∽△BCA.【点评】本题考查了相似三角形的判定,方法有(1)平行线法:平行于三角形的一边的直线及其他两边相交,所构成的三角形及原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.19.(2016•厦门校级模拟)在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△EBD.【考点】相似三角形的判定;矩形的性质.【专题】证明题.【分析】根据已知结合相似三角形的判定及性质得出=,进而得出△DEF∽△BED.【解答】证明:∵AC⊥BE,∴∠AFB=∠AFE=90°,∵四边形ABCD是矩形,∴∠BAE=90°,又∵∠AEF=∠BEA,∴△AEF∽△BEA,∴=,∵点E是AD的中点,∴AE=ED,∴=,又∵∠FED=∠DEB,∴在△DEF和△BED中=﹛∠FED=∠DEB∴△DEF∽△BED.【点评】此题主要考查了相似三角形的判定及性质以及矩形的性质,正确得出=是解题关键.20.(2016春•昌平区期末)如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.【考点】相似三角形的判定.【专题】证明题.【分析】根据直角三角形斜边上的中线性质求出AM=CM,推出∠C=∠CAM,求出∠DAB=∠CAM ,求出∠DAB=∠C ,根据相似三角形的判定得出即可.【解答】证明:∵∠BAC=90°,点M 是BC 的中点,∴AM=CM ,∴∠C=∠CAM ,∵DA ⊥AM ,∴∠DAM=90°,∴∠DAB=∠CAM ,∴∠DAB=∠C ,∵∠D=∠D ,∴△DBA ∽△DAC .【点评】本题考查了相似三角形的判定,直角三角形斜边上的中线性质的应用,能求出∠DAB=∠C 是解此题的关键.21.(2017•松江区一模)如图,已知AC ∥BD ,AB 和CD 相交于点E ,AC=6,BD=4,F 是BC 上一点,S △BEF :S △EFC =2:3.(1)求EF 的长;(2)如果△BEF 的面积为4,求△ABC 的面积.【考点】相似三角形的判定及性质.【分析】(1)先根据S △BEF :S △EFC =2:3得出CF :BF 的值,再由平行线分线段成比例定理即可得出结论;(2)先根据AC ∥BD ,EF ∥BD 得出EF ∥AC ,故△BEF ∽△ABC ,再由相似三角形的性质即可得出结论.【解答】解:(1)∵AC ∥BD , ∴∵AC=6,BD=4, ∴∵△BEF 和△CEF 同高,且S △BEF :S △CEF =2:3, ∴, ∴.∴EF ∥BD , ∴, ∴, ∴(2)∵AC ∥BD ,EF ∥BD ,∴EF ∥AC ,∴△BEF ∽△ABC , ∴. ∵, ∴. ∵S △BEF =4,∴,=25.∴S△ABC【点评】本题考查的是相似三角形的判定及性质,熟知相似三角形的判定定理是解答此题的关键.22.(2017•闵行区一模)如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AD2=DG•DE,求证:=.【考点】相似三角形的判定及性质.【分析】(1)由AD∥BC,得到△ADG∽△CEG,根据相似三角形的性质即可得到结论;(2)根据平行线的性质得到,根据等式的性质得到=,等量代换即可得到结论.【解答】证明:(1)∵AD∥BC,∴△ADG∽△CEG,∴,∵=,∴,∴AB∥CD;(2)∵AD∥BC,∴△ADG∽△CEG,∴,∴=,∴=,∵AD2=DG•DE,∴=,∵AD∥BC,∴=,∴=.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(2017•普陀区一模)已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC≌△ADC;(2)AE•AB=BC•DE.【考点】相似三角形的判定及性质.【分析】(1)两组对应边的比相等且夹角对应相等的两个三角形相似,据此进行证明即可;(2)先根据相似三角形的性质,得出∠BAC=∠EDA,=,再根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行证明即可.【解答】证明:(1)∵DC=,CE=a,AC=b,∴CD2=CE×CA,即=,又∵∠ECD=∠DCA,∴△DEC≌△ADC;(2)∵△DEC≌△ADC,∴∠DAE=∠CDE,∵∠BAD=∠CDA,∴∠BAC=∠EDA,∵△DEC≌△ADC,∴=,∵DC=AB,∴=,即=,∴=,即AE•AB=BC•DE.【点评】本题主要考查了相似三角形的判定及性质的综合应用,解题时注意:两组对应边的比相等且夹角对应相等的两个三角形相似.24.(2017•奉贤区一模)已知:如图,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为点E,交AC于点F.求证:(1)△ABF∽△BED;(2)=.【考点】相似三角形的判定及性质;菱形的性质.【分析】(1)由菱形的性质得出AC⊥BD,AB∥CD,得出△ABF∽△CEF,由互余的关系得:∠DBE=∠FCE,证出△BED∽△CEF,即可得出结论;(2)由平行线得出,由相似三角形的性质得出,即可得出结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴△ABF∽△CEF,∵BE⊥DC,由互余的关系得:∠DBE=∠FCE,∴△BED∽△CEF,∴△ABF∽△BED;(2)∵AB∥CD,∴,∴,∵△ABF∽△BED,∴,∴=.【点评】本题考查了菱形的性质、相似三角形的判定及性质、平行线分线段成比例定理;熟练掌握菱形的性质,证明三角形相似是解决问题的关键.25.(2016•陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点及“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A在镜面中的像及镜面上的标记重合,这时,测得小亮眼睛及地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM 方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.。
10.4 探索三角形相似的条件(2)
F
B C
及时巩固 练习、如图,在△ABC中,∠C=90°,点D、 E分别在AB、AC上,且AD· AB=AE· AC.ED与 AB垂直吗?请说明理由.
A
D E C
B
典型例题
例3、如图,点D是△ABC边AB上的一点, AB=12,AD=8,AC=15,在AC上取一 点E,使△ADE与原三角形相似,求AE的长. A D B C
D
A M B C E N F
结
பைடு நூலகம்
论
如果一个三角形的两边与另一个 三角形的两边对应成比例,且夹角相 等,那么这两个三角形相似.
D A
B
C
E
F
热身练习
按照下列条件,判定两个三角形是否相似,并说 明为什么?
1.∠A=45°,AB=12cm,AC=15cm; ∠A’=45°,A’B ′=16cm,A′C ′=20cm; 2.一个三角形两边分别为1.5cm和2cm,另一个三角 形两边分别为2.8cm和2.1cm,它们的夹角均为47°.
典型例题
例4、如图,在△ABC和△ADB中,
∠ABC=∠ADB=90°,AC=5cm,
AB=4cm,如果图中的两个直角三
角形相似,求AD的长.
A D
C
B
练习:完成P98练习2
☞ 回顾与反思
如何判断两个三角形相似?
D A
B
C
E
F
如图,在△ABC和△DEF中,∠A=∠D,
AB AC 1 , 比较∠B与∠E的大小. DE DF 2
由此,能判断△ABC与△DEF相似吗?为什么?
D
A
B
C
E
F
如图,在△ABC和△DEF中,∠A=∠D,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新苏教版初中数学10.4探索三角形相似的条件2
班级 姓名 学号
学习目标 :
1、通过探索与交流,得出两个三角形只要具备两边对应成比例,并且夹角相等的条件,即可判断两个三角形相似的方法;
2、尝试选择判断两个三角形相似的方法,并能灵活解决生活中一些简单的实际问题.
学习重点:了解两个三角形相似的条件(二)的探究思路。
学习难点:两个三角形相似的条件(二)的选择和应用。
教学过程 一、情境创设:
前面一节课我们探索了三角形相似的条件,回忆一下,我们探索两个三角形相似,可以从哪几个方面考虑找出条件? 二、探究学习:
1、如图,在△ABC 和△A ′B ′C ′中,∠A =∠A ′,
2='
'=''C A AC
B A AB ,比较∠B 和∠B ′的大小.由此,你能判断△AB
C 和△A ′B ′C ′相似吗?为什么? 2、在上题的条件下,设
K C A AC
B A AB ='
'='',改变k 的值的大小,再试一试,你能判断△ABC 和△A ′B ′C ′相似吗?
A
B
C
A′
B′
C′
B″
C″
如图,在△ABC 和△A ′B ′C ′中,∠A =∠A ′,'
C 'A AC
'
B 'A AB =
,那么△ABC ∽△A ′B ′C ′,
解:假设AB >A ′B ′,在AB 上截取AB ″=A ′B ′,过点B ″作 B ″C ″∥BC ,交AC 于点C ″,在△ABC 和△AB ″C ″,∵B ″C ″∥BC ∴△ABC ∽△AB ″C ″, ∴C A AC
B A AB
''=
'
' 又∵'
C 'A AC 'B 'A AB = , AB ″=A ′B ′,∴AC ″=A ′C ′, ∵∠A =∠A ′,
∴△AB ″C ″≌△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′
由此得判定方法二:如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似;
几何语言:∵在△ABC 和△A ′B ′C ′中,∠A =∠A ′,'
C 'A AC
'
B 'A AB
=
,∴△ABC ∽△A ′B ′C ′,
3、如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,要使△ABC ∽△A ′B ′C ′,还需要添加什么条件?
A
B
C A′
B′
C′
B″ C″ A
A′
三、例题分析:
例1、下列条件能判定△ABC ∽△A ′B ′C ′的有 ( ) (1)∠A =45°,AB =12,AC =15,∠A ′=450,A ′B ′=16, A ′C ′=20
(2)∠A =47°,AB =1.5,AC =2,∠B ′=47°,A ′B ′=2.8, B ′C ′=2.1
(3)∠A =47°,AB =2,AC =3,∠B ′=47°,A ′B ′=4, B ′C ′=6
A 、0个
B 、1个
C 、2个
D 、3个
例2、如图,在△ABC 中,P 为AB 上的一点,在下列条件中:①∠ACP =∠B ;②∠APC
=∠ACB ;③AC 2=AP •AB ;④AB •CP =AP •CB ,能满足△APC ∽△ACB 的条件是 ( )
A 、①②④
B 、①③④
C 、②③④
D 、①②③
(例2图) (例3图)
B
C
P
A
A
C
D
B
例3、如图,在△ABC 中,D 在AB 上,要说明△ACD ∽△ABC 相似,已经具备了条
件 ,还需添加的条件是 ,或 或 .
例4、如图,已知23EC
AE BD
AD ==,试求
BC
DE 的值;
例5、如图,在正方形ABCD 中,点M 、N 分别在AB 、BC 上,AB =4,AM =1,BN =0.75,(1)△ADM 与△BMN 相似吗?为什么?(2)求∠DMN 的度数;
例6、如图,△ABC 中,AB =12,BC =18,AC =15,D 为AC 上一点,CD =3
2AC ,在
AB 上找一点E ,得到△ADE ,若图中两个三角形相似,求AE 的长;
A
D E C
B
C
D
A
M
B
N
C
【课后作业】
班级 姓名 学号
1、如图,在△ABC 中,AB =4cm ,AC =2cm ,
(1)在AB 上取一点D ,当AD =________时,△ACD ∽△ABC ; (2)在AC 的延长线上取一点E ,当CE =________时,△AEB ∽△ABC , 此时,BE 与DC 有怎样的位置关系?为什么?
2、如图的两个三角形是否相似?为什么?
3、如图,在正方形网格上有△A 1B 1C 1和△A 2B 2C 2,这两个三角形相似吗?为什么?
4、如图,矩形ABCD 中,AB ∶BC=1∶2,点E 在AD 上,且DE =3AE ,
A
B
C
F
E 1 1 3
3
A 1
B 1
C 1
B 2 A 2
C 2 A B
C
A E
D
试说明:△ABC∽△EAB;
5、如图,已知Rt△ABC与Rt△DEF不相似,其中∠C与∠F为直角,能否分别将这
两个三角形都分割成两个三角形,使△ABC所分成的两个三角形与△DEF所分成的两个三角形对应相似?如果能,请你设计一种分割方案;
A C
D
E F。