古诺模型、卡特尔模型
第10章寡头市场产量和价格的决定

古诺模型的反应函数
QB 1500
一个厂商的产量 是另外一个厂商 产量的函数
QA=750-QB/2
750 500
E(500,500) QB=750-QA/2
O 500 750
1500 QA
14
一般化形式
1
Q1
P(Q1
Q2 ) Q1
P(Q1 Q2 ) Q1
TC1(Q1)
0
2
Q2
P(Q1
在这种模型中,行业内所有厂商都一致响应其中第一家 厂商所作出的价格变动。
这家厂商不一定是行业内最大、效率最高的厂商,但它 能比较准确预测市场行情,能合理而准确地反映整个行 业基本的成本和需求状况的变化,因而被称作晴雨表型 厂商。
通常认为俄亥俄州的汽油市场所实行的就是上述晴雨表 型价格领先制。
31
寡头厂商定价方法
价格
垄断均衡 古诺均衡
竞争均衡
MC=AC
12 23
生产量
16
伯川德(Bertrand)模型
• 伯川德1883年提出,商场价格战 • 假设:
– 价格竞争,假设对方确定的价格水平不变 – 固定的、相同的边际成本
• 长期看,低成本企业必然挤走高成本企业,但价格战并没 有使均衡价格低到边际成本水平,而往往高于边际成本。
Q O Q3′ Q3
Q
a.厂商Ⅰ
b.厂商Ⅱ
c.厂商Ⅲ
27
低成本厂商价格领导模型
• 高成本厂商自愿承受利润减少,防止低成本厂商重新调整 已默认的平均市场份额。
P
厂商Ⅰ
P
厂商Ⅱ
P
厂商Ⅲ
P1
MC1
P2
MC2
P3
MC3
五个寡头竞争模型

一.古诺(Cournot )模型Augustin Connot 是19世纪著名的法国经济学家。
法国经济学家在学术风格上属于欧洲大陆的唯理论传统,重视思辩,重视演绎,强调以数理方法对经济事实进行抽象,这与传统的英国学派重视经验事实,主张从事实中进行归纳的经验论风格是迥然不同的。
他在1838年发表的《对财富理论的数学原理的研究》中,给出了两个企业博弈均衡的经典式证明,直到今天仍具有生命力。
1. 市场结构古诺均衡设市场上只有两家企业,且生产完全相同的产品。
企业的决策变量是产量,且两家企业同时决定产量多少。
市场上的价格是两个企业产量之和的函数。
即需求函数是:)(21q q P P +=每个企业的利润为)()(21i i i q C q q q P -+=π2. 反应函数及反应线对于任一给定的关于企业2的产量,都会有相应的企业1的产量选择。
于是企业1的最佳产量说穿了是其对企业2产量的函数。
反之亦然。
即有:)(21q f q =)(12q f q =1q2q3.古诺均衡根据上述假设及利润最大化要求,满足)(21q f q = 且)(12q f q =的),(21q q 即为古诺均衡解。
古诺均衡已不仅仅是供求相等的均衡了。
这里的均衡除满足供求相等外,参与各方都达到了利润最大化。
该均衡也为纳什均衡。
4.举例例1:如市场需求为22211215.0,5),(5.0100q C q C q q P ==+-=,求古诺均衡解,并相应地求出21ππ与。
解:112115)](5.0100[q q q q -+-=π2222125.0)](5.0100[q q q q -+-=π利润最大化下,有: 055.01002111=---=∂∂q q q π 05.010021222=---=∂∂q q q q π 求之,得:900,32004530,802121=====ππP q q 二.Bertrand 模型大约在古诺给出古诺模型50年后,另一位法国经济学家Joseph Bertrand (1883年)在其一篇论文中讨论了两个寡头企业以定价作为决策变量的同时博弈。
卡特尔模型

P MR Q
亏损最小:P位于AC和AVC之间
P
MR Q
停止营业点:P与AVC相切
五、垄断厂商的长期均衡
垄断厂商的长期均衡的实现是通过调整生产 规模来实现的。垄断厂商排除了其他厂商加 入的可能性,因此不存在行业内的厂商数目 调整。 由于其他厂商无法进入该行业,因此,如果 垄断厂商存在利润,则可以在长期内保持这 一利润。
实行差别价格的条件
市场存在不完善之处(信息、分割等)
厂商成功实行区别定价格必须具备特定条件: 第一,市场的消费者具有不同的偏好,并且这些
不同偏好可以被区分开。这样,就使不同市场存在不 同的需求弹性,厂商才有可能对不同的消费者或消费 群体收取不同的价格。
第二,不同消费者群体或不同的销售市场相互隔 离。这一假定。
二级区别定价要求对不同消费数量段 规定不同价格。例如,当游客购买 1——4张公园门票时,单价为15元; 购买5张以上团体票单价为13元。消 费者买单件衣服时,价格为30元1件, 3件以上单价降为25元,等等。
福利和配置影响与一级区别定价类似: 厂商总收益和生产者剩余增加;消费 者福利减少(但减少程度较少);均 衡产量也会上升。
对分割的两个市场依据MR1= MR2 = MC原则定产量包含了两层含义:第 一,就不同市场而言,厂商应当使 它们的边际收益相等。因为只要各 个市场边际收益不相等,厂商总可 以调整不同市场之间销售量来增加 总的利润。例如,当MR1大于MR2时, 厂商可以通过减少第二个市场边际 销售量和增加第一个市场边际销售 量来增加利润。反之亦然。这类产 量在不同市场分配调整过程一直持 续到MR1=MR2。第二,厂商应当是生 产边际成本等于不同市场上等同的 边际收益。只要二者不等,厂商就 可以通过增加或减少产量来增加利 润。这样的产量调整一直进行到边 际成本等于边际收益,不再可能通 过调整产量来增加利润为止。
西方经济学寡头市场

由于市场总容量是90,两个厂商均衡的产量都是市 场容量的1/3,即两个寡头厂商的总产量容量实际只 有市场容量的2/3、剩余1/3的市场容量是寡头垄断市 场所无法满足的,因而可以看成是寡头垄断给社会 所造成的损失。
一般结论:
每个寡头厂商的均衡产量= Q • 1/(m+1) 行业的均衡总产量=Q • m/(m+1)
Thank You!
(二)跨头垄断市场的集中均衡模型
为克服这一难题,经济学家通常假定: 在给定其对手的行为以后,每个厂商都 采取它能采取的最好的策略。下面我们 就来分析寡头垄断的几个模型,包括古 诺模型,斯威奇模型,卡特尔模型和价 格领先模型。
1、古诺模型
假设条件: (1)只有两个寡头,产品同质;两者先后进 入市场。 (2)任一厂商不存在技术优势,成本相同。 为简单起见, 假设成本为零。 (3)需求函数是线性的。 (4)两厂商无勾结,均据对方的行动作出反 应。 (5)都追求利润最大。
古诺模型实质: 是各厂商将它的竞争
者产量看作固定的,然后决 定自己生产多少。
QB 90
QA 45
30
E
古 诺 均 衡
QB
0
30
45
90 QA
假设A厂商和B厂商所生产的产量分别为QA和QB, 市场需求函数为:
P=90-Q 由于市场供给量是QA+QB,所以需求函数也可写成:
P=90-QA-QB。 由于成本为零,厂商A的利润可以写成:
第六章 寡头 市场与头垄断市场又称寡头市场,指由少数几家
大型厂商控制某种产品供给的绝大部分乃至整个市场的 一种市场结构。寡头垄断是介于垄断竞争与垄断之间的 一种市场结构。
2.寡头垄断市场的分类
产品差别程度
西方经济学 第三节 垄断竞争市场

•
非价格竞争
o
厂商采取非价格竞争的原因:
价格竞争虽然能使一部分厂商得到好处, 但从长期看,价格竞争会导致产品价格持 续下降,最终使厂商的利润消失。
非价格竞争
o
采取非价格竞争的基本原则:
非价格竞争也需要付出成本,因此也必须 遵循边际成本等于边际收益的利润最大化 原则(MC=MR)。
非价格竞争
1.
非价格竞争的作用:
强化了市场的竞争程度,同时也适应了消 费者的某些需要。
2.
增强了消费者对某些产品的依赖程度,使 得厂商加强了对自己产品的垄断程度。
非价格竞争
o •
•
对广告的评价: 广告可以带有提供信息的成分,也可以同时带 有劝说的成分。 信息性广告有利于消费者作出最佳的购买决策, 节约了消费者的搜寻成本。信息性广告之间的 相互竞争,有利于经济资源的合理配置。 劝说性广告很少提供对消费者来说真正想拥有 的信息,虽然也能增加厂商的销售量,但被诱 导的消费者往往并不能买到自己实际上需要且 真正满意的商品。
P
D LMC I SMC1 LAC SAC1
P1
E1 MR
d (AR)
0
Q1
Q
垄断竞争市场代表性企业的长期均衡(a)
P
ቤተ መጻሕፍቲ ባይዱ
D
LMC SMC2 P E2 d (AR) MR J LAC SAC2
0
Q
Q
垄断竞争市场代表性企业的长期均衡(b)
垄断竞争厂商的长期均衡
结合上图(a)、(b),由于生产集团内存在着 利润,新的厂商被吸引进来。随着集团内企业数 量的增加,在市场需求规模不变的条件下,每个 企业的市场销售份额会下降。D曲线会向左下方 平移,此时,d曲线便沿着D曲线也向左下方平移。 直到不再有新的厂商加入为止。最后,厂商在图 (b)中的E2点实现长期均衡。
模型

勾结的一种形式,它是一个行业的独立厂商 之间通过在价格、产量和市场划分等方面达 成明确的协议而建立起来的垄断组织
卡特尔的任务
制定各成员厂商的同质产品的统一价格 在各成员厂商之间分配总产量
卡特尔的作用与分类
卡特尔的作用
增加整体利润 减少不确定性 阻止新厂商的进入
卡特尔的分类
利润分配卡特尔/集权卡特尔 市场分配卡特尔
卡特尔模型
- 类型
1、价格卡特尔。这是最常见和最基本的卡特尔形式。卡特 尔维持某一特定价格:垄断高价、在不景气时的稳定价格或 者降价以排挤非卡特尔企业。 2、数量卡特尔。卡特尔对生产量和销售量进行控制,以降 低市场供给,最终使价格上升。 3、销售条件卡特尔。对销售条件如回扣、支付条件、售后 服务等在协定中进行规定的卡特尔。 4、技术卡特尔。典型形式是专利联营,即成员企业相互提 供专利、相互自由使用专利,但不允许非成员企业使用这些 专利的卡特尔。 5、迪加。一种特殊的统一销售卡特尔,指成员企业共同出 资设立销售公司,实行统一销售,或者卡特尔将所有成员企 业的产品都买下,然后统一销售。比如德贝尔钻石卡特尔。
卡特尔的不稳定性
实例:
OPEC组织
OPEC的限额和突破
已知每个成员国都各自政、自定产量,其博
弈结果肯定是油价下跌、利润受损,因此有 必要共同协商制定限产额度以维持油价。但 一旦协议达成,每个成员国出于本位利益都 会认为,只要别人遵守限额,我自己突破限 额生产一定会获得多利润,但对其他厂商影 响并不很大。如果每个成员国都这么认为, 其结果是产量大增,价格下跌,各成员国只 能得到不是最好的结果,同盟也不攻自破。
A厂商均衡产量=Q0/3 B厂商均衡产量=Q0/3
第六章寡头市场与博奕第一节寡头市场特征与优缺点一、寡

•
②、动态博奕;它是指博奕者先后进行重复博奕,
又称为相继行动的博奕。
• 二、静态博奕
• 1、优势策略;它是指不管竞争对手采取什么样的策略, 该竞争者采取这一策略都是最优策略。
企业 B
企业A 做 广告 不做广告
做广告
10,5 6,8
优势策略的支付矩阵
不做广告
15,0 10,2
企业B 企业A
做 广告 不做广告
实行确实可信威胁后的支付矩阵
做广告
10,5 6,8
不做广告
15,0 20,2
无优势策略下的支付矩阵
• 2、纳什均衡;它是指一种策略(或行动)集,在这一 策略集中,每一个博奕者都确信,在给定竞争对手策略 决定的情况下,他选择了最好的策略。
餐馆A 咸菜
甜菜
餐馆B
咸菜
甜菜
-4,-4 8,8
8,8 -4,-4
存在两个纳什均衡的支付矩阵
•
第三节 竞争与合作的选择问题
• 一、竞争还是合作:囚犯的困境
• 假定: Q1=24-4P1+2P2
•
Q2=24-4P2+2P1
•
π1=P1Q1-40=24P1-4P12+2P1P2-40
•
π2=P2Q2-40=24P2-4P22+2P2P1-40
•
当 P1=6,P2=4 时有
•
π1=6 ×( 24 - 4 × 6 + 2 × 4 )- 40 =8
博奕者A 守
攻
博奕者B
进
2,1 -100 ,1
有限理性条件下的支付矩阵
退
2,2 3,2
• 三、动态博奕
• 1、首先行动优势;它是指在博奕中首先做出策略决定 的人获得较多的利益。
12.1+古诺模型

Q
S
272.32单 位,Q
T
314.21单 位.
P* 413.47美 元/ 单 位,
S
$22695.00;
T
$3536.17.
3.寡头垄断市场的重要特征 【1】寡头之间的相互依存性 ——每家厂商在作出价格和产量的决策时,不仅要 考虑到本身的成本和收益情况,而且还要考 虑到这 一决策对市场和其他厂商的影响,以及其他厂商可 能作出的反应 【2】价格具有相对稳定性【刚性】 【3】厂商之间更加容易形成某种形式的勾结 【4】竞争后果具有较大的不确定性
4
16
寡头竞争如此进行,寡头A每后退一步,寡头B便前进 一步,直到寡头平分总供给量,市场便达到均衡状态
寡头A的供给量为:
1
1
1
1
1ห้องสมุดไป่ตู้
n
1
OT
1 OT
2 8 32
2 4
3
寡头B的供给量为:
1
1
1
1
n
OT
1 OT
4 16 64 4
3
市场总供给量为:1 OT 1 OT 2 OT
2.寡头垄断市场应满足的基本条件:
行业中厂商数量较少:每一厂商在市场中占有相当 份额,当它改变自己产量和价格时,会对市场均衡 价格和产量产生影响,并影响竞争对手的利润
厂商生产的产品可以有差别,称为差别寡头,如家 电、汽车行业等;也可以无差别,称为纯粹寡头, 如钢铁、制铝行业等;
进入寡头垄断市场障碍较大。表现在现有厂商在规 模经济、技术装备、获得政府特许、对生产要素的 控制等方面占有较大优势。
第1轮:
A:QA1=
1 2
OT,最大利润为ODHF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古诺模型(同时行动的静态博弈,要求解的是纳什均衡)
假设:
1.一个行业,两个厂商;
2.两厂商产品同质;
3.两厂商平均成本均为c;
4.两厂商同时选择产量,市场价格由供求决定。
两厂商在选择自己的产量的时候,只能根据对另一厂商产量的预期做出决策,因为它无法观测到对方的产量。
但是,由于在最终的均衡,这种预期必须是正确的,因此我们只关心均衡情况。
模型:
反市场需求函数:P = a – b (q1 + q2)
厂商1的利润函数:L1 = [ a – b (q1 + q2)] – cq1
厂商1利润最大化的产量满足的一阶条件:∂ L1/∂ q1 = a – 2bq1–bq2– c = 0
从而得到厂商1的反应函数:R1 (q2) = (a – c – bq2) /2b (1)
同理可以得到厂商2的反应函数:R2 (q1) = (a – c – bq1) /2b (2)
古诺均衡产量(q1*,q2*)满足q1* = R1(q2*),q2* = R2(q1*)。
即给定其他厂商的最优产量,每个厂商都实现了最大利润,从而也没有激励单方面改变自己的产量,正因为如此,古诺均衡是纳什均衡。
联立(1)和(2),得到:q1* = q2* = (a – c)/3b(古诺模型的均衡产量)
整个行业总供给量:q = q1 + q2 = 2 (a – c) / 3b
市场价格:P = (a +2c) / 3;限定a>c,因此P = (a + 2c) / 3 > c= MC
这表明古诺模型中的产量竞争不同于完全竞争市场,没有实现总剩余最大化。
但是古诺模型确实有两个寡头的竞争,行业总供给也大于垄断产量(a – c) / 2b.
补充:模型的一般化(n个寡头情形下的古诺模型)
假设n个寡头有相同的不变的平均成本c。
市场需求函数:P = a–b(q1+q2+…+q n),a>0,b>0,a>c.
厂商i的利润函数:L i = [a–b(q1+q2+…+q n)]q i–cq i
利润最大化的一阶条件:∂ L i /∂ q i = a – bq – bq i – c = 0,其中q = q1+q2+…+q i.
所有厂商的均衡产量都满足这一条件,把它相加n次:na – bnq – bq – nc = 0
解此方程得:q = n (a – c) / b(n+1)
从而P = (a + nc) / (n+1)
当n = 1,得到垄断解;当n = 2,得到双寡头解;当n趋于无穷大,得到完全竞争解。
卡特尔模型(寡头合谋,联合定产)
在某个寡头市场中,如果几个重要的厂商联合起来限制产量,操纵价格,以获取垄断利润,这种联合组织就被称为卡特尔。
卡特尔的作用是消除厂商之间的竞争。
两个厂商的成本函数:c1 (q1) ,c2 (q2)
共同面对的反市场需求函数:P = P(q1+q2)
Max. L = P(q1+q2).(q1+q2) - c1 (q1) - c2 (q2)
分别对q1和q2求偏导得到一阶条件:
P’(q1+q2).(q1+q2) + P(q1+q2) – c’1 (q1) = 0 (1)
P’(q1+q2).(q1+q2) + P(q1+q2) – c’2 (q2) = 0 (2)
由(1)和(2)解出:c’1 (q1) = c’2 (q2)
即不论总产量为多少,卡特尔内部成员之间的产量份额满足边际成本相等的原则,这样的产量安排可以用最小的成本生产给定的总产量,从而卡特尔内部的生产是有效率的。
由于MR(q1 + q2) = P’(q1+q2).(q1+q2) + P(q1+q2)是卡特尔的边际收益,因此卡特尔的利润最大化产量满足:MR(q1* + q2*) = c’1 (q1*) = c’2 (q2*)
卡特尔制定的价格:P* = P(q1* + q2*)
在历史上,卡特尔曾盛极一时,但是所有的卡特尔都寿命不长,并且除了国际石油输出国组织(OPEC)外,很少有卡特尔能够产生重大的经济影响。
卡特尔不能持久的一个原因是因为很多国家的法律限制这种合谋,但是从经济学的角度来看,卡特尔的失败是因为其内在的不稳定性。
首先,卡特尔内部的每个成员都有强烈的欺骗动机。
因为卡特尔的高价格需要通过限制产量来维持,但是每个成员都认识到,如果其他厂商都遵守卡特尔协议,而自己增大产量,则可以在获得价格提高的好处的同时又不承担代价----减少产量。
如果只有个别成员增大产量,这并不会带来很大的问题,但是每个厂商都面对这样的激励,从而如果没有办法有效地监督和制裁违约的行为,卡特尔就很容易崩溃。
分析:
假设q2*不变,而厂商1背离卡特尔协议(即不再以最大化卡特尔组织的利润,而以最大化自己的利润为目标选择产
量),那么厂商1的问题变为:
Max. L1 = P(q1+q2).q1– c1(q1)
L1对q1求导得:P’(q1+q2).q1+ P(q1+q2) – c1’(q1) = 0
由之前的分析知道,卡特尔最大化利润时的产量为:q1* + q2*
将q1*和q2*代入卡特尔利润最大化的第一个条件(1)得:
P’(q1*+q2*).(q1*+q2*) + P(q1*+q2*) – c’1 (q1*) = 0
移项得:P’(q1*+q2*). q1* + P(q1*+q2*) – c’1 (q1*) =–P’(q1*+q2*).q2*
因需求函数向右下倾斜,所以P’(q1*+q2*)<0,故P’(q1*+q2*).q1* + P(q1*+q2*) – c’1 (q1*)>0 P’(q1*+q2*).q1* + P(q1*+q2*) – c’1 (q1*)>0意味着厂商1没有实现最大化利润,如果它单方面增加产量,才有可能使P’(q1*+q2*).q1* + P(q1*+q2*) – c’1 (q1*)= 0成立。
因此结论是:卡特尔成员都有不遵守协议产量的激励,具体来说,它们都有增加产量的激励,同时根据以上分析还可以知道,卡特尔的产量q1*+q2*一定小于竞争性产量。
卡特尔的不稳定性是典型的囚徒困境,虽然每个成员都认识到合作限制产量可以共同增大利润,但这样的产量不是纳什均衡,从而并不能自动实施。
因此,卡特尔的维持需要某种显示价格信息和惩罚机制。
这种机制有时以非常巧妙的方式实施。
比如,在城市的大超市中,我们有时可以看到这样的广告:“如果顾客在5公里之内的同等规模的超市内发现更低的价格,我们会双倍返还差价。
”实际上,这就是一种惩罚机制。
消费者承担了发现价格下降的信息提供者的职能,而如果一个超市降低了价格,会引来其他超市更大幅度的降价,从而这种条款可以帮助维持一个
卡特尔的运行。
但即便如此,卡特尔的维持仍然是非常困难的,因为价格信息往往不易于获得。
例如,对大客户的批发价格往往就并不公开,而且降低价格可以通过提高质量和服务的方式实现。
如果存在产品差异,合谋就更加难以维持。
观察不到对手价格的企业可以通过观察自己的市场份额的变化来推断对手的行为,但这又受到市场需求具有随机性变化的限制。
这时,参与者把由于需求降低带来的销售量下降解读为对方暗中削价的行为所导致。
其次,卡特尔成员在产量份额的安排上很难达成一致。
前面的分析指出,按照等边际成本的原则分配产量可以实现卡特尔内部的生产效率,但是如何获得边际成本的真实信息呢?每个成员都希望增大自己的份额,从而得到更多的利润,这样的问题往往在卡特尔内部争论不休。
最后,卡特尔的高利润会引来新厂商的进入,如果卡特尔无法阻止进入的发生,那么,新厂商就会迅速占领完全竞争产量和卡特尔产量之间的市场空白,这样卡特尔成员不仅无法获得垄断利润,而且会最终失去市场。
有些资源性行业进入较为困难,例如国际石油输出国组织(OPEC)控制了绝大部分的石油储量。
但即便是如此,石油的高价格也会引来替代性能源的开采与使用。
这正是OPEC在20世纪70年代减少石油开采而短期内大幅提高价格,但随后价格又下降的原因,因为对天然气的开采和使用降低了对石油的需求。
对替代品开发的激励和消费者的替代选择是OPEC面对的主要挑战,也是任何卡特尔要实现长期维持所遇到的困难。