随机过程PPT课件
合集下载
通信原理-随机过程课件

一个随机过程在时间上是否具有某种 稳定的统计特性。如果一个随机过程 在长时间观察下表现出稳定的统计特 性,则称该随机过程具有遍历性。
遍历性的数学描述
对于一个随机过程,如果存在一个常 数$c$,使得对于任意的时间$t$,有 $E[X(t)]=c$,则称该随机过程具有遍 历性。其中$X(t)$表示在时刻$t$的随 机变量的取值。
标量乘法
标量乘法满足结合律和分 配律,即对于任意标量a 和任意随机过程X,有 a(X+Y)=aX+aY。
线性变换的应用
信号处理
在通信系统中,信号经常 需要进行线性变换以实现 调制、解调、滤波等操作 。
控制系统
在控制系统中,线性变换 被广泛应用于系统的分析 和设计,如传递函数、状 态方程等。
图像处理
在图像处理中,线性变换 被广泛应用于图像的增强 、滤波、变换等操作。
04
CATALOGUE
随机过程的平稳性
平稳性的定义
平稳性定义
一个随机过程如果对于任何正整数n,以及任何非负整数k,其n维联合分布函 数与n+k维联合分布函数相同,则称该随机过程是严平稳的。
数学表达式
若对于任意的正整数n和任意的非负整数k,都有P(X_1, X_2, ..., X_n) = P(X_1+k, X_2+k, ..., X_n+k),则称随机过程{X_t}是严平稳的。
06
CATALOGUE
随机过程的功率谱密度
功率谱密度的定义
功率谱密度
表示随机信号的功率随频率的分布, 是描述随机信号频域特性的重要参数 。
定义方式
功率谱密度函数通常由傅里叶变换来 定义,将随机信号的时域表示转换为 频域表示。
遍历性的数学描述
对于一个随机过程,如果存在一个常 数$c$,使得对于任意的时间$t$,有 $E[X(t)]=c$,则称该随机过程具有遍 历性。其中$X(t)$表示在时刻$t$的随 机变量的取值。
标量乘法
标量乘法满足结合律和分 配律,即对于任意标量a 和任意随机过程X,有 a(X+Y)=aX+aY。
线性变换的应用
信号处理
在通信系统中,信号经常 需要进行线性变换以实现 调制、解调、滤波等操作 。
控制系统
在控制系统中,线性变换 被广泛应用于系统的分析 和设计,如传递函数、状 态方程等。
图像处理
在图像处理中,线性变换 被广泛应用于图像的增强 、滤波、变换等操作。
04
CATALOGUE
随机过程的平稳性
平稳性的定义
平稳性定义
一个随机过程如果对于任何正整数n,以及任何非负整数k,其n维联合分布函 数与n+k维联合分布函数相同,则称该随机过程是严平稳的。
数学表达式
若对于任意的正整数n和任意的非负整数k,都有P(X_1, X_2, ..., X_n) = P(X_1+k, X_2+k, ..., X_n+k),则称随机过程{X_t}是严平稳的。
06
CATALOGUE
随机过程的功率谱密度
功率谱密度的定义
功率谱密度
表示随机信号的功率随频率的分布, 是描述随机信号频域特性的重要参数 。
定义方式
功率谱密度函数通常由傅里叶变换来 定义,将随机信号的时域表示转换为 频域表示。
随机过程课件-马尔可夫链

定理二
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。
随机过程课件PPT资料(正式版)

应怎样分才合理呢➢?」
☞随机事件:样本空间的子集,常记为 A ,B ,…它是满足某些条件的样本点所组成的集合.
排队和服务系统 ◙A∩勤B 奋⇔、A刻B :苦A、与合➢B作的、积探事索件;; 更新过程 为从事科学研究打下坚实的基础;
☞抽取的是精装中➢文版数学书 ⇒
➢ 时间序列分析
➢ 鞅过程
绪论
《随机过程》基础
概率(或然率或几率) ——随机事件出现的可能 性的量度;
概率论其起源与博弈、 、天气预报等问题有 关
⊕16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;
⊕17世纪中叶,「现有两个赌徒相约赌若干 局,谁先赢S局就算赢了,当赌徒A赢K局(K<S), 而赌徒B赢L局(L<S)时,赌博中止,赌资应怎 样分才合理呢?」
随机过程课件
《随机过程》
➢ 教材: ◙ 张卓奎,陈慧婵,随机过程.西安电子科技大 学.2003.
➢ 主要参考文献: ◙ 胡奇英编著,随机过程.西安电子科技大学.1998. ◙ 周荫清 ,随机过程习题集. 清华大学出版社, 2004. ◙ 林元纟金烈 ,应用随机过程. 清华大学出版社, 2002.
……
➢ 随机过程理论在社会科学中例如在社会统计, 学、经 济、金融工程、管理中也得到极其广泛的应用。
➢ 为从事科学研究打下坚实的基础;
绪论
教学目标
➢ 充分理解、熟练掌握教材的内容 ◙ 熟练掌握基本的数学概念和定理;
◙ 熟练掌握随机过程研究对象的数学描述;
Hale Waihona Puke ➢ 通过学习和练习,具备一定的分析、解决本专业具体 问题的能力;
☞拉普拉斯曾说:“生活中最重要的问题,其中 绝大多数在实质上只是概率的问题”。
☞概率论是研究随机现象数量规律的数学分支。 在实际中,人们往往还需要研究在时间推进中某 一特定随机现象的演变情况,描述这种演变的就 是概率论中的随机过程。
☞随机事件:样本空间的子集,常记为 A ,B ,…它是满足某些条件的样本点所组成的集合.
排队和服务系统 ◙A∩勤B 奋⇔、A刻B :苦A、与合➢B作的、积探事索件;; 更新过程 为从事科学研究打下坚实的基础;
☞抽取的是精装中➢文版数学书 ⇒
➢ 时间序列分析
➢ 鞅过程
绪论
《随机过程》基础
概率(或然率或几率) ——随机事件出现的可能 性的量度;
概率论其起源与博弈、 、天气预报等问题有 关
⊕16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;
⊕17世纪中叶,「现有两个赌徒相约赌若干 局,谁先赢S局就算赢了,当赌徒A赢K局(K<S), 而赌徒B赢L局(L<S)时,赌博中止,赌资应怎 样分才合理呢?」
随机过程课件
《随机过程》
➢ 教材: ◙ 张卓奎,陈慧婵,随机过程.西安电子科技大 学.2003.
➢ 主要参考文献: ◙ 胡奇英编著,随机过程.西安电子科技大学.1998. ◙ 周荫清 ,随机过程习题集. 清华大学出版社, 2004. ◙ 林元纟金烈 ,应用随机过程. 清华大学出版社, 2002.
……
➢ 随机过程理论在社会科学中例如在社会统计, 学、经 济、金融工程、管理中也得到极其广泛的应用。
➢ 为从事科学研究打下坚实的基础;
绪论
教学目标
➢ 充分理解、熟练掌握教材的内容 ◙ 熟练掌握基本的数学概念和定理;
◙ 熟练掌握随机过程研究对象的数学描述;
Hale Waihona Puke ➢ 通过学习和练习,具备一定的分析、解决本专业具体 问题的能力;
☞拉普拉斯曾说:“生活中最重要的问题,其中 绝大多数在实质上只是概率的问题”。
☞概率论是研究随机现象数量规律的数学分支。 在实际中,人们往往还需要研究在时间推进中某 一特定随机现象的演变情况,描述这种演变的就 是概率论中的随机过程。
随机过程课件.ppt

随机过程的统计描述 二 有限维分布族
两种描述
分布函数 特征数
设随机过程X (t),t T,对每一固定的t T ,随机变量X (t)的分布函数与t有关, 记为FX (x,t) PX (t) x,x R,称它为随机过程X (t),t T的一维分布函数 FX (x,t),t T称为一维分布函数族
为了描述随机过程在不同时刻状态之间的统计联系, 一般地,对任意n(n 2,3,L )个不同的时刻,t1,t2,L tn T
研究生课程
随机过程
汪荣鑫编 主讲教师:田ቤተ መጻሕፍቲ ባይዱ俊
2013年9月
第一章 随机过程基本概念
第1节 随机过程及其概率分布
1)随机过程概念 随机过程被认为是概率论的“动力学”部分,即
它的研究对象是随时间演变的随机现象,它是从 多维随机变量向一族(无限多个)随机变量的推广。
自然界中事物的变化过程可以大致分成为两类: 确定性过程:事物变化的过程可用时间的确定函数表示;
4
x1 (t )
3
2
1
t1' t1 t2 t2' t3 t3' t4' t4
t
4
例5:考虑抛掷一颗骰子的试验:
(1) 设X n是第n次(n 1)抛掷的点数,对于n 1, 2,L 的不同值,
X n是随机变量,服从相同的分布,P( X n
i)
1 6
,i
1, 2,3, 4,5, 6
因而X n , n 1构成一随机过程,称为伯努利过程或伯努利随机序列,
它的状态空间为1,2,3,4,5,6。
(2) 设Yn是前n次抛掷中出现的最大点数,Yn , n 1也是
一随机过程,它的状态空间仍是1, 2,3, 4,5, 6。
应用随机过程课件

添加标题
添加标题
添加标题
添加标题
性质:线性变换不改变随机过程的 统计特性
举例:高斯随机过程经过线性变换 后仍为高斯随机过程
定义:将随机过程通过非线性函数进行变换得到新的随机过程。 常见变换:对随机变量进行指数变换、对数变换等。
应用场景:在信号处理、通信等领域中通过对随机信号进行非线性变换实现信号的调制、解调等功能。
多径传播:随机过程用于描述无线通信中的多径传播效应以提高信号的可靠性和稳定性。
随机过程在金融领域的应用包括股 票价格预测、风险评估和投资组合 优化等方面。
随机过程还可以用于信用评级和风 险评估帮助金融机构评估借款人的 信用风险和违约概率。
添加标题
添加标题
添加标题
添加标题
通过随机过程模型可以分析金融市 场的波动性和相关性从而制定有效 的投资策略。
循环性是随机过程的基本性质之一它决定了过程的可预测性和不可预测性的程度。
循环性对于理解和预测某些自然现象(如气候变化、生态系统的动态等)具有重要意义。
在实际应用中循环性可以帮助我们更好地理解和预测某些随机现象如股票价格的波动、人口增长等。
定义:将随机过程进行线性变换得 到新的随机过程
应用:在信号处理、通信等领域中 广泛应用
数学模型:基于概率论和随机过程的理论基础建立非线性变换的数学模型分析其统计特性。
傅里叶变换的定义和性质 随机过程的傅里叶变换方法 傅里叶变换在信号处理中的应用 傅里叶变换在随机过程中的应用实例
信号传输:随机过程用于描述信号在通信系统中的传输过程如噪声和干扰。
信道容量:随机过程用于分析通信信道的容量以优化通信系统的性能。 调制解调:随机过程用于实现高效的调制解调技术如QM和QPSK。
概率论与数理统计经典课件随机过程

3
一维、二维或一般的多维随机变量的研究是概率论的研究内容,而 随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看 到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。
定义:设T是一无限实数集,X (e,t), e S,t T是对应于e和t的实数,
即为定义在S 和T 上的二元函数。
DX
(t)
E
[ X (t) X (t)]2
---方差函数
X (t)
2 X
(t
)
---标准差函数
又设任意t1,t2 T RXX (t1,t2 ) E[ X (t1) X (t2 )] (自)相关函数
CXX (t1,t2 ) Cov[ X (t1), X (t2 )]
E [ X (t1) X (t1)][ X (t2 ) X (t2 )] (自)协方差函数
定义: X (t),t T是一随机过程,若它的每一个有限维分布
都是正态分布,即对任意整数n 1及任意t1,t2,
X (t1), X (t2 ), X (tn )服从n维正态分布, 则称X (t),t T是正态过程
tn T ,
正态过程的全部统计特性完全由它的均值函数和自协方差函数所确定。
16
例3:设A, B是两个随机变量,试求随机过程:
当A
N 1,4, B
U 0, 2时,E(A) 1, E( A2 ) 5, E(B) 1, E(B2)
4 3
又因为A, B独立, 故E(AB) E(A)E(B) 1
X (t) t 3, RX (t1, t2 ) 5t1t2 3(t1 t2 ) 12 t1, t2 T
17
例4:求随机相位正弦波X (t) acos(t ) t ,
一维、二维或一般的多维随机变量的研究是概率论的研究内容,而 随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看 到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。
定义:设T是一无限实数集,X (e,t), e S,t T是对应于e和t的实数,
即为定义在S 和T 上的二元函数。
DX
(t)
E
[ X (t) X (t)]2
---方差函数
X (t)
2 X
(t
)
---标准差函数
又设任意t1,t2 T RXX (t1,t2 ) E[ X (t1) X (t2 )] (自)相关函数
CXX (t1,t2 ) Cov[ X (t1), X (t2 )]
E [ X (t1) X (t1)][ X (t2 ) X (t2 )] (自)协方差函数
定义: X (t),t T是一随机过程,若它的每一个有限维分布
都是正态分布,即对任意整数n 1及任意t1,t2,
X (t1), X (t2 ), X (tn )服从n维正态分布, 则称X (t),t T是正态过程
tn T ,
正态过程的全部统计特性完全由它的均值函数和自协方差函数所确定。
16
例3:设A, B是两个随机变量,试求随机过程:
当A
N 1,4, B
U 0, 2时,E(A) 1, E( A2 ) 5, E(B) 1, E(B2)
4 3
又因为A, B独立, 故E(AB) E(A)E(B) 1
X (t) t 3, RX (t1, t2 ) 5t1t2 3(t1 t2 ) 12 t1, t2 T
17
例4:求随机相位正弦波X (t) acos(t ) t ,
随机过程课件

。每个可能取的值称为一个状态。
对随机过程 {X (t) , t T} 进行一次试验 (即在 T 上进行一次全程观测) , 其结果是 t 的函数, 记为
x(t) , t T , 称它为随机过程的一个 样 本 函 数 或 样本曲线 .
所有不同的试验结果构成一族样本函数.
随机过程 总体
样本函数 个体
(4)连续参数、连续状态的随机过程。如例3,T=[0,∞], 状态空间为[-∞,∞]。
离散参数的随机过程亦称为随机序列。
四、随机过程的分布函数族
给定随机过程 {X (t),t T}.
对固定的 t T, 随机变量 X (t) 的分布函数一 般与 t 有关, 记为 FX (x,t) P{X (t) x}, x R.
1 0.5
-4
-2
-0.5
2
4
-1
当t固定时,X(t)是随机变量,故{X(t), t>0}是一族随机变量。
另一方面,对随机变量 做一φ次试验得一个试验值 ,
就是一条样本曲线。X (t) a cos(0t )
二、随机过程的概念
1 定义 参数集:设T是实数轴 (, )上的一个子集,且包含无限多
个数。随机过程是一族随机变量,可用 {X (t),t T} 来表示。T称为 随机过程的参数集。
在次概数率是论一中个曾随指机出变,量在,单记位X时(t间)为内[0一,t]电内话的站呼接叫到次的数呼唤 次数可用一离散型随机变量 X()表示,且有
P{X() k} k e , k 0, 1,2, ,( 0)
k! 在[0,t]时间内接到的呼唤次数,这一随机变量可记为X(t)。
P{X(t) k} (t)k et , k 0, 1,2, ,( 0)
随机过程获奖示范课课件

2 4 9)( 2
1)
d
1
2
2
j[Res( ( 2
2 4 9)( 2 1)
e j
,
j)
Res(
(
2
2 4 9)( 2
1)
e
j
,
3
j)]
j( 3 e 5 e3 ) 3 e 5 e3
16 j 48 j
16 48
Res( ( 2
2 4 9)( 2 1)
e
j
,
j)
lim(
j
j)
阐明信号旳总能量等于能谱密度在全频域上旳积分. 右式也是总能量旳谱体现式.
因为实际中诸多信号(函数)旳总能量是无限旳, 不满足绝对可积旳条件,所以一般研究x(t)在 (-∞,+ ∞)上旳平均功率,即
lim 1 T x2 (t)dt
T 2T T
为了能利用Fouier变换给出平均功率旳谱体现式, 构造一种截尾函数:
x(t)[
1
2
Fx ()e jtd]dt
1
2
[Fx ()
x(t)e jtdt]d
1
2
2
Fx () d
即
x2 (t)dt 1
2
2
Fx () d
( Parseval等式)
即
x2(t)dt 1
2
2
Fx () d
左边为x(t)在(-,+)上的总能量
右边的被积式 Fx () 2 称为信号x(t)的能谱密度.
T x2 (t)dt lim 1
T
T 4T
2
Fx (,T ) d
1
2
1
lim
T 2T
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xk (t), k 1, 2,....., m ; 即 x (t) { xk (t); k 1, 2,....., m } 对 随 机 变 量 x (t )的 各 样 本 函 数 进 行 采 样 , 对 应 于 时 刻 t t1 , t2 , ...., tn 可 设 几 个 离 散 型随机变量:
§2.1 随机过程的概念及其统计特性
1、 随机过程的概念 例子:热噪声电压。(有电子元器件内部微观粒子 (如电子)的随机热运动所引起的端电压。用一 台高灵敏无线电接收机,观测“热噪声电压” (无信号输入),n次观测结果分别 为,X 1 ( t ) ,X 2 ( t ) ,….,X n ( t ) 。 如图所示。可以看出,每次观测到热噪声电压都是 不同的,且在观测之前是不可预测的,即每次的 观测结果是随机的。
只取V0(或t ) 12两个值。
• 3 0 连续型随机序列
• 时间是离散的,状态是连续的。在任一离散 时刻的状态是连续型随机变量。对连续型随
机过程进行等时间间隔采样,即设到连续随 机序列。
• { , ……, }。 X(nt) X (t) X (2t)
X (nt)
• 4 0 离散随机序列
• 状态和时间均是离散的。
• 将连续型随机信号经过数模转换等间隔采 样后,即为离散随机序列。简称为随机序 列或随机数字信号。
• 若采样间隔为 t :X (t) ,X (2t) ……,X (nt)。或记 为: , X (1 ) X ( 2 ) ……,X ( n ) 。
• 以为时间按间隔增长,故常称离散随机序 列为时间序列。这类随机信号是本课程讨 论的主要对象。
• 按随机过程的分布函数(或概率密度)的 不同特性分:
• (1)平稳随机过程; • (2)马儿可夫(Markov)过程; • (3)独立增量过程; • (4)独立随机过程; • 等等
• 这些过程的具体特征,以后再介绍。平稳 随机过程是本课程的研究的重点。
3、随机过程的概率分布 下面用概率和统计的方法分析随机过程X(t) 设随机过程X(t)的样本函数为
• 若样本函数有无穷多个 (m ),则它们为连续 型随机变量。
{ , ……, }。 Xk X(tk) X 1 ( t k ) X 2 (tk )
X n (t)
• 显然,当采样间隔足够小,即n足够大,则
随机变量 X 1
,X 2
,…… X
,可以描述随机过
n
程 X ( t ) ,显然n越大越精确。
• 可见,可用随机变化的n个变量来表示一个 随机过程。
• 2、 随机过程的分类
x1 x (t1 ) { x1 (t1 ), x 2 (t1 ), ......., x m (t1 )} x2 x (t2 ) { x1(t2 ), x2 (t2 ),......., xm (t2 )} .......
xn x (tn ) { x1(tn ), x2 (tn ),......., xm (tn )}
第二章 随机过程
信号
确定性信号:信号的大小随时间的变化具有某种规律性,可以预测
随机信号:信号的大小随时间的变化,不具有明确的变化规律性、不 可预测。只具有某些统计特征,只有用概率和统计的方法进行描述
实际信号一般都带有随机性,一般都是随机信号。如语言信 号,电视信号,生物医学信号等通常是随机信号。 说明:“随机信号”和“随机过程” ,在本课程中是通用的。 (一般书籍和文献中也是如此) “随机过程”更具有理论色彩,属于应用数学范畴。 “随机信号”更具有实际应用色彩,属于数字信号处理范畴。
• 根据样本函数的形式分:
• 1 0 不确定随机过程
• 任意样本函数的未来值不能由过去的观测值准确 地预测。
• 如热噪声电压。
• 2 0 确定的随机过程
• 任意样本函数的未来值,可以由过去的观测预测。
如:随机过程 X (t) A cos( t ) 式 中 : A , 或 ( 或 者 全 部 ) 是 随 机 变 量 。 (至少一个是随机变量) 对于该过程的任一个样本函数,这些随 机变量都是取具体值,因此若对以前任 意时间段的样本函数值已知,就可以预 测样本函数的未来值。
• 2 0 . 所有样本函数在同一时刻的值构成一个 随机变量。
• 如果 t t1 时,随机变量
{ , ……, }。 X1 X(t1) X 1 ( t ) X 2 ( t )
X n (t)
• 称 t t1 为随机过程 X ( t ) 在 t t1 时的状态。
• 当 t t k 时,随机变量
•
• 随机过程类型很多,分类Leabharlann 法也有许多种, 这里给出三种分类方法:
• 根据随机过程的状态与时间是否连续分:
• 1 0 连续型随机过程
• 状态和时间都是连续的。对任意时刻t 0 ,X ( t ) 都取连续值,即连续型随机变量。如接收和 输出的热噪声信号,语音信号等。
• 2 0 离散型随机过程
• 时间是连续的,状态是离散的。对任意时 刻 t k ,X ( t k ) 都是离散型随机变量。如12伏直 流电压流和示波面之间接入一个随机电键, 此时示波面上显示一个随机的矩形电压波形,
可以看出,每次观测到热噪声电压都是不同 的,且在观测之前是不可预测的,即每次的 观测结果是随机的。 若用 X ( t )表示所有观测记录 X k ( t ) ,k=1, 2……,n的集合,则称 X ( t ) 为一随机过程。 其中记录 X k ( t ) 称为随机过程 X ( t ) 的一个实现 或者一个样本函数。
定义:设E是随机实验,S={e}是它的样本空 间,如果对于每一个 e S ,(我们)总可 以依某种规则确定一时间t的函数
X (e, t ) ,t T ,T为t的变化范围, 则称 X (e, t )为随机过程, 为简便起见,常省去变量e,简记为 X ( t ) 。 • 说明:1 0 .对确定的 e e k , X (ek , t) 为随机过程 X (e, t) 的一个实现或者一个样本函数。 • 通常记作 , X 1 ( t ) X 2 ( t ) …… X k ( t ) ,……X n (t() n为 样本函数总数,一般要求n很大)
§2.1 随机过程的概念及其统计特性
1、 随机过程的概念 例子:热噪声电压。(有电子元器件内部微观粒子 (如电子)的随机热运动所引起的端电压。用一 台高灵敏无线电接收机,观测“热噪声电压” (无信号输入),n次观测结果分别 为,X 1 ( t ) ,X 2 ( t ) ,….,X n ( t ) 。 如图所示。可以看出,每次观测到热噪声电压都是 不同的,且在观测之前是不可预测的,即每次的 观测结果是随机的。
只取V0(或t ) 12两个值。
• 3 0 连续型随机序列
• 时间是离散的,状态是连续的。在任一离散 时刻的状态是连续型随机变量。对连续型随
机过程进行等时间间隔采样,即设到连续随 机序列。
• { , ……, }。 X(nt) X (t) X (2t)
X (nt)
• 4 0 离散随机序列
• 状态和时间均是离散的。
• 将连续型随机信号经过数模转换等间隔采 样后,即为离散随机序列。简称为随机序 列或随机数字信号。
• 若采样间隔为 t :X (t) ,X (2t) ……,X (nt)。或记 为: , X (1 ) X ( 2 ) ……,X ( n ) 。
• 以为时间按间隔增长,故常称离散随机序 列为时间序列。这类随机信号是本课程讨 论的主要对象。
• 按随机过程的分布函数(或概率密度)的 不同特性分:
• (1)平稳随机过程; • (2)马儿可夫(Markov)过程; • (3)独立增量过程; • (4)独立随机过程; • 等等
• 这些过程的具体特征,以后再介绍。平稳 随机过程是本课程的研究的重点。
3、随机过程的概率分布 下面用概率和统计的方法分析随机过程X(t) 设随机过程X(t)的样本函数为
• 若样本函数有无穷多个 (m ),则它们为连续 型随机变量。
{ , ……, }。 Xk X(tk) X 1 ( t k ) X 2 (tk )
X n (t)
• 显然,当采样间隔足够小,即n足够大,则
随机变量 X 1
,X 2
,…… X
,可以描述随机过
n
程 X ( t ) ,显然n越大越精确。
• 可见,可用随机变化的n个变量来表示一个 随机过程。
• 2、 随机过程的分类
x1 x (t1 ) { x1 (t1 ), x 2 (t1 ), ......., x m (t1 )} x2 x (t2 ) { x1(t2 ), x2 (t2 ),......., xm (t2 )} .......
xn x (tn ) { x1(tn ), x2 (tn ),......., xm (tn )}
第二章 随机过程
信号
确定性信号:信号的大小随时间的变化具有某种规律性,可以预测
随机信号:信号的大小随时间的变化,不具有明确的变化规律性、不 可预测。只具有某些统计特征,只有用概率和统计的方法进行描述
实际信号一般都带有随机性,一般都是随机信号。如语言信 号,电视信号,生物医学信号等通常是随机信号。 说明:“随机信号”和“随机过程” ,在本课程中是通用的。 (一般书籍和文献中也是如此) “随机过程”更具有理论色彩,属于应用数学范畴。 “随机信号”更具有实际应用色彩,属于数字信号处理范畴。
• 根据样本函数的形式分:
• 1 0 不确定随机过程
• 任意样本函数的未来值不能由过去的观测值准确 地预测。
• 如热噪声电压。
• 2 0 确定的随机过程
• 任意样本函数的未来值,可以由过去的观测预测。
如:随机过程 X (t) A cos( t ) 式 中 : A , 或 ( 或 者 全 部 ) 是 随 机 变 量 。 (至少一个是随机变量) 对于该过程的任一个样本函数,这些随 机变量都是取具体值,因此若对以前任 意时间段的样本函数值已知,就可以预 测样本函数的未来值。
• 2 0 . 所有样本函数在同一时刻的值构成一个 随机变量。
• 如果 t t1 时,随机变量
{ , ……, }。 X1 X(t1) X 1 ( t ) X 2 ( t )
X n (t)
• 称 t t1 为随机过程 X ( t ) 在 t t1 时的状态。
• 当 t t k 时,随机变量
•
• 随机过程类型很多,分类Leabharlann 法也有许多种, 这里给出三种分类方法:
• 根据随机过程的状态与时间是否连续分:
• 1 0 连续型随机过程
• 状态和时间都是连续的。对任意时刻t 0 ,X ( t ) 都取连续值,即连续型随机变量。如接收和 输出的热噪声信号,语音信号等。
• 2 0 离散型随机过程
• 时间是连续的,状态是离散的。对任意时 刻 t k ,X ( t k ) 都是离散型随机变量。如12伏直 流电压流和示波面之间接入一个随机电键, 此时示波面上显示一个随机的矩形电压波形,
可以看出,每次观测到热噪声电压都是不同 的,且在观测之前是不可预测的,即每次的 观测结果是随机的。 若用 X ( t )表示所有观测记录 X k ( t ) ,k=1, 2……,n的集合,则称 X ( t ) 为一随机过程。 其中记录 X k ( t ) 称为随机过程 X ( t ) 的一个实现 或者一个样本函数。
定义:设E是随机实验,S={e}是它的样本空 间,如果对于每一个 e S ,(我们)总可 以依某种规则确定一时间t的函数
X (e, t ) ,t T ,T为t的变化范围, 则称 X (e, t )为随机过程, 为简便起见,常省去变量e,简记为 X ( t ) 。 • 说明:1 0 .对确定的 e e k , X (ek , t) 为随机过程 X (e, t) 的一个实现或者一个样本函数。 • 通常记作 , X 1 ( t ) X 2 ( t ) …… X k ( t ) ,……X n (t() n为 样本函数总数,一般要求n很大)