陕西省延安市2021版高考数学一模试卷C卷
陕西省延安市2021届新高考第一次质量检测数学试题含解析

陕西省延安市2021届新高考第一次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足i 2i z -=,则z =( ) ABC .2D【答案】D 【解析】 【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算. 【详解】解:由题意知,i 2i z =+,()22212121i i i iz i i i ++-+∴====--, ∴12i z =-== 故选:D. 【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.2.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( ) A .235B .835C .635D .37【答案】B 【解析】 【分析】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种,由古典概型的概率公式即得解. 【详解】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种 由古典概型,取的3个球的编号的中位数恰好为5的概率为:114237835C C P C ==故选:B本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.3.已知函数()f x 是R 上的偶函数,且当[)0,x ∈+∞时,函数()f x 是单调递减函数,则()2log 5f ,31log 5f ⎛⎫ ⎪⎝⎭,()5log 3f 的大小关系是( )A .()()3521log log 3log 55f f f <<⎛⎫⎪⎝⎭B .()()3251log log 5log 35f f f <<⎛⎫⎪⎝⎭C .()()5321log 3log log 55f f f ⎪<⎛⎫⎝⎭< D .()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭< 【答案】D 【解析】 【分析】利用对数函数的单调性可得235log 5log 5log 3>>,再根据()f x 的单调性和奇偶性可得正确的选项. 【详解】因为33log 5log 31>=,5550log 1log 3log 51=<<=, 故35log 5log 30>>.又2233log 5log 42log 9log 50>==>>,故235log 5log 5log 3>>. 因为当[)0,x ∈+∞时,函数()f x 是单调递减函数, 所以()()()235log 5log 5log 3f f f <<. 因为()f x 为偶函数,故()()3331log log 5log 55f f f ⎛⎫== ⎪⎝⎭-, 所以()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭<. 故选:D. 【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.4.已知平面向量a r ,b r满足()1,2a =-r ,()3,b t =-r ,且()a ab ⊥+r r r ,则b =r ( )A .3B .C .D .5【解析】 【分析】先求出a b +r r,再利用()0a a b ⋅+=r r r 求出t ,再求b r .【详解】解:()()()1,23,2,2t t a b -+-=-=-+r r由()a a b ⊥+r r r ,所以()0a a b ⋅+=r r r()()()12220t ⨯-+-⨯-=,1t =,()3,1b =-r,=r b 故选:B 【点睛】考查向量的数量积及向量模的运算,是基础题.5.已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A .53B .329C .43D .259【答案】B 【解析】 【分析】计算求半径为2R =,再计算球体积和圆锥体积,计算得到答案. 【详解】如图所示:设球半径为R ,则()223R R =-+,解得2R =.故求体积为:3143233V R ππ==,圆锥的体积:21333V π=⨯=,故12329V V =. 故选:B .【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.6.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A ,医生乙只能分配到医院A 或医院B ,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( ) A .18种 B .20种 C .22种 D .24种【答案】B 【解析】 【分析】分两类:一类是医院A 只分配1人,另一类是医院A 分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案. 【详解】根据医院A 的情况分两类:第一类:若医院A 只分配1人,则乙必在医院B ,当医院B 只有1人,则共有2232C A 种不同 分配方案,当医院B 有2人,则共有1222C A 种不同分配方案,所以当医院A 只分配1人时, 共有2232C A +122210C A =种不同分配方案;第二类:若医院A 分配2人,当乙在医院A 时,共有33A 种不同分配方案,当乙不在A 医院, 在B 医院时,共有1222C A 种不同分配方案,所以当医院A 分配2人时, 共有33A +122210C A =种不同分配方案; 共有20种不同分配方案.故选:B 【点睛】本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题. 7.已知111M dx x =+⎰,20cos N xdx π=⎰,由程序框图输出的S 为( )A .1B .0C .2πD .ln 2【答案】D 【解析】试题分析:1011ln(1)|ln 201M dx x x ==+=+⎰,20cos sin |120N xdx x ππ===⎰,所以M N <,所以由程序框图输出的S 为ln 2.故选D . 考点:1、程序框图;2、定积分.8.设实数x 、y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .2B .24C .16D .14【答案】D 【解析】 【分析】做出满足条件的可行域,根据图形即可求解. 【详解】做出满足1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩的可行域,如下图阴影部分,根据图象,当目标函数23z x y =+过点A 时,取得最小值,由42x x y =⎧⎨-=⎩,解得42x y =⎧⎨=⎩,即(4,2)A ,所以23z x y =+的最小值为14. 故选:D.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题. 9.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .不充分不必要【答案】B 【解析】 【分析】由线面关系可知m n ⊥,不能确定n 与平面α的关系,若//n α一定可得m n ⊥,即可求出答案. 【详解】,m m n α⊥⊥Q ,不能确定αn ⊂还是αn ⊄,//m n n α∴⊥¿,当//n α时,存在a α⊂,//,n a , 由,m m a α⊥⇒⊥ 又//,n a 可得m n ⊥,所以“m n ⊥”是“//n α”的必要不充分条件, 故选:B 【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题. 10.已知(1)2i ai bi -=+(i 为虚数单位,,a b ∈R ),则ab 等于( ) A .2 B .-2 C .12D .12-【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解. 【详解】(1)2i ai bi -=+Q ,2a i bi ∴+=+,得2a =,1b =.2ab ∴=.故选:A . 【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.11.已知()()()[)3log 1,1,84,8,6x x f x x x ⎧+∈-⎪=⎨∈+∞⎪-⎩ 若()()120f m f x ⎡⎤--≤⎣⎦在定义域上恒成立,则m 的取值范围是( ) A .()0,∞+ B .[)1,2C .[)1,+∞D .()0,1【答案】C 【解析】 【分析】先解不等式()2f x ≤,可得出89x ≥-,求出函数()y f x =的值域,由题意可知,不等式()()819m f x -≥-在定义域上恒成立,可得出关于m 的不等式,即可解得实数m 的取值范围. 【详解】()()()[)3log 1,1,84,8,6x x f x x x ⎧+∈-⎪=⎨∈+∞⎪-⎩Q ,先解不等式()2f x ≤.①当18x -<<时,由()()3log 12f x x =+≤,得()32log 12x -≤+≤,解得889x -≤≤,此时889x -≤<;②当8x ≥时,由()426f x x =≤-,得8x ≥. 所以,不等式()2f x ≤的解集为89x x ⎧⎫≥-⎨⎬⎩⎭.下面来求函数()y f x =的值域.当18x -<<时,019x <+<,则()3log 12x +<,此时()()3log 10f x x =+≥; 当8x ≥时,62x -≥,此时()(]40,26f x x =∈-. 综上所述,函数()y f x =的值域为[)0,+∞, 由于()()120f m f x ⎡⎤--≤⎣⎦在定义域上恒成立,则不等式()()819m f x -≥-在定义域上恒成立,所以,10m -≥,解得m 1≥. 因此,实数m 的取值范围是[)1,+∞. 故选:C. 【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.12.命题p :存在实数0x ,对任意实数x ,使得()0sin sin x x x +=-恒成立;q :0a ∀>,()ln a x f x a x+=-为奇函数,则下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∨⌝ C .()p q ∧⌝ D .()p q ⌝∧【答案】A 【解析】 【分析】分别判断命题p 和q 的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项. 【详解】对于命题p ,由于()sin sin x x π+=-,所以命题p 为真命题.对于命题q ,由于0a >,由0a xa x+>-解得a x a -<<,且()()1ln ln ln a x a x a x f x f x a x a x a x --++⎛⎫-===-=- ⎪+--⎝⎭,所以()f x 是奇函数,故q 为真命题.所以p q ∧为真命题. ()()p q ⌝∨⌝、()p q ∧⌝、()p q ⌝∧都是假命题. 故选:A 【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
陕西省2021版高考数学模拟试卷(理科)C卷

陕西省2021版高考数学模拟试卷(理科)C卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·山西模拟) 设x>0,集合,若M∩N={1},则M∪N=()A . {0,1,2,4}B . {0,1,2}C . {1,4}D . {0,1,4}2. (2分) (2019高三上·浙江期末) 已知,,则是的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3. (2分)(2017·上海模拟) 对数列{an},如果∃k∈N*及λ1 ,λ2 ,…,λk∈R,使an+k=λ1an+k ﹣1+λ2an+k﹣2+…+λkan成立,其中n∈N* ,则称{an}为k阶递归数列.给出下列三个结论:①若{an}是等比数列,则{an}为1阶递归数列;②若{an}是等差数列,则{an}为2阶递归数列;③若数列{an}的通项公式为,则{an}为3阶递归数列.其中,正确结论的个数是()A . 0B . 1C . 2D . 34. (2分)已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A . 2B . 2C . 6D . 95. (2分)(2020·德州模拟) 已知α终边与单位圆的交点且sinα·cosα>0,则的值等于()A .B .C .D . 36. (2分) (2020高二下·邢台期中) 已知,则()A . -1792B . 1792C . -5376D . 53767. (2分) (2017高二下·邢台期末) 实数系的结构图为如图所示,其中三个方格中的内容分别为()A . 有理数、零、整数B . 有理数、整数、零C . 零、有理数、整数D . 整数、有理数、零8. (2分)(2017·揭阳模拟) 某棱柱的三视图如图示,则该棱柱的体积为()A . 3B . 4C . 6D . 129. (2分)(2020·漳州模拟) 若实数,满足,则的最大值是()A .B .C .D .10. (2分)(2016·绵阳模拟) 已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为()A . (﹣2,+∞)B . (0,+∞)C . (1,+∞)D . (4,+∞)11. (2分)下列双曲线,离心率的是()A .B .C .D .12. (2分)(2018高一上·长春期中) 设,若关于x的函数有三个不同的零点,则实数t的取值范围为()A .B .C .D .二、填空题 (共4题;共5分)13. (1分)一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.14. (2分) (2018高二上·西城期末) 若双曲线的一个焦点在直线上,一条渐近线与平行,且双曲线的焦点在x轴上,则双曲线的标准方程为________;离心率为________.15. (1分)如图,在棱长均相等的正四棱锥P﹣ABCD最终,O为底面正方形的重心,M,N分别为侧棱PA,PB的中点,有下列结论:①PC∥平面OMN;②平面PCD∥平面OMN;③OM⊥PA;④直线PD与直线MN所成角的大小为90°.其中正确结论的序号是________.(写出所有正确结论的序号)16. (1分) (2016高二上·宝安期中) 已知数列{an}中,a1=1,an+1= ,则a6=________.三、解答题(解答应写出文字说明,证明过程或演算步骤). (共8题;共70分)17. (10分) (2019高三上·上高月考) 中,,,为线段上一点,且满足.(1)求的值;(2)若,求 .18. (10分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)作出B地区用户满意度评分的频率分布直方图;(2)通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).19. (10分)(2018·江苏) 在平行四边形中,求证:(1)平面(2)平面平面20. (10分)求下列动点的轨迹方程:(1)设圆C:(x﹣1)2+y2=1过原点O作圆的任意弦,求所作弦的中点的轨迹方程;(2)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C,求轨迹C的方程.21. (10分) (2017高三下·武邑期中) 函数f(x)= ,若曲线f(x)在点(e,f(e))处的切线与直线e2x﹣y+e=0垂直(其中e为自然对数的底数).(1)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;(2)求证:当x>1时,>.22. (5分)如图,AB是圆O的直径,弦CE交AB于D,CD=4 ,DE= ,BD=2.(I)求圆O的半径R;(Ⅱ)求线段BE的长.23. (5分)(2019·长春模拟) 在直角坐标系中,曲线的普通方程为,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 .(I)求的参数方程与的直角坐标方程;(II)射线与交于异于极点的点 ,与的交点为 ,求 .24. (10分)已知关于的不等式对恒成立.(1)求实数的最大值;(2)若为正实数,为实数的最大值,且,求证:.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题(解答应写出文字说明,证明过程或演算步骤). (共8题;共70分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、24-1、24-2、。
陕西省延安市2021届新高考第一次模拟数学试题含解析

陕西省延安市2021届新高考第一次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .【答案】B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案是正确的,应选答案B 。
点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。
2. “2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】A 【解析】 【分析】根据幂函数定义,求得b 的值,结合充分条件与必要条件的概念即可判断. 【详解】∵当函数()()2231af x b b x =--为幂函数时,22311b b --=,解得2b =或12-, ∴“2b =”是“函数()()2231af x b b x =--为幂函数”的充分不必要条件.故选:A. 【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.3.设x ,y 满足约束条件34100640280x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =+的最大值是( )A .4B .6C .8D .10【答案】D 【解析】 【分析】作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z 的最大值. 【详解】作出不等式组的可行域,如图阴影部分,作直线0l :20x y +=在可行域内平移当过点A 时,2z x y =+取得最大值.由34100280x y x y -+≥⎧⎨+-≤⎩得:()2,4A ,max 10z ∴=故选:D 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.4.已知直四棱柱1111ABCD A B C D -的所有棱长相等,60ABC ︒∠=,则直线1BC 与平面11ACC A 所成角的正切值等于( ) A 6B .10C 5 D 15 【答案】D 【解析】 【分析】以A 为坐标原点,AE 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴,建立空间直角坐标系.求解平面11ACC A 的法向量,利用线面角的向量公式即得解. 【详解】如图所示的直四棱柱1111ABCD A B C D -,60ABC ︒∠=,取BC 中点E ,以A 为坐标原点,AE 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴, 建立空间直角坐标系.设2AB =,则11(0,0,0),(0,0,2),(3,1,0),(3,1,0),(3,1,2)A A B C C -, 11(0,2,2),(3,1,0),(0,0,2)BC AC AA ===u u u r u u u r u u u r.设平面11ACC A 的法向量为(,,)n x y z =r,则130,20,n AC x y n AA z ⎧⋅=+=⎪⎨⋅==⎪⎩v v 取1x =,得(1,3,0)n =r.设直线1BC 与平面11ACC A 所成角为θ,则11236sin 484||BC n BC n θ⋅-===⋅⋅u u u r r u u u r r ,2610cos 14θ⎛⎫∴=-= ⎪ ⎪⎝⎭, ∴直线1BC 与平面11ACC A 15 故选:D 【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题. 5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙【答案】A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.6.若函数()()2sin 2cos f x x x θ=+⋅(02πθ<<)的图象过点()0,2,则( )A .函数()y f x =的值域是[]0,2B .点,04π⎛⎫⎪⎝⎭是()y f x =的一个对称中心 C .函数()y f x =的最小正周期是2π D .直线4x π=是()y f x =的一条对称轴【答案】A 【解析】 【分析】根据函数()f x 的图像过点()0,2,求出θ,可得()cos21f x x =+,再利用余弦函数的图像与性质,得出结论. 【详解】由函数()()2sin 2cos f x x x θ=+⋅(02πθ<<)的图象过点()0,2,可得2sin 22θ=,即sin 21θ=,22πθ∴=,4πθ=,故()()22sin 2cos 2cos cos21f x x x x x θ=+⋅==+, 对于A ,由1cos21x -≤≤,则()02f x ≤≤,故A 正确; 对于B ,当4x π=时,14f π⎛⎫=⎪⎝⎭,故B 错误;对于C ,22T ππ==,故C 错误; 对于D ,当4x π=时,14f π⎛⎫=⎪⎝⎭,故D 错误; 故选:A 【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.7.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2xx xf x e +=-,设(ln (lna fb fc f ===,则( ) A .b a c >> B .b a c >=C .a c b =>D .c a b >>【答案】B 【解析】 【分析】根据偶函数性质,可判断,a c 关系;由0x ≥时,22()2xx xf x e +=-,求得导函数,并构造函数()1x g x e x =--,由()g x '进而判断函数()f x 在0x ≥时的单调性,即可比较大小.【详解】()f x 为定义在R 上的偶函数,所以(ln ln c f f f ⎛⎛==-= ⎝⎭⎝⎭所以a c =;当0x ≥时,22()2xx xf x e +=-,则)1(xf x e x =--', 令()1xg x e x =--则1()x g x e '=-,当0x ≥时,)0(1xg x e =-≥', 则()1x g x e x =--在0x ≥时单调递增,因为000)10(g e =--=,所以1(0)xg x e x --=≥, 即)0(1x x f x e =--≥',则22()2xx xf x e +=-在0x ≥时单调递增,而0<<(f f<,综上可知,(ln 2f f f⎛⎫=< ⎪ ⎪⎝⎭即a c b =<, 故选:B. 【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题. 8.若θ是第二象限角且sinθ =1213,则tan()4πθ+= A .177-B .717- C .177D .717【答案】B 【解析】由θ是第二象限角且sinθ =1213知:5cos 13θ==-,5t n 1a 2θ-=. 所以tan tan 457tan()41tan tan 4517πθθθ+︒+==--︒.9.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】化简得到34z i =--,得到答案. 【详解】()117i z i +=-,故()()()()1711768341112i i i iz i i i i -----====--++-,对应点在第三象限.故选:C . 【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.10.已知整数,x y 满足2210x y +≤,记点M 的坐标为(,)x y ,则点M 满足x y +≥)A .935B .635C .537D .737【答案】D 【解析】 【分析】列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率. 【详解】因为,x y 是整数,所以所有满足条件的点(,)M x y 是位于圆2210x y +=(含边界)内的整数点,满足条件2210x y +≤的整数点有(0,0),(0,1),(0,2),(0,3),(1,0),±±±±(2,0),(3,0),(1,1),(2,1),(3,1),(1,2),(2,2),(1,3)±±±±±±±±±±±±±±共37个,满足x y +≥7个,则所求概率为737. 故选:D . 【点睛】本题考查了古典概率的计算,意在考查学生的应用能力. 11.已知函数()sin 2cos 2f x x a x =+的图象的一条对称轴为12x π=,将函数()f x 的图象向右平行移动4π个单位长度后得到函数()g x 图象,则函数()g x 的解析式为( ) A .()2sin(2)12g x x π=- B .()2sin(2)12g x x π=+C .()2sin(2)6g x x π=-D .()2sin(2)6g x x π=+【答案】C 【解析】 【分析】根据辅助角公式化简三角函数式,结合12x π=为函数()f x 的一条对称轴可求得a ,代入辅助角公式得()f x 的解析式.根据三角函数图像平移变换,即可求得函数()g x 的解析式.【详解】函数()sin 2cos 2f x x a x =+,由辅助角公式化简可得()()2,tan f x x a θθ=+=, 因为12x π=为函数()sin 2cos 2f x x a x =+图象的一条对称轴,代入可得sin 2cos 21212a ππ⎛⎫⎛⎫⨯+⨯= ⎪ ⎪⎝⎭⎝⎭即122+=(20a -=,即a =所以()sin 22f x x x =+2sin 23x π⎛⎫=+ ⎪⎝⎭将函数()f x 的图象向右平行移动4π个单位长度可得()g x , 则()2sin 22sin 2436g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故选:C. 【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.12.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( )2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C 【解析】 【分析】计算球心连线形成的正四面体相对棱的距离为,得到最上层球面上的点距离桶底最远为)()101n +-cm ,得到不等式)101100n +-≤,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为,每装两个球称为“一层”,这样装n 层球,则最上层球面上的点距离桶底最远为)()101n +-cm ,若想要盖上盖子,则需要满足)101100n +-≤,解得113.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球. 故选:C【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力. 二、填空题:本题共4小题,每小题5分,共20分。
陕西省延安市2021届新第四次高考模拟考试数学试卷含解析

陕西省延安市2021届新第四次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .32【答案】B 【解析】 【分析】根据随机数表法的抽样方法,确定选出来的第5个个体的编号. 【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21. 故选:B 【点睛】本小题主要考查随机数表法进行抽样,属于基础题. 2.已知集合A={x|x<1},B={x|31x <},则 A .{|0}A B x x =<I B .A B R =U C .{|1}A B x x =>U D .A B =∅I【答案】A 【解析】∵集合{|31}x B x =< ∴{}|0B x x =< ∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=< 故选A3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122 B .112 C .102 D .92【答案】D 【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.4.某工厂只生产口罩、抽纸和棉签,如图是该工厂2017年至2019年各产量的百分比堆积图(例如:2017年该工厂口罩、抽纸、棉签产量分别占40%、27%、33%),根据该图,以下结论一定正确的是( )A .2019年该工厂的棉签产量最少B .这三年中每年抽纸的产量相差不明显C .三年累计下来产量最多的是口罩D .口罩的产量逐年增加 【答案】C 【解析】 【分析】根据该厂每年产量未知可判断A 、B 、D 选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C 选项的正误.综合可得出结论. 【详解】由于该工厂2017年至2019年的产量未知,所以,从2017年至2019年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A 、B 、D 选项错误;由堆积图可知,从2017年至2019年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C 选项正确.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.5.已知直线1:240l ax y ++=,2:(1)20l x a y +-+=,则“1a =-”是“12l l P ”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案. 【详解】直线1:240l ax y ++=,()2:120l x a y +-+=,12l l P 的充要条件是()1221a a a a -=⇒==-或,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“1a =-”是“12l l P ”的充分必要条件. 故答案为C. 【点睛】判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.6.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+ D .,a b R ∃∈,a b a b -≥+ 【答案】D 【解析】 【分析】直接利用全称命题的否定是特称命题写出结果即可. 【详解】因为全称命题的否定是特称命题,所以,命题p :,a b R ∀∈,a b a b -<+,则p ⌝为:,a b R ∃∈,a b a b -≥+.故本题答案为D.本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.7.O 是平面上的一定点,,,A B C 是平面上不共线的三点,动点P 满足+OP OA λ=u u u v u u u v()·cos ?cos AB AC AB B AC C+u u u v u u u vu u u v u u u v ,(0,)λ∈∞,则动点P 的轨迹一定经过ABC ∆的( ) A .重心 B .垂心C .外心D .内心【答案】B 【解析】 【分析】解出AP u u u r ,计算AP BC ⋅u u u r u u u r并化简可得出结论. 【详解】AP OP OA =-=u u u r u u u r u u u rλ(AB AC AB cosB AC cosC+⋅⋅u u u r u u u ru u u r u u u r ), ∴()...0AB BC AC BC AP BC BC BC AB cosB AC cosC λλ⎛⎫ ⎪=+=-+= ⎪⋅⋅⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r , ∴AP BC u u u r u u u r⊥,即点P 在BC 边的高上,即点P 的轨迹经过△ABC 的垂心.故选B . 【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算AP BC ⋅u u u r u u u r是关键.8.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的关于直线1y =-对称的点在()1g x kx =-的图像上,则k 的取值范围是( )A .13(,)34B .13(,)24C .1(,1)3D .1(,1)2【答案】D 【解析】 【分析】根据对称关系可将问题转化为()f x 与1y kx =--有且仅有四个不同的交点;利用导数研究()f x 的单调性从而得到()f x 的图象;由直线1y kx =--恒过定点()0,1A -,通过数形结合的方式可确定(),AC AB k k k -∈;利用过某一点曲线切线斜率的求解方法可求得AC k 和AB k ,进而得到结果.()1g x kx =-关于直线1y =-对称的直线方程为:1y kx =--∴原题等价于()f x 与1y kx =--有且仅有四个不同的交点由1y kx =--可知,直线恒过点()0,1A - 当0x >时,()ln 12ln 1f x x x '=+-=-()f x ∴在()0,e 上单调递减;在(),e +∞上单调递增由此可得()f x 图象如下图所示:其中AB 、AC 为过A 点的曲线的两条切线,切点分别为,B C由图象可知,当(),AC AB k k k -∈时,()f x 与1y kx =--有且仅有四个不同的交点 设(),ln 2C m m m m -,0m >,则ln 21ln 10AC m m m k m m -+=-=-,解得:1m =1AC k ∴=-设23,2B n n n ⎛⎫+ ⎪⎝⎭,0n ≤,则23132220AB n n k n n ++=+=-,解得:1n =- 31222AB k ∴=-+=-11,2k ⎛⎫∴-∈-- ⎪⎝⎭,则1,12k ⎛⎫∈ ⎪⎝⎭本题正确选项:D 【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.9.设集合U =R (R 为实数集),{}|0A x x =>,{}|1B x x =≥,则U A C B =I ( )A .{}1|0x x <<B .{}|01x x <≤C .{}|1x x ≥D .{}|0x x >【答案】A 【解析】 【分析】根据集合交集与补集运算,即可求得U A C B ⋂. 【详解】集合U =R ,{}|0A x x =>,{}|1B x x =≥ 所以{}1U C B x x =<所以{}{}{}0101U A C B x x x x x x ⋂=⋂<=<< 故选:A 【点睛】本题考查了集合交集与补集的混合运算,属于基础题.10.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D .【点睛】本题考查了等差数列的计算,意在考查学生的计算能力. 11.执行程序框图,则输出的数值为( )A .12B .29C .70D .169【答案】C 【解析】 【分析】由题知:该程序框图是利用循环结构计算并输出变量b 的值,计算程序框图的运行结果即可得到答案. 【详解】0a =,1b =,1n =,022b =+=,5n <,满足条件,2012a -==,2n =,145b =+=,5n <,满足条件, 5122a -==,3n =,21012b =+=,5n <,满足条件,12252a -==,4n =,52429b =+=,5n <,满足条件,295122a -==,5n =,125870b =+=,5n =,不满足条件,输出70b =. 故选:C 【点睛】本题主要考查程序框图中的循环结构,属于简单题. 12.设01p <<,随机变量ξ的分布列是ξ1-0 1P1(1)3p - 2313p 则当p 在(,)34内增大时,( ) A .()E ξ减小,()D ξ减小 B .()E ξ减小,()D ξ增大 C .()E ξ增大,()D ξ减小D .()E ξ增大,()D ξ增大【答案】C 【解析】 【分析】1121()(1)(1)3333E p p p ξ=-⨯-+=-,22()()()D E E ξξξ=-,判断其在23(,)34内的单调性即可.【详解】解:根据题意1121()(1)(1)3333E p p p ξ=-⨯-+=-在23,34p ⎛⎫∈ ⎪⎝⎭内递增, 22111()(1)(1)333E p p ξ=-⨯-+=222221121442411()()()(1)()3333999923D E E p p p p p p ξξξ⎛⎫=-=-+--=-++=-- ⎪+⎝⎭,是以12p =为对称轴,开口向下的抛物线,所以在23,34⎛⎫⎪⎝⎭上单调递减,故选:C . 【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
陕西省2021年高考数学一模试卷(理科)C卷

陕西省2021年高考数学一模试卷(理科)C卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2017高二上·河北期末) 在实数集R中,已知集合A={x| ≥0}和集合B={x||x﹣1|+|x+1|≥2},则A∩B=()A . {﹣2}∪[2,+∞)B . (﹣∞,﹣2]∪[2,+∞)C . [2,+∞)D . {0}∪[2,+∞)2. (2分)(2017·衡阳模拟) 已知i为虚数单位,复数z满足z•i=﹣1,则z2017=()A . 1B . ﹣1C . iD . ﹣i3. (2分)(2014·福建理) 直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分又不必要条件4. (2分) (2019高二下·宝安期末) 已知函数,若函数有个零点,则实数的取值范围是()A .B .C .D .5. (2分)表示的平面区域是一个三角形,则a的范围是()A . a<5B . a≥8C . 2≤a<5D . 5<5或a≥86. (2分)函数f(x)=sin(-),的最小正周期为()A .B . πC . 2πD . 4π7. (2分) (2020高二下·张家口期中) 对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为,则()A .B .C .D .8. (2分)(2019·黄冈模拟) 一个几何体的三视图如图所示,其体积为()A .B .C .D .9. (2分) (2016高一下·中山期中) 程序框图如图所示,该程序运行后输出的S的值是()A . ﹣3B . ﹣C .D . 210. (2分)曲线与直线有两个不同的交点时,实数k的取值范围是()A .B .C .D .11. (2分)(2015·三门峡模拟) 设F1 , F2为双曲线C:的左,右焦点,P,Q为双曲线C右支上的两点,若 =2 ,且• =0,则该双曲线的离心率是()A .B . 2C .D .12. (2分)(2018·保定模拟) 已知函数既是二次函数又是幂函数,函数是上的奇函数,函数,则()A . 0B . 2018C . 4036D . 4037二、填空题: (共4题;共6分)13. (1分) (2020高一下·吉林月考) 中,,,,则 ________.14. (1分)二项式(ax﹣1)5(a>0)的展开式的第四项的系数为﹣40,则a的值为________.15. (3分) (2017高一下·杭州期末) 某简谐运动的函数表达式为y=3cos( t+ ),则该运动的最小正周期为________,振幅为________,初相为________.16. (1分) (2019高三上·上海月考) 已知偶函数满足:,并且当时,,函数与函数的交点个数是________.三、解答题 (共7题;共60分)17. (10分) (2017高三上·苏州开学考) 在数列{an}中,已知a1=2,an+1=3an+2n﹣1.(1)求证:数列{an+n}为等比数列;(2)记bn=an+(1﹣λ)n,且数列{bn}的前n项和为Tn ,若T3为数列{Tn}中的最小项,求λ的取值范围.18. (10分)(2020·上饶模拟) 为了释放学生压力,某校高三年级一班进行了一个投篮游戏,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置上,甲先投,每人投一次篮,两人有人命中,命中者得分,未命中者得-1分;两人都命中或都未命中,两人均得0分.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响.(1)经过轮投篮,记甲的得分为X,求X的分布列及期望;(2)若经过n轮投篮,用表示第i轮投篮后,甲的累计得分低于乙的累计得分的概率.①求;②规定,经过计算机模拟计算可得,请根据①中值求出的值,并由此求出数列的通项公式.19. (5分) (2016高二上·绥化期中) 在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD 的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN= .(Ⅰ)求证:BD⊥PC;(Ⅱ)求证:MN∥平面PDC;(Ⅲ)求二面角A﹣PC﹣B的余弦值.20. (10分)(2019·南通模拟) 如图,在平面直角坐标系xOy中,椭圆的左焦点为,右顶点为,上顶点为.(1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;(2)已知△ 外接圆的圆心在直线上,求椭圆的离心率的值.21. (10分) (2019高三上·日照期中) 己知函数.(1)证明:当恒成立;(2)若函数恰有一个零点,求实数的取值范围.22. (5分)已知曲线C1:ρ=2cosθ,圆,把两条曲线化成直角坐标方程,并判断这两条曲线的位置关系.23. (10分) (2019高三上·成都月考) 已知函数.(1)求不等式的解集;(2)若关于的不等式的解集非空,求实数的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共6分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共60分) 17-1、17-2、18-1、18-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、。
陕西省2021年高考数学一模试卷(理科)C卷(考试)

陕西省2021年高考数学一模试卷(理科)C卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)(2017·长沙模拟) 已知集合P= ,则P∩Q=()A . (2016,2017)B . (2016,2017]C . [2016,2017)D . (﹣2016,2017)2. (2分) (2017高二下·天津期末) i是虚数单位,等于()A . iB . ﹣ iC . + iD . ﹣ i3. (2分) (2020高一下·重庆期末) 从单词“ ”的四个字母中任取2个,则取到的2个字母不相同的概率为()A .B .C .D .4. (2分) (2019高二下·揭阳期末) “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于同一个常数.若第一个单音的频率为f,第三个单音的频率为,则第十个单音的频率为()A .B .C .D .5. (2分) (2018高二下·重庆期中) 若直线被圆所截得的弦长为6,则的最小值为()A .B .C .D .6. (2分) (2017高一上·长春期末) 如图是一个几何体的三视图,在该几何体的各个面中.面积最小的面的面积为()A . 4B . 4C . 4D . 87. (2分) (2019高三上·汉中月考) 函数在上的图象大致为()A .B .C .D .8. (2分) (2018高二下·双流期末) 下列不等式成立的有()① ,② ,③A . 0个B . 1个C . 2个D . 3个9. (2分) (2018高三上·昭通期末) 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a的值为5,输出的n的值为4,则输入的整数b的值为()A . 4B . 3C . 2D . 110. (2分)(2017·临汾模拟) 已知方程﹣ =1表示双曲线,则实数m的取值范围是()A . (﹣1,∞)B . (﹣2,﹣1)C . (﹣∞,﹣2)∪(﹣1,+∞)D . (﹣∞,﹣2)11. (2分) (2016高二上·桐乡期中) 设一个球的表面积为S1 ,它的内接正方体的表面积为S2 ,则的值等于()A .B .C .D .12. (2分)已知函数f(x)=|mx|﹣|x﹣1|(m>0),若关于x的不等式f(x)≥0的解集中的整数恰有3个,则实数m的取值范围为()A . (0,1]B . [ ,)C . [ ,)D . [ ,2)二、填空题: (共4题;共4分)13. (1分) (2018高一下·柳州期末) 已知向量,,若与垂直,则实数 ________.14. (1分) (2016高二下·邯郸期中) (1+x)2(x﹣)7的展开式中,含x3的项的系数为________.15. (1分)(2019·青浦模拟) 若实数、y满足条件,则的最小值为________16. (1分)(2020·梧州模拟) 已知数列满足,,若,则数列的首项的取值范围为________.三、解答题: (共7题;共65分)17. (10分) (2016高一下·惠阳期中) 已知A,B,C为△ABC的三个内角,且其对边分别为a,b,c,若c2+b2+cb=a2(1)求A;(2)若a=2 ,b+c=4,求△ABC的面积.18. (5分)(2017·榆林模拟) 如图,在三棱锥P﹣ABC中,AC=BC=2,∠ACB=90°,侧面PAB为等边三角形,侧棱.(Ⅰ)求证:PC⊥AB;(Ⅱ)求证:平面PAB⊥平面ABC;(Ⅲ)求二面角B﹣AP﹣C的余弦值.19. (15分) (2015高三上·广州期末) 心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)几何题代数题总计男同学22830女同学81220总计302050(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.附表及公式P(k2≥k)0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828 K2= .20. (10分)(2016·柳州模拟) 在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为.(1)求动点M的轨迹E的方程;(2)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.21. (10分)(2018·汕头模拟) 已知函数,.(1)讨论函数的单调性;(2)设函数,若在上存在极值,求的取值范围,并判断极值的正负.22. (5分)(2015·合肥模拟) 已知直线l的参数方程为(t为参数)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的方程为.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)写出直线l与曲线C交点的一个极坐标.23. (10分) (2015高二下·广安期中) 设对于任意实数x,不等式|x+7|+|x﹣1|≥m恒成立.(1)求m的取值范围;(2)当m取最大值时,解关于x的不等式:|x﹣3|﹣2x≤2m﹣12.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共65分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、23-1、23-2、。
陕西省2021版数学高三上学期文数第一次联考试卷C卷

陕西省2021版数学高三上学期文数第一次联考试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高一上·长春月考) 已知全集,则等于()A .B .C .D .2. (2分)(2020·赣县模拟) 已知是等比数列,,前n项和为,则“ ”是“ 为递增数列”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3. (2分) (2020高一下·长春月考) 等差数列,若a3 =5,,则公差()A .B .C . 1D . -14. (2分) (2020高一下·南平期末) 已知,则的值为()A .B .C .D .5. (2分) (2016高一下·南市期末) 已知向量 =(3,4), =(sinα,cosα),且,则tanα=()A .B . ﹣C .D . ﹣6. (2分)(2020·陕西模拟) 设,则a , b , c的大小关系是()A .B .C .D .7. (2分) (2018高三上·邹城期中) 函数()的部分图象大致是()A .B .C .D .8. (2分)已知等比数列{an}前n项和为Sn ,则下列一定成立的是()A . 若a3>0,则a2013<0B . 若a4>0,则a2014<0C . 若a3>0,则S2013>0D . 若a4>0,则S2014>09. (2分) (2016高二下·孝感期末) 已知曲线y=f(x)在x=5处的切线方程是y=﹣x+8,则f(5)与f′(5)分别为()A . 3,3B . 3,﹣1C . ﹣1,3D . ﹣1,﹣110. (2分) (2016高三上·汕头模拟) 已知,为同一平面内的两个向量,且 =(1,2),| |= | |,若 +2 与2 ﹣垂直,则与的夹角为()A . 0B .C .D . π11. (2分) (2016高一上·杭州期中) 设函数,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是()A . m<﹣1或0<m<1B . 0<m<1C . m<﹣1D . ﹣1<m<012. (2分)(2019·吕梁模拟) 设函数,若,则的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2019·湖北模拟) 已知实数,满足约束条件,则的最大值为________.14. (1分) (2016高一下·宁波期中) 某几何体的三视图如图所示(单位:cm),则该几何体的体积为________ cm3 ,表面积为________ cm2 .15. (1分) (2016高二上·扬州开学考) 数列{an}满足:a1•a2•a3…an=n2(n∈N*),则通项公式是:an=________.16. (1分) (2016高二上·岳阳期中) 已知函数f(x)=2lnx﹣x2 ,若方程f(x)+m=0在内有两个不等的实根,则实数m的取值范围是________.三、解答题 (共7题;共67分)17. (10分) (2016高二下·安吉期中) 在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA ﹣ sinA)cosB=0.(1)求角B的大小;(2)若a=2,b= ,求△ABC的面积.18. (2分) (2020高三上·海口月考) 如图,已知四棱锥中,底面为菱形,,平面,,E,F分别为BC,PD的中点.(1)求证:PB∥平面AFC;(2)求平面PAE与平面PCD所成锐二面角的余弦值.19. (10分) (2020高二上·台州开学考) 已知中内角所对的边分别为,且, .(Ⅰ)求角A的大小;(Ⅱ)求的取值范围.20. (10分) (2019高三上·南京月考) 已知数列{}的首项a1=2,前n项和为,且数列{}是以为公差的等差数列(1)求数列{}的通项公式;(2)设,,数列{}的前n项和为,①求证:数列{}为等比数列,②若存在整数m,n(m>n>1),使得,其中为常数,且-2,求的所有可能值.21. (15分)(2020·南京模拟) 已知函数 (a R),其中e为自然对数的底数.(1)若,求函数的单调减区间;(2)若函数的定义域为R ,且,求a的取值范围;(3)证明:对任意,曲线上有且仅有三个不同的点,在这三点处的切线经过坐标原点.22. (10分) (2019高三上·乐山月考) 在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线与曲线两交点所在直线的极坐标方程;(2)若直线的极坐标方程为,直线与轴的交点为,与曲线相交于两点,求的值.23. (10分) (2016高二上·扬州期中) 为了迎接青奥会,南京将在主干道统一安装某种新型节能路灯,该路灯由灯柱和支架组成.在如图所示的直角坐标系中,支架ACB是抛物线y2=2x的一部分,灯柱CD经过该抛物线的焦点F且与路面垂直,其中C在抛物线上,B为抛物线的顶点,DH表示道路路面,BF∥DH,A为锥形灯罩的顶,灯罩轴线与抛物线在A处的切线垂直.安装时要求锥形灯罩的顶到灯柱的距离是1.5米,灯罩的轴线正好通过道路路面的中线.(1)求灯罩轴线所在的直线方程;(2)若路宽为10米,求灯柱的高.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共67分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:。
陕西省延安市2021届新高考数学一模试卷含解析

陕西省延安市2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A .2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B .2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C .2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D .2016年我国数字出版营收占新闻出版营收的比例未超过三分之一 【答案】C 【解析】 【分析】通过图表所给数据,逐个选项验证. 【详解】根据图示数据可知选项A 正确;对于选项B :1935.5238715720.9⨯=<,正确;对于选项C :16635.3 1.523595.8⨯>,故C 不正确;对于选项D :123595.878655720.93⨯≈>,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.2.已知等差数列{}n a 满足1=2a ,公差0d ≠,且125,,a a a 成等比数列,则=d A .1 B .2C .3D .4【答案】D 【解析】 【分析】先用公差d 表示出25,a a ,结合等比数列求出d .252,24a d a d =+=+,因为125,,a a a 成等比数列,所以2(2)2(24)d d +=+,解得4d =.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.3.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424πB .()85824πC .()854216πD .()858216π【答案】C 【解析】 【分析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积. 【详解】最上面圆锥的母线长为2,底面周长为2π24π⨯=,侧面积为1224π42π2⨯=,下面圆锥的母线长为252π48π⨯=,侧面积为1258π85π2⨯=,没被挡住的部分面积为22π4π212π⨯-⨯=,中间圆柱的侧面积为2π214π⨯⨯=.故表面积为()854216π,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题. 4.已知等差数列{}n a 中,51077,0a a a =+=,则34a a +=( ) A .20 B .18C .16D .14【答案】A 【解析】 【分析】设等差数列{}n a 的公差为d ,再利用基本量法与题中给的条件列式求解首项与公差,进而求得34a a +即可.设等差数列{}n a 的公差为d .由51077,0a a a =⎧⎨+=⎩得11147,960a d a d a d +=⎧⎨+++=⎩,解得115,2a d =⎧⎨=-⎩.所以341252155(2)20a a a d +=+=⨯+⨯-=.故选:A 【点睛】本题主要考查了等差数列的基本量求解,属于基础题.5.已知等差数列{}n a 的公差为2-,前n 项和为n S ,1a ,2a ,3a 为某三角形的三边长,且该三角形有一个内角为120︒,若n m S S ≤对任意的*n ∈N 恒成立,则实数m =( ). A .6 B .5 C .4 D .3【答案】C 【解析】 【分析】若n m S S ≤对任意的*n ∈N 恒成立,则m S 为n S 的最大值,所以由已知,只需求出n S 取得最大值时的n 即可. 【详解】由已知,1a >2a >30a >,又三角形有一个内角为120︒,所以22212323a a a a a =++,22211111(2)(4)(2)(4)a a a a a =-+-+--,解得17a =或12a =(舍),故2(1)7(2)82n n n S n n n -=+⨯-=-+,当4n =时,n S 取得最大值,所以4m =. 故选:C. 【点睛】本题考查等差数列前n 项和的最值问题,考查学生的计算能力,是一道基础题.6.若[]1,6a ∈,则函数2x ay x+=在区间[)2,+∞内单调递增的概率是( )A .45 B .35 C .25 D .15【答案】B【解析】Q 函数2x ay x+=在区间[)2,+∞内单调递增, 222'10a x a y x x -∴=-=≥,在[)2,+∞恒成立, 2a x ∴≤在[)2,+∞恒成立, 4a ∴≤, [][]1,6,1,4,a a ∈∴∈∴Q 函数2x ay x+=在区间[)2,+∞内单调递增的概率是413615-=-,故选B. 7.下列说法正确的是( )A .命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀>,2sin x x >”B .若平面α,β,γ,满足αγ⊥,βγ⊥则//αβC .随机变量ξ服从正态分布()21,N σ(0σ>),若(01)0.4P ξ<<=,则(0)0.8P ξ>= D .设x 是实数,“0x <”是“11x<”的充分不必要条件 【答案】D 【解析】 【分析】由特称命题的否定是全称命题可判断选项A ;,αβ可能相交,可判断B 选项;利用正态分布的性质可判断选项C ;11x<⇒0x <或1x >,利用集合间的包含关系可判断选项D. 【详解】命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀≤,2sin x x >”,故A 错误;αγ⊥,βγ⊥,则,αβ可能相交,故B 错误;若(01)0.4P ξ<<=,则(12)0.4P ξ<<=,所以10.40.4(0)0.12P ξ--<==,故(0)0.9P ξ>=,所以C 错误;由11x <,得0x <或1x >,故“0x <”是“11x <”的充分不必要条件,D 正确.故选:D. 【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.8.抛物线2:2(0)C y px p =>的焦点为F ,点()06,A y 是C 上一点,||2AF p =,则p =( ) A .8 B .4C .2D .1【答案】B 【解析】 【分析】根据抛物线定义得62pAF =+,即可解得结果. 【详解】因为262pAF p ==+,所以4p =. 故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.9.已知底面为边长为2的正方形,侧棱长为1的直四棱柱1111ABCD A B C D -中,P 是上底面1111D C B A 上的动点.给出以下四个结论中,正确的个数是( )①与点D P 形成一条曲线,则该曲线的长度是2π;②若//DP 面1ACB ,则DP 与面11ACC A 所成角的正切值取值范围是3⎢⎣;③若DP =,则DP 在该四棱柱六个面上的正投影长度之和的最大值为A .0 B .1C .2D .3【答案】C 【解析】 【分析】①与点D P 形成以1D 的14圆弧MN ,利用弧长公式,可得结论;②当P 在1A (或1)C 时,DP 与面11ACC A 所成角1DA O ∠(或1)DC O ∠当P 在1O 时,DP 与面11ACC A 所成角1DO O ∠最大,可得正切值取值范围是;③设(P x ,y ,1),则2213x y ++=,即222x y +=,可得DP 在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和. 【详解】 如图:①错误, 因为1D P ===,与点D 的点P 形成以1D 为圆心,的14圆弧MN ,长度为1242⋅=π; ②正确,因为面11//A DC 面1ACB ,所以点P 必须在面对角线11A C 上运动,当P 在1A (或1C )时,DP与面11ACC A 所成角1DA O ∠(或1DC O ∠)的正切值为3最小(O 为下底面面对角线的交点),当P 在1O 时,DP 与面11ACC A 所成角1DO O ∠最大,所以正切值取值范围是⎣;③正确,设(),,1P x y ,则2213x y ++=,即222x y +=,DP 在前后、左右、上下面上的正投影长分,所以六个面上的正投影长度之()2222112112222622y x y x ⎛⎫+++++++≤+= ⎪ ⎪⎝⎭,当且仅当P 在1O 时取等号.故选:C .【点睛】本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题. 10.若424log 3,log 7,0.7a b c ===,则实数,,a b c 的大小关系为( ) A .a b c >> B .c a b >> C .b a c >> D .c b a >>【答案】A 【解析】 【分析】将a 化成以4 为底的对数,即可判断,a b 的大小关系;由对数函数、指数函数的性质,可判断出,b c 与1的大小关系,从而可判断三者的大小关系. 【详解】依题意,由对数函数的性质可得244log 3log 9log 7a b ==>=.又因为40440.70.71log 4log 7c b =<==<=,故a b c >>.故选:A. 【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.11.已知函数()f x 是R 上的偶函数,()g x 是R 的奇函数,且()()1g x f x =-,则()2019f 的值为( )A .2B .0C .2-D .2±【答案】B 【解析】【分析】根据函数的奇偶性及题设中关于()g x 与()1f x -关系,转换成关于()f x 的关系式,通过变形求解出()f x 的周期,进而算出()2019f .【详解】()g x Q 为R 上的奇函数,()()()()010,g f g x g x ∴=-=-=-()()()10,11f f x f x ∴-=--=--,()()2f x f x ∴-=--而函数()f x 是R 上的偶函数,()()f x f x ∴=-,()()2f x f x ∴=--()()24f x f x ∴-=--,()()4f x f x ∴=-故()f x 为周期函数,且周期为4()()201910f f ∴=-=故选:B 【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.12.过双曲线22221x y a b-= (0,0)a b >>的左焦点F 作直线交双曲线的两天渐近线于A ,B 两点,若B 为线段FA 的中点,且OB FA ⊥(O 为坐标原点),则双曲线的离心率为( )A BC .2D 【答案】C 【解析】由题意可得双曲线的渐近线的方程为by x a=±. ∵B 为线段FA 的中点,OB FA ⊥ ∴OA OF c ==,则AOF ∆为等腰三角形. ∴BOF BOA ∠=∠由双曲线的的渐近线的性质可得BOF xOA ∠=∠ ∴60BOF BOA xOA ∠=∠=∠=︒∴tan 60ba=︒=223b a =.∴双曲线的离心率为22cae aa==== 故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围). 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省延安市2021版高考数学一模试卷C卷
姓名:________ 班级:________ 成绩:________
一、一.填空题 (共12题;共15分)
1. (1分)设复数z满足﹣iz=(3+2i)(1﹣i)(其中i为虚数单位),则z=________
2. (1分) (2018高一上·建平期中) 已知集合,,,则 ________.
3. (1分)若(2﹣x)2015=a0+a1x+a2x2+…+a2015x2015 ,则=________
4. (1分) (2017高二上·太原期末) 双曲线x2﹣y2=1的离心率为________.
5. (1分)关于x,y的一元二次方程组的系数矩阵________ .
6. (1分)阅读如图的程序框图,运行相应的程序,输出的结果为________
7. (2分)在底面半径为R,高为h的圆锥内有一内接圆柱,则内接圆柱的圆柱的高为________时,其侧面积最大值为________.
8. (2分)已知数列{an},a1=m,m∈N* ,,若a1=2013,则a2013=________;若{an}中有且只有5个不同的数字,则m的不同取值共有________个.
9. (2分) (2019高二上·南湖期中) 直观图(如右图)中,四边形O′A′B′C′为菱形且边长为2cm ,则
在xoy坐标中四边形ABCD为________,面积为________cm2 .
10. (1分) (2020高一下·河西期中) 如图,在平面四边形中,,,
, .若点E为上的动点,则的最小值为________.
11. (1分)设函数f(x)=ax+bx﹣cx ,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是________
①对任意x∈(﹣∞,1),都有f(x)<0;
②存在x∈R,使ax , bx , cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,存在x∈(1,2)使f(x)=0.
12. (1分) (2019高二上·沈阳月考) 在数列中,,,,则
________.
二、二.选择题 (共4题;共8分)
13. (2分)设α,β∈[0,π],且满足sinαcosβ﹣cosαsinβ=1,则sin(2α﹣β)+sin(α﹣2β)的取值范围为()
A . [﹣, 1]
B . [﹣1,]
C . [﹣1,1]
D . [1,]
14. (2分) (2019高二上·天河期末) 下列有关命题的说法错误的是()
A . “若,则”的逆命题为假命题
B . 命题“如果则”的否命题是真命题
C . 若为假命题,则、均为假命题
D . 若为假命题,则、均为假命题
15. (2分) (2015高二下·宁德期中) 函数f(x)=ln(x2+2)﹣ex﹣1的图象可能是()
A .
B .
C .
D .
16. (2分) (2016高二上·清城期中) 下列说法中正确的是()
A . 一个命题的逆命题为真,则它的逆否命题一定为真
B . “a>b”与“a+c>b+c”不等价
C . “a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”
D . 一个命题的否命题为真,则它的逆命题一定为真
三、解答题 (共5题;共55分)
17. (10分) (2016高一上·周口期末) 在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分别为棱AB、BC的中点,点F在棱AA1上.
(1)证明:直线A1C1∥平面FDE;
(2)若F为棱AA1的中点,求三棱锥A1﹣DEF的体积.
18. (10分)(2017·房山模拟) 已知函数f(x)=sin(ωx﹣)(ω>0)的图象与x轴的相邻两个交点的距离为.
(1)求w的值;
(2)设函数g(x)=f(x)+2cos2x﹣1,求g(x)在区间上的最大值和最小值.
19. (10分)已知A(,0)、B(﹣,0)两点,动点P在y轴上的射影为Q,• =2 2 .
(1)求动点P的轨迹E的方程;
(2)设直线m过点A,斜率为k,当0<k<1时,曲线E的上支上有且仅有一点C到直线m的距离为,试求k的值及此时点C的坐标.
20. (15分) (2016高二上·上海期中) 如图,平面直角坐标系中,射线y=x(x≥0)和y=0(x≥0)上分别
依次有点A1、A2 ,…,An ,…,和点B1 , B2 ,…,Bn…,其中,,.且,(n=2,3,4…).
(1)用n表示|OAn|及点An的坐标;
(2)用n表示|BnBn+1|及点Bn的坐标;
(3)写出四边形AnAn+1Bn+1Bn的面积关于n的表达式S(n),并求S(n)的最大值.
21. (10分) (2020高一下·温州期末) 已知函数 .
(1)若对于任意的,恒成立,求实数b的取值范围;
(2)记在内的最大值为M,最小值为m,若有解,求n的取值范围.
参考答案一、一.填空题 (共12题;共15分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、二.选择题 (共4题;共8分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共5题;共55分) 17-1、
17-2、
18-1、18-2、19-1、
19-2、20-1、
20-2、20-3、21-1、
21-2、。