第4章 河流泥沙运动规律
河流泥沙变化规律及其对环境的影响

河流泥沙变化规律及其对环境的影响河流是地球上最宝贵的自然资产之一,对于物种生态系统和人类社会有着重要影响。
河流是淡水资源的重要来源,并为农业、工业、交通、观光和娱乐等产业提供了重要的支持。
然而,河流沉积物变化的规律对环境稳定性的影响却是不可忽视的问题。
本文旨在分析河流沉积物变化的规律及其对环境的影响。
一、河流沉积物的来源和组成河流沉积物主要源于两个方面:一是岸边和河道中的岩石、石头、草木和泥土等天然物质;二是溪流中冲刷下来的泥沙和土壤以及附近地区的农业、工业和城市废水。
河流沉积物主要由砾石、沙粒、泥板、黏土和有机物质等组成。
这些沉积物可以通过人工和自然力量的运动转移到不同的地貌区域和不同的水域环境中。
沙和泥沈积是代表性的河流沉积物,在纵向分布上互相依存,沙粒沉积在上游区域,而细小的泥沙则主要在下游区域沉积。
二、河流沉积物变化的规律河流沉积物的变化与多种因素有关,包括流量、降雨、输入量、流速、沉积作用、生态因素等。
以下内容将着重探讨这些因素的影响。
1. 流量河流的流量是影响沉积物变化的重要因素。
径流量的变化不仅仅改变了输移能力、搬运才华和侵蚀能力,同时也影响了河床的粒子分选和沉积速率等物理过程。
2. 降雨降雨量会对河流搬运力造成影响,同时也会增加河流的风险。
如果降雨量小于径流量,部分水分会通过地下水层附近的地面径流来到河流中,并且水质不会因为降雨而发生明显的变化。
3. 输入量输入量包括从河床、岸边和上游输入的沉积物和生物质量等。
沉积物的输送由利用流量、悬浮物、水速、水体深度、枯水期等条件的径流来驱动。
如果输入量变化很大,则会影响底部通量的吸附和吸附过程,使它们在环境中的固定性和可行性产生变化。
4. 流速河流的流速会影响沉积物的运动和传输。
一般来说,流速越快,泥沙的径流距离越远。
在慢流的条件下,稳定地假设岸边和底端质点的间隔相等以及它们耗费同等的时间通过实际沉积物碰撞和沉积进程,也就是说在同等温度、官能群和环境下,不同的大气沉积速率下,不同的碰撞速度和沉积速度等条件下,密度初始值相同的沉积物粒径在沉积区的垂直径向分布是相同的。
泥沙流运动规律的研究与模拟

泥沙流运动规律的研究与模拟一、引言泥沙流是指河流中悬浮的泥沙颗粒在水流的作用下产生的一种流动形态。
泥沙流的产生对于河流的环境和生态产生了深刻的影响,因此泥沙流运动规律的研究对于水利工程、生态环境等领域具有重要的意义。
本文将对泥沙流运动规律的研究与模拟进行探讨。
二、泥沙流运动规律的研究1.泥沙流运动的分类根据泥沙流内部物理特点的不同,泥沙流运动可以分为四种类型:均匀流动、层状流动、密度流动和浅滩流动。
均匀流动是指泥沙颗粒的浓度相等,无论在垂直方向或水平方向上,泥沙流的浓度分布都呈现均匀的状态。
层状流动是指泥沙颗粒在垂直方向上存在着一定的分布,通常为浓密层和稀疏层的叠加。
密度流动是指由于泥沙颗粒的密度和水的密度存在差异而产生的流动,流经河道断面时呈俯冲形状态。
浅滩流动是指泥沙颗粒悬浮状态下流经浅滩时,泥沙颗粒会沉积在浅滩上,形成浅滩面上的泥沙流。
2.泥沙流运动的基本特征泥沙流运动的基本特征是泥沙颗粒的浓度、流速和底面负荷,而泥沙流的速度、浓度和质量通常分别用平均流速、平均浓度和流量来衡量。
在泥沙流的运动过程中,由于水流和泥沙颗粒之间相互作用,泥沙颗粒会发生弥散、沉淀和输移等一系列现象。
3.泥沙流运动的影响因素泥沙流运动的影响因素包括流量、流速、泥沙颗粒的大小、质量和型态等。
其中,流量和流速是泥沙流的重要参数,泥沙颗粒的大小、质量和型态是影响泥沙流输移和沉积特征的重要因素。
4.泥沙流运动的数学模型泥沙流运动的数学模型包括动力学模型和输移模型。
动力学模型是基于质量、动量和能量守恒原理建立的,用来描述泥沙颗粒在水流中的加速度和速度随时间的变化。
输移模型是基于泥沙颗粒在水流中的输移过程建立的,用来描述泥沙颗粒在水流中的输移路径和输移机制。
三、泥沙流的模拟泥沙流的模拟可以通过物理模型和数值模型两种方式进行。
1.物理模型物理模型是基于实验进行的,通常采用室内或室外的实验田进行模拟。
物理模型对实验条件要求较高,但实验仿真效果更加真实,并且可以对实验中各个参数进行实时监测和调节。
第4章 泥沙的推移运动

非均匀沙, K s D65 ; 为考虑水流粘滞性影响的校正系数,为河床 相对粗糙度 K s / 的函数, f K s /
近壁层流层厚度, 11.6 U* 为水的运动粘滞系数。
;
28
校正系数与河床相对粗糙度的关系
滑移模式
如泥沙颗粒沿着床面滑动的,则起动临界状态下力的平衡方 程式为:
FD (W FL ) f
• 式中, f——床面摩擦系数,
f tan
•
通常不用底流uoc作为起动流速, 而用垂线平均流速U作为起动 4 f cs u0 c gD 3 CD C f 流速。 uoc→UcL??
水流本身具有脉动,脉动本身就是随机的,水流的脉 动性致使其作用在床面某一位置上颗粒上的力也完全 是随机的。 • (4)沙粒组成的非均匀性
泥沙组成的非均匀性,无明显的临界粒径。
三、泥沙起动临界状态的判别 2.2.1.3
起动的随机性→确定起动条件的困难性,目前还无一致 的起动标准 ⑴ 克雷默(H.Kramer)的定性标准
用垂线平均流速指数水深表面流速代入指数流速分布公式图41泥沙的起动无粘性均匀沙起动流速公式第四章推移质运动2224ye起动垂线平均流速起动流速u0c作用位置的确定0cad41泥沙的起动无粘性均匀沙起动流速公式第四章推移质运动2224xe起动垂线平均流速起动流速u41泥沙的起动无粘性均匀沙起动流速公式第四章推移质运动2224xe起动垂线平均流速起动流速u的确定下一步任务是如何确定41泥沙的起动无粘性均匀沙起动流速公式第四章推移质运动2231xe2代入对数流速分布公式
2 u0 非球体:FL a2C L D 2g 2
河流动力学章节总结

绪论1、河流动力学的概念:河流动力学是研究冲击河流在自然状态下以及受人工建筑物影响以后所发生的变化和发展规律的一门科学。
河流变化是水流与河床相互作用的结果:水流是动力条件,河床是边界条件;通过泥沙交换来相互作用。
本课研究内容:水流结构,泥沙运动,河床演变及预测。
谢才公式曼宁公式对数流速垂线分布摩阻流速u*=(gHJ)0.5第一章泥沙特性1泥沙的基本特性:几何特性,重力特性,水力特性2等容粒径:体积与泥沙颗粒相等的球体的直径(详见p5)算术平均值,几何平均值3泥沙的孔隙率:泥沙中孔隙的容积占沙样总容积的百分比成为孔隙率4泥沙孔隙率的影响因素:泥沙孔隙率因沙粒大小及均匀度,沙粒的形状,沉积的情况及沉积后受力及历时长短5比表面面积:颗粒表面及与体积之比。
表达式:6/D详见p86沙粒的干容重与干密度:经过100~105度烘干后的沙样质量与为烘干前原样沙体积比(概念,影响因素及规律详见p10~11)影响因素:泥沙颗粒大小,组成均匀程度,淤积深度,淤积历时,泥沙的化学成分,淤积环境及水文条件等。
7干容重的影响因素:1)泥沙粒径2)泥沙淤积厚度3)淤积历时8泥沙沉速:单颗粒泥沙在无大静止清水体中匀速下沉时的速度称为泥沙的沉降速度9影响沉速的因素:绕流状态,泥沙形状,水质,含沙量等1. 等容粒径D:就是体积与泥沙颗粒相等的球体的直径。
2. 泥沙粒径测量方法:测量法(D》20mm);筛析法(0.1mm《D<20mm);显微镜法(D<0.1mm);沉降法。
3. 粒配曲线:通过颗粒分析(筛分、水析),求出沙洋中各粒径泥沙质量,算出小于各粒径泥沙质量,然后在半对数坐标上,将泥沙粒径D绘于横坐标(对数分格)上,小于该粒径泥沙在全部沙洋中所占百分比p绘于纵坐标轴上,绘出的D~p关系曲线,即为粒配曲线。
4.影响泥沙孔隙率的因素:1.粒径均匀泥沙孔隙率最大2.泥沙形状3.泥沙沉积方式5. 比表面积:颗粒表面积与其体积之比。
05 第5次课(第4章:沙波运动)解析

hsΔ
4.1、沙波形态和发展过程 4.1.1 沙波的纵剖面形态
A1 A2 λ
图4-1 沙波的纵剖面
波峰:沙波向上隆起的最高点。 波谷:沙波向下凹入的最低点。 波长:相邻两波峰或波谷之间的距离λ。 波高:波谷至波峰的铅直距离hs。
hsΔ
4.1、沙波形态和发展过程 4.1.1 沙波的纵剖面形态
A1 A2 λ
11
4.1.2 沙波的发展过程
河道中的沙波随着水流在不断变化,具有产生、发展 和消亡的过程。
沙波的发展过程与河道水流强度密切相关。 随着水流强度的增强,沙波运动及相应的床面形态将经历 以下几个不同的发展阶段,会出现以下几种类型的沙波:
12
4.1.2 沙波的发展过程 0、静平床 此时水流强度较弱,U<Uc ,床沙静止不动。
图4-1 沙波的纵剖面
1、形态特征: 外形——迎水面长而平,背水面短而陡; 坡度变化
hs Δ
2、沙波表面水流流态
A1 A2 λ
(1) 流速分布不均,波峰处流速最大,波谷处流速 最小; (2)波峰后水流分离,形成横轴环流;
7
Δ
hs
2、沙波表面水流流态
A1 A2 λ
(3) 漩涡上下两端、正负流速之间存在两个停滞点(即流 速为零的点); (4)迎水面流速为正,漩涡区内水流流速为负值。
4、沙浪 逆行沙波形成原因:
沙浪
因为这种沙波起伏很大,水流在经过沙波的迎流面时, 好像上坡一样,负担较大,把一部分泥沙卸了下来;而 越过波峰下行时,又有余力冲走一部分泥沙。这样每一 颗泥沙虽然顺着水流方向运动,但沙波作为一个整体却 是徐徐向上游后退,故称为逆行沙波。
21
4.1.2 沙波的发展过程
5、急滩和深潭
05 第5次课(第4章:沙波运动)

沙垄
14
沙垄的平面形态
⑴、带状(顺直)沙波(实际中较少出现)
特点:波峰线基本平行,与水流方向垂直,或略显斜交。
15
沙垄的平面形态 ⑵、断续蛇曲(弯曲)状沙波(实际中最常见)
断续蛇曲状沙波示意图 特点:波峰线呈不规则曲线,时断时续,大致与流向垂直。
16
沙垄的平面形态
⑶、新月形沙波(实际中较常见)
27
4.2
床面形态的判别 沙波运动的判别参数
(3) 弗如德数
Fr U
gh
Fr数是明渠水流惯性作用与重力作用的对比,决定了 水流的流态,流态又影响了沙波的形成和发展。在判
别沙垄向逆行沙垄过渡、发展的时候,它是一个常用
的参数。
28
沙波运动的判别参数
除了上述三个重要的参数外,由于沙波出现的范围较广, 在判别沙波形态时,有人也采用下面几个参数来描述沙波 运动发展的水流泥沙条件。
好像上坡一样,负担较大,把一部分泥沙卸了下来;而
越过波峰下行时,又有余力冲走一部分泥沙。这样每一 颗泥沙虽然顺着水流方向运动,但沙波作为一个整体却 是徐徐向上游后退,故称为逆行沙波。
21
4.1.2
沙波的发展过程
5、急滩和深潭
当Fr 》1,床面出现急滩和深潭相间的特殊形态。急滩处为 急流,强烈冲刷;深潭处为缓流,严重淤积。这种床面形态
Shields数
0 0 s d s gd
床面上的剪切应力(促 使泥沙运动的力) 床沙水下重力(抗拒泥 沙运动的力)
这个参数的值愈大,泥沙的可动性愈强。因而它
可以作为床沙运动状态的一个重要指标。它决定
了推移质运动的强度。
26
4.2
床面形态的判别
河流动力学第四章 推移质运动

沙莫夫公式
=1.144
m=1/6 适用范围:
D>0.2mm
岗恰洛夫公式
对数流速分布 适用范围:
0.08-1.50mm
1
Uc 1.144
s
gD
(
h D
)
6
Uc
1.07 lg
8.8h D95
s
gD
§4.2. 泥沙的起动
三、无粘性均匀沙的起动拖曳力
起动拖曳力
0
hJ
U
2 *
Krammer方法:定性标准
最常用的方法 具体内容
♥ 无泥沙运动:静止 ♥ 轻微的泥沙运动:个别动,可数 ♥ 中等强度泥沙运动:少量动,不可计数 ♥ 普遍的泥沙运动:普遍动,床面变形
§4.2. 泥沙的起动
五、与泥沙起动有关的几个问题
泥沙起动具有随机性 泥沙条件 ♥ 大小、形状 ♥ 级配、密度:均匀沙,非均匀沙 ♥ 床面平整、颗粒排列 水流条件 ♥ 水流的紊动 ♥ 流速的大小
♥ 推移质运动达到一定规模,床面起伏 ♥ 泥沙颗粒在床面的集体运动
用途
♥ 推移质运动的一种主要形式 ♥ 构成河床地形的基本元素 ♥ 影响:水流结构,河道阻力,泥沙运动,河床演变
主要内容
沙波形态和运动状态 沙波的产生和消亡
§4.3.1. 沙波形态和运动状态
沙波介绍
名词:波峰、波谷、波长、波高 特点:迎水面:较为平坦、背水面:相对较陡
♥ 悬移质中的较粗部分 ♥ 推移质中的较细部分
同一泥沙组成:表现不同
♥ 水流较强时:悬移质 ♥ 水流较弱时:推移质
§4.1. 泥沙运动的形式
推移质与悬移质间的转换过程
悬移区 床面层 层移区 河床
(悬移质)
河流泥沙的运动规律

浅谈河流泥沙的运动规律摘要:泥沙在河流水流的作用下,有一定的运动形式,沿河底滑动、滚动或跳跃,这种运动形式称为推移质;被水流挟带随水流悬浮前进,这种运动形式称为悬移质。
由于天然河道同一河段流速随时间、沿程发生变化,各河断及各时段在流速较小时,细沙也可呈推移质形式运动;而流速增大时,粗砂也可转化为悬移质。
因此,实际情况中推移质和悬移质处于不断调整中,情况很是复杂。
本文着重讨论了悬移质泥沙的运动规律。
由于脉动,不同瞬时或短历时测量的悬移质含沙量就不会稳定,不能反映它的变化趋势,因此,悬移质含沙量等水文要素的测量应持续一段时间,最好大一个脉动周期。
关键词:河流泥沙;运动;规律;挟沙能力;脉动中图分类号:文献标识码:a该式结构特点表明,河流流速大、泥沙颗粒小、水深浅,则挟沙能力强。
水流挟沙能力一般指各级颗粒的沙源均为充足条件下的平衡含沙量,并不代表水流的实际含沙量,各级颗粒的沙源不充足会出现非饱和输沙,条件特殊时也会出现超饱和输沙。
但是,水流挟沙能力仍是分析河床冲淤或平衡问题的常用概念,当水流挟带的悬移质泥沙超过河段的水流挟沙能力时,这个河段必将发生淤积;反之,则会发生冲刷。
2悬移质的时空分布规律2.1河流泥沙变化的影响因素河流从流域挟带泥沙的多少与流域坡度、土壤、植被、季节性气候变化,降雨强度以及人类活动等因素有关。
河流泥沙随时间的变化,也就取决于这些因素随时间的不同组合和变化。
来源于地势、地形、土壤性质和植被状况等下垫面条件不同的地区河流的洪水,挟带的泥沙将会有显著的差别,多沙河流与少沙河流与流域下垫面状况紧密相关。
另外,对于冲积性河流,其承水河床由长期冲积的泥沙构成,水流流经这样的河段,常会挟带或沉积大量泥沙。
季节性的气候变化对河流泥沙的变化也有一定的影响。
汛前由于降水少,土壤疏松、干燥、抗冲能力差,因此,初夏的暴雨洪水常挟带较多的泥沙,秋末洪水含沙量较少。
降雨强度对河流泥沙的影响是:雨强大,则侵蚀能力强,从而使河流挟带的泥沙增多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 河流泥沙特性
河流泥沙运动规律与泥沙的特性密切相关。因此,在研究河流泥沙运动规律之前,首先
要了解泥沙的特性。
(一)河流泥沙的分类
河流泥沙分类方法有多种,如按泥沙粒径的大小进行分类,按泥沙在河流中的运动状态
分类等,这里主要介绍这两种分类的方法。
1.按泥沙粒径的大小分类
河流泥沙粒径,大至 1~2m 的漂石,小至 0.004mm 以下黏粒,大小相差可达数百万倍。
2.泥沙颗粒级配特性 河流中的泥沙是由许许多多粒径不同的泥沙颗粒组成。从这些泥沙中取出一部分有代表 性的沙样进行颗粒分析,沙样中各种粒径的泥沙相对含量(以百分比计),称为泥沙的颗粒 级配。泥沙的颗粒级配常用粒配曲线表示,这种粒配曲线通常都画在半对数坐标纸上,其横 坐标为粒径,纵坐标为小于此粒径的泥沙占沙样总重量或质量的百分比,如图 4-1 所示。泥 沙的颗粒级配特性是影响泥沙运动的主要因素。 在解决实际问题时,为了便于分析,常将床沙、推移质和悬移质 3 种泥沙的颗粒级配曲 线绘在同一张图上,如图 4-1 所示。从图中可以看出,悬移质的沙样颗粒较推移质的为小, 而推移质的沙样较床沙的均匀。推移质、床沙和悬移质 3 者比较起来悬移质最细,床沙最粗, 曲线亦相应自右至左分布。
漂石
<0.004 0.004~0.062 0.062~2.0 2.0~16.0 16.0~250.0 >250.0
2.按泥沙在河流中的运动状态分类 按照泥沙的运动状态,可将泥沙分为床沙(亦称河床质)、推移质及悬移质 3 大类。床沙 是组成河床表面静止的泥沙。推移质是沿河床床面滚动、滑动或跳跃前进的泥沙,一般粒径 比较粗。它们是由近底水流对床面颗粒在绕流运动过程中所产生的水流作用力推动的结果, 它们的运动范围都在床面附近的区域。推移质运动呈明显的间歇性,往往运动一阵,停止一 阵。运动时为推移质,静止时为床沙,推移质与床沙经常彼此交换。当河床上有一定数量的 推移质向前运动的时候,河床表面往往形成起伏的沙波。推移质前进的速度远较水流速度为 小,但它在水流作用下,有一个增速过程,即运动速度由小到大。这种增速过程,要消耗水 流的能量。悬移质是随水流浮游前进的泥沙,一般粒径较小。悬移质运动的速度基本上与水 流运动速度相同,浮游的位置时上时下,较细的泥沙能上升至接近水面,较粗的泥沙有时甚 至回到河床上与床沙发生置换。维持泥沙悬浮的能量,来自水流的紊动动能。在靠近床面附 近,各种泥沙在不断地交换,推移质与床沙之间,悬移质和推移质之间都在交换,很难把它 们截然分开。就同一种粒径的泥沙来说,在某一河段可能是停止不动的床沙,在另一河段可 能作推移质或悬移质运动。在同一断面上亦因流速不同,会出现不同的运动状态,因此泥沙 运动状态除取决于泥沙本身的粒径外还取决于水流条件。 (二)泥沙的几何特性 1.泥沙颗粒的形状和大小 河流泥沙形状极不规则。常见的卵石、砾石,外形比较圆滑,有圆球状的,有椭球状的 也有片状的,但均无尖角和棱线。沙类和粉土类泥沙外形多有尖角和棱线。黏土类泥沙一般 呈扁平状或针状。泥沙颗粒的形状,常用球度系数表示,它是指泥沙颗粒的实际表面积与之 等体积的球体的表面积之比,其表达式如下:
n
pidi
dm
i 1
100
(4-6)
式中:n 为粒径分组数。对于同一沙中值粒径 d 50 表示在全部沙样中,大于和小于这一粒径的泥沙质量刚好相等。其
求法是:在粒配曲线的纵坐标上找出 p 50%,其对应的横坐标即为 d 50 。
关于平均粒径与中值粒径两者之间的关系,可用下式表达
2
d m d 50 e 2 式中: 为沙样粒径分配的均方差,其值为
图 4-1 泥沙颗粒级配曲线
从泥沙的颗粒级配曲线上不仅可以看出泥沙粒径的大小和沙样的均匀程度,还可以查出 某些特征粒径。如图 4-1 所示,推移质曲线表示沙样组成较均匀,且粒径较粗;悬移质曲线 则表示沙样组成不均匀,且粒径较细。沙样的均匀程度,可用如下的非均匀系数或称拣选系 数来表示
99
d 75 d 25
除等容粒径外,也可用泥沙颗粒的长、中、短三轴的算术平均值或几何平均值来表示泥
沙的粒径,计算式如下
d 1 (a b c) 3
(4-3)
或
d 3 abc
(4-4)
在实际工作中,除大颗粒卵石粒径,需要一颗颗去量测其长轴、中轴和短轴的长度,用 上述公式计算颗粒的平均粒径外,对于哪些不易量测的较细泥沙通常用筛分析法、水分析法 来确定其粒径,相应于这些方法确定的粒径分别称为筛分粒径和沉降粒径。
(4-5)
式中: d75 表示粒配曲线上相应于 p 75%的粒径; d25 表示粒配曲线上相应于 p 25%的粒
径。非均匀系数等于 1,则为均匀沙样;愈大于 1,沙样愈不均匀。
从粒配曲线上,可查出常用的一些特征粒径,如泥沙的平均粒径 d m 、中值粒径 d 50 等。 泥沙的平均粒径 d m 是沙样中各种泥沙粒径的加权平均值,其求法是:首先将沙样按粒 径变化情况分成若干组,在粒配曲线上定出各组沙的上、下限粒径 d max 和 d min ,以及各组 泥 沙 在 整 个 沙 样 中 所 占 的 重 量 百 分 比 pi 。 然 后 求 出 各 组 沙 的 平 均 粒 径 d i (d max d min ) / 2 ,再按下式求出沙样的平均粒径
3
b
2
c
a b
(4-1)
98
式中: a 、 b 、 c 分别为泥沙颗粒的长、中、短三轴。
泥沙颗粒的大小,通常用泥沙的直径来表示。天然泥沙颗粒形状极不规则,直径不易 确定,常采用等容粒径,即与泥沙颗粒相等的球体的直径,作为泥沙粒径。设某一颗沙的体
积为V ,则其等容粒径 d 为
6V d 3
(4-2)
通常将泥沙粒径按大小分类,粒径分类定名的原则,既要表示出不同的粒径级泥沙某些性质
上的显著差异和性质变化的规律性,又能使各级分界粒径尺度成为一定的比例。我国 SL42 —92《河流泥沙颗粒分析规程》[1]规定河流泥沙分类应符合表 4-1 的标准。
表 4-1 河流泥沙分类
(单位:mm)
黏粒
粉砂
砂粒
砾石
卵石