全等三角形辅助线添加之倍长中线
全等三角形辅助线秘籍-中线倍长发(优质讲义)可编辑打印

全等三角形的辅助线秘籍(一)—中线倍长学生/课程年级学科授课教师日期时段核心内容中线倍长的辅助线添加课型教学目标1.让学生理解中线倍长的思想方法,明确什么时候需要添加此种辅助线.2.让学生掌握中线倍长的特点,构造SAS型全等.重、难点中线倍长辅助线的添加知识导图知识梳理1.中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.2.所谓倍长中线法,就是将三角形的中线(或类中线)延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.3.倍长中线法的过程:延长某某到某点,使某某等于某某,用SAS证全等。
倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
口诀:遇中线,先倍长;证全等,找关系。
4.利用中线倍长我们通常可以解决:线段的不等关系(结合三角形的三边关系),线段相等,线段倍分。
5.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.(8字型)△ABC中,AD是BC边中线(1)方式1:延长AD到E,使DE=AD,连接BE(2)延长MD到N,使DN=MD,连接CD导学一:利用中线倍长证明线段的等量关系例 1. 已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF。
我爱展示1. 如图,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE.求证:AD+BC=DC.导学二:利用中线倍长证明线段的等量关系例 1. 如图,在△ABC中,点0为BC的中点,点M为AB上一点,ON⊥OM交AC于N.求证:BM+CN>MN.我爱展示1. 如图,△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.导学三:利用中线倍长证明线段的倍分关系例 1. 如图.AB=AE,AB⊥AE,AD=AC.AD⊥AC,点M为BC的中点,求证:DE=2AM 。
中考数学几何辅助线:倍长中线法

中考数学几何添加辅助线:倍长中线中线或中点是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。
所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法。
此法常用于构造全等三角形,利用中线的性质、辅助线、对顶角进而用“SAS”证明对应边之间的关系。
常规的倍长中线可以出全等,但需要证明“三点共线”,遇到“中点+平行”,我们“延长出全等”,而非“倍长出全等”. 用“倍长中线法”作辅助线解几何题,是一种重要的技巧套路。
它可以有效地生发出全等、平行等基本条件,关联好多基本图形,帮助解题,大家务必好好掌握。
也给我们解题的启示:抓住核心,找到关键,才能快速解题。
逢中点,便倍长,全等观,平行现.倍长中线法:是指加倍延长中线,使所延长部分与中线相等,然后连接相应的顶点,构造“8字形”的全等三角形。
在与中点有关的线段尤其是涉及线段的等量关系时,倍长中线应用较常见,常见添加如图(AD是底边中线)典例1.已知:AD是ΔABC的中线,AE=EF.求证:AC=BF.名师指点:延长AD到M,使AD=DM,连接BM,根据SAS证△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根据AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,再根据等腰三角形的性质证明即可.满分解答:证明:延长AD 到M ,使AD =DM ,连接BM ,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中,{CD =BD∠ADC =∠MDB AD =DM,∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠CAD =∠M ,∴BF =BM =AC ,即AC =BF .名师点评:倍长中线是常见的辅助线、全等中相关的角、线段的代换是解决问题的关键. 1.如图,在平行四边形ABCD 中,28CD AD ==,E 为AD 上一点,F 为DC 的中点,则下列结论中正确的是( )A .4BF =B .2ABC ABF ∠>∠。
全等三角形辅助线之倍长中线法

可证EFD EGC
F
(平行线夹中点)
D
E
C
G
全等三角形辅助线之倍长中线法
如图,在△ABC中,AD为BC边上的中线.若AB=5, AC=3,求AD的取值范围.
A
延长AD至E使DE=AD,连接BE
在ADC和EDB中
AD=DE,ADC=EDB,BD=CD
故ADC EDB(SAS)
B
D
C AB-BE AE AB+BE即2 AE 8
A F
E
A
1 2
F
3E
B
D
C
BDCM 全等三角形辅助线之倍长中线法
如图,在正方形ABCD中,CD=BC,∠DCB=90°,点E在CB的延长线上,过点E作 EF⊥BE,且EF=BE.连接BF,FD,取FD的中点G,连接EG,CG. 求证:EG=CG且EG⊥CG.
M
A
D
A
D
G G
F EB
F
1
4
2
3
C
EB
全等三角形辅助线之倍长中线法
倍长中线法:遇中线,要倍长,倍长之后有全等.
AD为ABC的中线
A
B
D
C
延长AD至E使DE=AD,连接BE 在ADC和EDB中 AD=DE,ADC=EDB,BD=CD 故ADC EDB(SAS) 与此相关的重要结论AC PBE
E
全等三角形辅助线之倍长中线法
AD为ABC的中线
1<AD<4
E
全等三角形辅助线之倍长中线法
如图,CB是△AEC的中线,CD是△ABC的中线,且AB=AC. 求证:①CE=2CD;②CB平分∠DCE.
C
全等三角形辅助线之倍长中线法

全等三角形辅助线之倍长中线法倍长中线法:遇中线,要倍长,倍长之后有全等.当倍长后,连接方式不一样,可以产生更多结论如下:与倍长中线法类似的辅助线作法AD E DE=AD BE ADC EDB AD=DE ADC=EDB BD=CDADC EDB(SAS)AC BE∆∆∠∠∆≅∆延长至使,连接在和中,,故与此相关的重要结论AD ABC ∆为的中线D CB AEAD ABC ∆为的中线DC BAEAD E AD=DE CE BE CE ABEC 延长至,使,当连接时,结论相似; 当连接、,则为平行四边形M ABCDEMD E MD=DE CE BDM CDE BM CE∆≅∆延长至,使,连接可证,举例:FE G FE=GE EGC ()EFD ∆≅∆延长至,使可证平行线夹中点F EDCBA G如图,在△ABC 中,AD 为BC 边上的中D CB AEAD E DE=AD BE ADC EDB AD=DE ADC=EDB BD=CDADC EDB(SAS)AB-BE AE AB+BE AE <AD<∆∆∠∠∆≅∆<<<<延长至使,连接在和中,,故即2814654321FAB C DE如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB=AC . 求证:△CE=2CD ;△CB 平分△DCE .E DCB A如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE=AC ,BE 的延长线交AC 于点F .求证:△AEF=△EAF .F EDCBA321MA BCD EF如图,在正方形ABCD 中,CD=BC ,△DCB=90°,点E 在CB 的延长线上,过点E 作EF △BE ,且EF=BE .连接BF ,FD ,取FD 的中点G ,连接EG ,CG .求证:EG=CG 且EG △CG .GF EDCB AM2134GFDA1. 如图,在△ABC 中,AD 为BC 边上的中线.(1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE . (2)求证:△ACD ≌△EBD . (3)求证:AB +AC >2AD .(4)若AB =5,AC =3,求AD 的取值范围.2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC .求证:①CE =2CD ;②CB 平分∠DCE .4. 如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F . 求证:∠AEF =∠EAF .5. 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CA 的延长线于点F ,交AB 于点G ,BG =CF . 求证:AD 为△ABC 的角平分线.GFE DCB AE DCB AF E DBAGFEDCBAFED CBA6. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长.7. 如图,在正方形ABCD 中,CD =BC ,∠DCB =90°,点E 在CB 的延长线上,过点E 作EF ⊥BE ,且EF=BE .连接BF ,FD ,取FD 的中点G ,连接EG ,CG .求证:EG =CG 且EG ⊥CG .【参考答案】➢ 课前预习1. (1)相等,SSS ;夹角,SAS ;夹边,ASA ;对边,AAS ;直角,HL(2)全等,三,边 2. (1)证明:如图∵O 是AB 的中点 ∴AO =BO在△AOC 和△BOD 中AO BO AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴△AOC ≌△BOD (SAS ) (2)证明:如图 ∵O 是AB 的中点 ∴AO =BO ∵AC ∥BD ∴∠A =∠B在△AOC 和△BOD 中A B AO BOAOC BOD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOC ≌△BOD (ASA )GF EDCBA➢ 典型题型1. 解:(1)如图,(2)证明:如图,∵AD 为BC 边上的中线 ∴BD =CD在△BDE 和△CDA 中12BD CD ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) (3)证明:如图, ∵△BDE ≌△CDA ∴BE =AC ∵DE =AD ∴AE =2 AD在△ABE 中,AB +BE >AE ∴AB +AC >2AD (4)在△ABE 中,AB -BE <AE <AB +BE由(3)得 AE =2AD ,BE =AC ∵AC =3,AB =5 ∴5-3<AE <5+3 ∴2<2AD <8 ∴1<AD <42. 证明:如图,延长AD 到E ,使DE =AD ,连接BE在△ADC 和△EDB 中CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ) ∴AC =EB ,∠2=∠E ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE∴AB =AC3. 证明:如图,延长CD 到F ,使DF =CD ,连接BF∴CF =2CD∵CD 是△ABC 的中线21EDCBA 21EBCDA在△BDF 和△ADC 中BD AD ADC BDF DF DC =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC (SAS ) ∴BF =AC ,∠1=∠F ∵CB 是△AEC 的中线 ∴BE =AB ∵AC =AB ∴BE =BF ∵∠1=∠F ∴BF ∥AC∴∠1+∠2+∠5+∠6=180° 又∵AC =AB ∴∠1+∠2=∠5 又∵∠4+∠5=180° ∴∠4=∠5+∠6 即∠CBE =∠CBF 在△CBE 和△CBF 中CB CB CBE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△CBF (SAS ) ∴CE =CF ,∠2=∠3 ∴CE =2CD CB 平分∠DCE4. 证明:如图,延长AD 到M ,使DM =AD ,连接BM∵D 是BC 边的中点 ∴BD =CD在△ADC 和△MDB 中CD BD ADC MDB AD MD =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△MDB (SAS ) ∴∠1=∠M ,AC =MB ∵BE =AC ∴BE =MB ∴∠M =∠3321MA BCDEF∴∠1=∠2 即∠AEF =∠EAF5. 证明:如图,延长FE 到M ,使EM =EF ,连接BM∵点E 是BC 的中点 ∴BE =CE在△CFE 和△BME 中FE ME CEF BEM CE BE =⎧⎪∠=∠⎨⎪=⎩∴△CFE ≌△BME (SAS ) ∴CF =BM ,∠F =∠M ∵BG =CF ∴BG =BM ∴∠1=∠M ∴∠1=∠F ∵AD ∥EF∴∠3=∠F ,∠1=∠2 ∴∠2=∠3即AD 为△ABC 的角平分线6. 解:如图,延长AF 交BC 的延长线于点G∵AD ∥BC ∴∠3=∠G∵点F 是CD 的中点 ∴DF =CF在△ADF 和△GCF 中3G AFD GFC DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△GCF (AAS )∴AD =CG ∵AD =2.7 ∴CG =2.7 ∵AE =BE ∴∠1=∠B ∵AB ⊥AF ∴∠1+∠2=90° ∠B +∠G =90°321MABCD EFG∴CE =EG -CG=5-2.7 =2.37. 证明:如图,延长EG 交CD 的延长线于点M由题意,∠FEB =90°,∠DCB =90°∴∠DCB +∠FEB =180° ∴EF ∥CD ∴∠FEG =∠M ∵点G 为FD 的中点 ∴FG =DG在△FGE 和△DGM 中1M FGE DGM FG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FGE ≌△DGM (AAS ) ∴EF =MD ,EG =MG ∵△FEB 是等腰直角三角形 ∴EF =EB ∴BE =MD在正方形ABCD 中,BC =CD ∴BE +BC =MD +CD 即EC =MC∴△ECM 是等腰直角三角形 ∵EG =MG∴EG ⊥CG ,∠3=∠4=45° ∴∠2=∠3=45° ∴EG =CG三角形全等之倍长中线(实战演练)1. 在△ABC 中,AC =5,中线AD =4,则边AB 的取值范围是_______________. 思路分析:①画出草图,标注条件:②根据题目条件,见_________,考虑_____________;添加辅助线是______________________________________;③倍长之后证全等:__________≌___________( ),证全等转移边:______=_______; ④全等转移条件后,利用三角形三边关系可以得到AB 的取值范围.2. 如图,在正方形ABCD 中,AD ∥BC ,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,且AG =1,BF =2.若GE ⊥EF ,则GF 的长为多少?【参考答案】1. 3<AB <13①图略②中线AD 倍长中线 延长AD 到点E ,使DE =AD ,连接CE ③△ADC △EDB SAS AC EB ④略2. AD ∥BC ,E 为AB 边的中点,平行夹中点;AG =BH ,GE =HE ;到线段两端点的距离相等,FH ,AG +BF 解:如图,延长GE 交CB 的延长线于点H ∵AD ∥BC ∴∠GAE =∠HBE ∵E 为AB 边的中点 ∴AE =BE在△AGE 和△BHE 中,AEG BEH AE BEGAE HBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AGE ≌△BHE (ASA ) ∴BH =AG ,HE =GE ∵GE ⊥EF ∴GF =HF ∵BF =2,AG =1 ∴GF =HF =BF +BH =BF +AG =2+1 =3G FEAD BC三角形全等之倍长中线(作业)➢ 例题示范例1:已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC . 求证:AE 平分∠BAC .【思路分析】读题标注:见中线,要倍长,倍长之后证全等.结合此题,DE =EC ,点E 是DC 的中点,考虑倍长,有两种考虑方法: ①考虑倍长FE ,如图所示: ②考虑倍长AE ,如图所示:(这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF ≌△CEG ,由全等转移边和角,重新组织条件证明即可. 【过程书写】证明:如图,延长FE 到G ,使EG =EF ,连接CG .A D CE FA B DCE FGFE CD B A FE CD B AA B DCE FG在△DEF 和△CEG 中,ED EC DEF CEG EF EG =⎧⎪∠=∠⎨⎪=⎩∴△DEF ≌△CEG (SAS ) ∴DF =CG ,∠DFE =∠G ∵DF =AC ∴CG =AC ∴∠G =∠CAE ∴∠DFE =∠CAE ∵DF ∥AB ∴∠DFE =∠BAE ∴∠BAE =∠CAE ∴AE 平分∠BAC➢ 巩固练习1. 已知:如图,在△ABC 中,AB =4,AC =2,点D 为BC 边的中点,且AD 是整数,则AD =________.2. 已知:如图,BD 平分∠ABC 交AC 于D ,点E 为CD 上一点,且AD =DE ,EF ∥BC 交BD 于F .求证:AB =EF .3. 已知:如图,在△ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边向外作等腰直角三角形,AB =AE ,AC =AF ,∠BAE =∠CAF =90°. 求证:EF =2AD .4. 如图,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为D CBAF E DCBAFED CBA G FE D CBA∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G . 求证:BF =CG .5. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F是CD 的中点,连接AF ,EF ,AE ,若∠DAF =∠EAF ,求证:AF⊥EF .➢ 思考小结1. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .比较下列两种不同的证明方法,并回答问题. 方法1:如图,延长AD 到E ,使DE =AD ,连接BE 在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) ∴AC =BE ,∠E =∠2 ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 方法2:如图,过点B 作BE ∥AC ,交AD 的延长线于点E ∵BE ∥AC ∴∠E =∠2在△BDE 和△CDA 中FE DB CA21ECDB A 21ECDBA DBA2E BDE CDA BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (AAS ) ∴BE =AC ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等. 不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2. 利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt △ABC 中,∠BCA =90°,CD 是斜边AB 的中线.求证:CD 12=AB .【参考答案】➢ 巩固练习 1. 22. 证明略(提示:延长FD 到点G ,使得DG =DF ,连接AG ,证明△ADG ≌△EDF ,转角证明AB =EF )3. 证明略(提示:延长AD 到点G ,使得GD =AD ,连接CG ,证明△ABD ≌△GCD ,△EAF ≌△GCA )4. 证明略(提示:延长FE 到点H ,使得EH =FE ,连接CH ,证明△BFE ≌△CHE ,转角证明BF =CG )5. 证明略(提示:延长AF 交BC 的延长线于点G ,证明△ADF ≌△GCF ,转角证明AF ⊥EF ) ➢ 思考小结 1. 倍长中线 SAS AAS 角2. 证明略DCB A。
全等辅助线技巧中线倍长

全等辅助线技巧中线倍长【专题简介】线段中点,是几何图形中的重要条件,它能带来的不止是相等的线段,从本节课开始,我们将学习全等三角形证明的辅助线的重要技巧----中线倍长。
【学习目标】 1.中线倍长的方法;2.中线倍长后,该如何思考几何问题。
模块一 直接中线倍长【例1】已知:△ABC 中,AB <AC ,AM 是中线,求证:12(AC -AB )<AM <12(AB +AC )【练1】已知,如图,△ABC,AB=12,AC=16,D是BC的中点,求AD的取值范围。
【练2】已知,在△ABC中,B是AD的中点,E是AB的中点,且AC=AB,求证:CD=2CE。
【模块二】倍长过中点的线段很多情况下,遇到中点,还可以倍长过中点的线段。
证:AE=EF。
(2)若E点在AB的延长线上,其它条件不变,结论是否仍然成立?证明你的结论。
【练3】已知,如图,△ABC,D是BC的中点,E、F分别是AB、AC上的点,且DE⊥DF,求证:BE+CF>EF。
【例4】如图,在△ABC中,AD交BC于点D,点E是BC中点,EF∥AD交CA的延长线于点F,交EF 于点G,若BG=CF,求证:AD为△ABC的角平分线。
【练4】如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作FM∥AD。
交AC于F,求CF的长。
婆罗摩笈多模型【例5】如图,已知△ABC中,分别以AB、AC为边作等腰Rt△ABE和等腰Rt△ACD,AB=AE,AC=AD,AM是BC边上的中线,求证:ED=2AM且AM⊥ED。
【练5】如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:CD=2AM。
根据题意,可以把B-A-E三点构成的图形和D-A-E三点构成的图形看成等腰直角三角形,那么此题的图形结构和上一题是一模一样的,在这情况下,证明方法就可以借鉴上题了。
【例6】如图:已知△ABC,分别以AB、AC为边作等腰Rt△ABE和等腰Rt△ACD,AB=AE,AC=AD,若AN⊥DE于N,延长NA交BC于M,求证:BM=CM。
八年级上册全等三角形中 倍长中线、截长补短辅助线做法(导学案,,无答案)

全等三角形常见辅助线的作法一倍长中线法倍长中线法:就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长××到某点,使什么等于什么(延长的那一条),用SAS证全等(对顶角)方法总结:遇中线,要倍长,倍长之后__构造全等三角形_,转移边、转移角,然后和已知条件重新组合解决问题【例题精讲】例1、如图1,在△ABC中,AD为BC边上的中线.求证:AB+AC>2AD.分析:①因为AD为中线,延长AD至点E,使DE=AD,连接CE;②进而利用全等三角形的判定(SAS)△ABD≌△ECD;③由全等可得_AB=EC__;证明:延长AD至E,使DE=AD,连接EC∵AD是中线∴DC=DBDC=DB∴△CDE≌△BDA(SAS)∴CE=AB在△AEC中CE+AC>AE,CE=AB∴AB+AC>AE ∵DE=AD∴AE=2AD ∵AB+AC>AE ∴AB+AC>2AD例2如图CB,CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB.求证:CE=2CD.例3、 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.例4、如图,在ABC ∆中,AD 是BC 边的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于点F .求证:AF =EFBCB C二、截长补短法截长:1.过某一点作长边的垂线 2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短:1.延长短边 2.通过旋转等方式使两短边拼合到一起。
【例题精讲】例1.如图,△ABC中,∠ACB=2∠B,∠1=∠2 求证:AB=AC+CD证法一:(补短法)延长AC至点F,使得AF=AB在△ABD和△AFD中∴△ABD≌△AFD(SAS)∴∠B=∠F∵∠ACB=2∠B∴∠ACB=2∠F而∠ACB=∠F+∠FDC∴∠F=∠FDC∴CD=CF而AF=AC+CF∴AF=AC+CD∴AB=AC+CD证法二:(截长法)在AB上截取AE=AC,连结DE在△AED和△ACD中∴△AED≌△ACD(SAS)例2、如图,在△ABC中,AD为BC边上的高,∠B=2∠C.求证:CD=AB+BD.例3、如图,AD//BC ,BE 、AE 分别是∠ABC 、∠BAD 的平分线,点E 在CD 上,求证:AB=AD+BC例4、如图,△ABC 中,AB >AC ,AD 是∠BAC 的角平分线,P 是线段AD 上任一点除A 、D 外的任意一点。
中考数学常见几何模型全等模型-倍长中线与截长补短
专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆; 若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆. 3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.【答案】(1)1<AD <5,(2)BE +CF>EF ,证明见解析;(3)AF +CF =AB ,证明见解析.【分析】(1)由已知得出AC ﹣CE <AE <AC +CE ,即5﹣4<AE <5+3,据此可得答案;(2)延长FD 至点M ,使DM =DF ,连接BM 、EM ,同(1)得△BMD △△CFD ,得出BM =CF ,由线段垂直平分线的性质得出EM =EF ,在△BME 中,由三角形的三边关系得出BE +BM >EM 即可得出结论;(3)如图③,延长AE ,DF 交于点G ,根据平行和角平分线可证AF =FG ,易证△ABE △△GEC ,据此知AB =CG ,继而得出答案.【详解】解:(1)延长AD 至E ,使DE =AD ,连接BE ,如图①所示,△AD 是BC 边上的中线,△BD =CD ,在△BDE 和△CDA 中,△BD CD BDE CDA DE AD =⎧⎪∠=∠⎨⎪=⎩,△△BDE △△CDA (SAS ),△BE =AC =4,在△ABE 中,由三角形的三边关系得:AB ﹣BE <AE <AB +BE ,△6﹣4<AE <6+4,即2<AE <10,△1<AD <5;故答案为:1<AD <5,(2)BE +CF >EF ;证明:延长FD 至点M ,使DM =DF ,连接BM 、EM ,如图②所示. 同(1)得:△BMD △△CFD (SAS ),△BM =CF ,△DE △DF ,DM =DF ,△EM =EF ,(3)AF +CF =AB .如图③,延长AE ,DF 交于点G ,【点睛】此题是三角形综合题,主要考查了三角形的三边关系、全等三角形的判定与性质、分内容:如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED =证明△//CE AB (已知)△ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等).在ABD △与ECD 中,△ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知),△()A.A.S ABD ECD △△≌,△AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.【答案】(1)1<AD <5;(2)AD =AB +DC .理由见解析;(3)DF =3.【分析】(1)延长AD 到E ,使AD =DE ,连接BE ,证△ADC △△EDB ,推出AC =BE =4,在△ABE 中,根据三角形三边关系定理得出AB -BE <AE <AB +BE ,代入求出即可;(2)结论:AD =AB +DC .延长AE ,DC 交于点F ,证明△ABE △△FEC (AAS ),推出AB =CF ,再证明DA =DF 即可解决问题;(3)如图③,延长AE 交CF 的延长线于点G ,证明AB =DF +CF ,可得结论.【详解】解:(1)延长AD 到E ,使AD =DE ,连接BE ,△AD 是BC 边上的中线,△BD =CD ,在△ADC 和△EDB 中,AD DE ADC EDB DC DB =⎧⎪∠=∠⎨⎪=⎩,△△ADC △△EDB (SAS ),△AC =BE =4, 在△ABE 中,AB -BE <AE <AB +BE ,△6-4<2AD <6+4,△1<AD <5,故答案为:1<AD <5;(2)结论:AD =AB +DC .理由:如图②中,延长AE ,DC 交于点F ,△AB △CD ,△△BAF =△F ,在△ABE 和△FCE 中,AEB FEC BAE F BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABE △△FCE (AAS ),△CF =AB , △AE 是△BAD 的平分线,△△BAF =△F AD ,△△F AD =△F ,△AD =DF ,△DC +CF =DF ,△DC +AB =AD ;(3)如图③,延长AE 交CF 的延长线于点G ,△E 是BC 的中点,△CE =BE ,△AB △CF ,△△BAE =△G ,在△AEB 和△GEC 中,BAE G AEB GEC BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△AEB △△GEC (AAS ),△AB =GC , △△EDF =△BAE ,△△FDG =△G ,△FD =FG ,△AB =DF +CF ,△AB =5,CF =2,△DF =AB -CF =3.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD到E,使得DE AD=,连接CE,易证ABD ECD∆≅∆,得AB=,在ACE∆中,AC CE+>,2AB AC AD+>.【问题解决】(1)如图(3),在ABC∆中,AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于F,求证:AF EF=.(2)如图(4),在ABC∆中,90,A D∠=︒是BC边的中点,E F、分别在边AB AC、上,DE DF⊥,若3,4BE CF==,求EF的长.(3)如图(5),AD是ABC∆的中线,,AB AE AC AF==,且90BAE FAC∠=∠=︒,请直接写出AD与EF的数量关系_ 及位置关系_ .【答案】,CE AE;(1)详见解析;(2)5;(3)2EF AD=,EF AD⊥【分析】【应用举例】由全等的性质可得AB=EC,由三角形三边关系可得AC+CE>AE,即AB+AC>2AD;故答案为EC,AE;【问题解决】(1)由题意不难得到,ACD GBD∆≅∆所以△BGD=△BED=△AEF=△DAC,△有AF=EF;(2)延长ED 到G ,使DG=ED ,连结CG 、FG ,不难得到EF=FG ,另同(1)有△BDE△△CDG ,所以△FCG=△FCD+△GCD=△FCD+△EBD=90°,CG=BE=3,由勾股定理可得FG 即EF 的长;(3)由全等三角形的性质可以得到解答.【详解】【应用举例】,CE AE【问题解决】()1如图()1延长AD 到G ,使得,DG AD =连接,BG 易证,ACD GBD ∆≅∆得,BG AC G DAC =∠=∠,,BE AC =,BE BG ∴=,G BEG ∴∠=∠,BEG AEF ∠=∠,AEF EAC ∴∠=∠AF EF ∴=.()2如图()2,延长ED 到G ,使得,DG ED =连接,CG FG 、易证,BDE CDG ∆≅∆得,,CG BE ED GD B DCG ==∠=∠,,DE DF ⊥DF ∴垂直平分,EG ,FE FG ∴=90,A ∠=︒90,B ACB ∴∠+∠=︒90,DCG ACB ∴∠+∠=︒即90,FCG ∠=︒在Rt FCG ∆中,3,4CG BE CF ===,5,FG ∴=5,EF ∴=()32EF AD EF AD =⊥,,理由如下:如图3,延长AD 到G ,使AD=DG ,延长DA 交EF 于P ,连结BG ,则不难得到△BGD△△CAD , △BG=AC ,△GBD=△ACD ,△DGB=△DAC ,又AF=AC ,△BG=AF ,△△ABG=△ABD+△GBD=△ABD+△ACD=180°-△ BAC=△EAF ,△在△ABG 和△EAF 中,AB AE ABG EAF BG AF =⎧⎪∠=∠⎨⎪=⎩,△△ABG△△EAF ,△EF=AG=2AD ,△EFA=△DGB=△DAC ,△△DAC+△PAF=180°-△FAC=180°-90°=90°,△△EFA+△PAF=90°,△△APF=90°,△EF△AD .【点睛】本题考查全等三角形的综合运用,熟练掌握全等三角形的判定和性质是解题关键 .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
全等三角形辅助线添加之倍长中线
八年级数学全等三角形辅助线添加之倍长中线学习建议:一般出现中线的时候我们可以考虑倍长中线这种辅助线,构造出全等三角形,实现线段和角度的转移,然后利用题干中其他条件,最终将问题解决。
一、解答题
2.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是?
二、证明题
1.如图,AD为△ABC的中线,求证:AB+AC>2AD.
2.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB.求证:①CE=2CD.②CB平分∠DCE.
3.如图,AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF
4.如图已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,
求证EF=2AD.
5.如图,在△ABC中,D是BC边的中点,E是AD上一点,BE=AC,BE的延长线交AC于点F,求证:∠AEF=∠EAF
6.
6.如图,在△ABC中,AD交BC于点D,点E是BC中点,EF∥AD交CA的延长线于点F,交EF于点G,若BG=CF,求证:AD为△ABC的角平分线.
7.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.。
三角形全等证明常用辅助线作法(倍长中线、截长补短)
倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。
三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。
本专题只讨论倍长中线的问题。
【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。
口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。
【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。
延长AD 至G 点,使DG=AD ,连接BG 。
在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。
求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。
①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。
【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。
求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。
(完整版)倍长中线法(经典例题)
倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法” 增加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用 SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
【方法精讲】常用辅助线增加方法——倍长中线AAB CD △ ABC中方式1:延长AD到E,AD 是 BC 边中线使DE=AD,B C连接BED方式 2:间接倍长AFB D CEEA作 CF⊥ AD于 F,M 延长 MD到N,D作 BE⊥ AD的延长线于 E B 使 DN=MD,C连接 BEN连接 CN经典例题讲解:例 1:△ ABC中, AB=5, AC=3,求中线AD 的取值范围例2:已知在△ ABC 中, AB=AC,D 在 AB 上, E在 AC的延长线上, DE 交 BC 于 F,且DF=EF,求证: BD=CEADBCFE例 3:已知在△ ABC 中, AD 是 BC 边上的中线, E 是 AD 上一点,且BE=AC,延长 BE 交 AC于F,求证: AF=EFAFEBD C例 4:已知:如图,在ABC 中, AB AC ,D、E在BC上,且DE=EC,过D作 DF // BA交AE于点 F, DF=AC.A求证: AE 均分BACFB D E C例5:已知 CD=AB,∠ BDA=∠BAD,AE 是△ ABD的中线,求证:∠ C=∠ BAEAB CE D自检自测:1、如图,△ ABC中, BD=DC=AC,E是 DC的中点,求证, AD 均分∠ BAE.2、在四边形 ABCD中, AB∥ DC, E 为 BC边的中点,∠ BAE=∠EAF, AF 与 DC 的延长线订交于点 F。
试试究线段 AB 与 AF、 CF之间的数量关系,并证明你的结论 .ADBE CF3、如图,AD 为ABC 的中线,DE均分BDA 交AB于E,DF均分ADC 交AC于F.求证:BE CF EFAEFB CD第 14 题图4、已知:如图, ABC中, C=90 , CM AB 于 M ,AT 均分 BAC交 CM 于 D,交 BC 于 T,过 D 作DE//AB 交 BC 于 E,求证: CT=BE.MAD BETC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形辅助线添加之倍长中线》教学设计一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章《全等三角形》中解决问题的一类重要辅助线.通过本节的学习,可以丰富和加深学生对已学知识的应用,同时为解决一类具有中点、中线等特点的问题打好基础,具有承上启下的作用.
教师根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓思想、促迁移的方法.通过一道例题,形成概念,再通过构造全等三角形,进而转化边或角,从而解决问题。
本课的设计本着关注学生的已有的认知结构、从学生已有的解决问题的经验出发的原则,注重人人参与数学活动,实现人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同发展的目标.
二、学情分析
学生在上一节课已经学习了一类重要辅助线——截长补短。
面对数学课堂中几何图形的变换、试题的灵活变化,学生总是很打怵,很容易让学生对数学有畏难情绪,甚至有的学生认为学习数学没有什么用,生活中也用不上,其实不然,数学的学习过程中所渗透的思想方法和思维的严谨性、思维的细致性、思维的灵活性是其它学科不能渗透的,所以我们应该交给学生学习数学的方法,学习数学的能力,让学生轻松的学习数学,让数学不再成为学生的负担所以我们应该在非
毕业班的阶段多教给学生方法,在习题课中,以变式习题的形式,形成系列,这种思维方式是渗透在平时的所有教学中,我们应该引导学生发现解决几何问题的方法,让学生做一道题会多道题,一把钥匙开多把锁,以不变应万变.
三、教学目标分析
知识与技能
学生能够熟练地运用重要辅助线倍长中线,培养学生解决具有中点、中线等特点的问题的能力
过程与方法
通过合作探究的学习方式,培养学生解决问题的能力,并作出合理的推断或大胆的猜测,体会转化的思想方法.
情感、态度与价值观
1、使学生深刻理解数学知识的密切关系、及数学知识的应用价值,增强学习数学的兴趣.
2、通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.
四、教学重点、难点
重点:倍长中线法的应用,将所见的习题善于转化为基本型。
难点:有机掌握所学知识,准确做出辅助线,构建三角形全等.
五、应用信息技术解决重难点的地方
巧妙应用多媒体和教师自身灵活应用的结合。
六、课时安排 1课时 七、教学过程设计
(一)通过例题,探究发现 例1. 如图,AD 为△ABC 的中线。
求证:AB+AC >2AD
1讲解了解哪一类问题利用倍长中线来解决掌握知识,形成技能,发展智力的重要手段,
八.板书设计
全等三角形辅助线添加之
倍长中线练习1 练习2 练习3 构造全等三角形
转化边或角
九.教学反思与评价
1.本节课充分应用多媒体进行教学,促使学生从感性认识上升为理性认识.
2.课堂上重视学生的主体参与,学生是学习的主体,教师是学生学习的组织者、引导者和合作者,因此本节课从例题的引导、小组合作、小组展示,再次巩固等每个环节,都力求通过学生的动脑思考,自主参与,合作探究来完成.
3.注重信息反馈,坚持师生间的多向交流,学生学习过程是通过提出问题,解决问题的反复过程才得以完成. 根据教学信息反馈的理论,当学生接触一类重要辅助线——倍长中线时,要通过引导学生多思、多讨论、多说、多练,来充分暴露他们所遇到的矛盾,并在师生、生生之间多向交流中,不断地解决新矛盾,使认识得到深化.
4.本节课教学环节环环相扣,层层深入,能够较好地落实课标理念,实现教学目标,从而达到发展学生思维,提升学习能力的根本目的.。