第三章配位场理论和络合物结构
配位场理论

晶体场理论的限制
晶体场理论用d轨道能级分裂和CFSE的产生等
基本观点,解释了不少实验事实,特别是对络 合物的颜色、磁性、立体构型等的说明获得了 很大的成功,但是,在解释光谱化学序列、有 机烯络合物的形成、羰基络合物的稳定性等, 还显得无能为力。需要用络合物的分子轨道理 论说明。
单击按钮,返回第六章目录
3.晶体场稳定化能(CFSE,Cristal Field Stable Energe)
△定义:d电子从未分裂的d轨道(能级为 ES)进入分裂后d轨道所产生的总能量下降 值。 △计算 弱场高自旋:(t2g)4(eg)2 6:八面体场 d
CFSE 4 4 Dq 2 6 Dq 4 Dq
向短 波, 颜色 偏红
C.分裂能随电子给予体的原子半径的 减小而增大 I<Br<Cl<S<F<O<N<C 可把△值写成两因子的乘积,一个因子 是配位体的贡献,记作f,另一因子是中 央离子的贡献,记作g,即
f g
例: [Fe(CN)6]3—:f(CN—)=1.7, g(Fe3+)=1400㎝-1 1.7 1400 23800 1 cm
成对能P:迫使本来自旋平行分占不同轨道的电子
★成对能
挤到同一轨道上而增高的能量。 成对能包括: A:Pcoul——库仑排斥(迫使两电子占据同一轨道 所需能量) B:pex——交换能损失(交换能依自旋平行电子数 增加而增大)
P Pcoul Pex P值由金属离子本性而定
电子在分裂后d轨道上的排布决定于分裂 能与成对能的相对大小。 例如:d2组态,有两种排布方式:
由此归纳出同一周期同价的过渡金属离子, 在弱八面体场作用下,其高自旋络合物的 热力学稳定性大致有以下次序:
配位场理论和络和物结构.38页PPT

61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
配位场理论和络和物结构.
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!Βιβλιοθήκη
配位场理论

a.中央离子电荷越高,分裂能越大。
例:[Fe(H2O)6]3+:0 13700 cm1
吸收 峰偏
[Fe(H2O)6]2+:0 10400 cm1
向短 波,
b.同族、同价过渡金属离子d轨道
颜色 偏红
的主量子数越大,值越大。
[CrCl6]3— △O=13600㎝-1
[MoCl6]3— △O=19200㎝-1
(18-7) ÷2=5.5,
取5,剩下的半个由Mn-Mn键补偿。 形 成Mn2(CO)10; 习题:Co:4s23d7价电子数为9形成什么 络合物?
答案:Co2(CO)8
2.分裂后d轨道中电子的排布——弱场 高自旋态和强场低自旋态
在金属自由离子中,五个d轨道是简并的,因而电 子在d轨道上的排布是按洪特规则,尽量分占不同 轨道且自旋平行。
eg(dx2-y2 和dz2 ) 轨道上电子配布不均匀。
(t 2g )6 (d Z2 )2 (d x2 y2 )1
(a)
(t 2g )6 (dZ2 )1(dx2 y2 )2
(b)
(a)由于 上比 d x2y2 d z2 少一个电子,减少了 ±x和±y上四个配位体的推斥力,使这
四个配位体内移,缩短与中央离子的距
CFSE 4 4 Dq 2 6 Dq 4 Dq
强场低自旋:(t2g)6(eg)0
CFSE 6 4 Dq 2P 24 Dq 2P
d6:四面体场,必是高自旋 : (e)3(t2)3
CFSE
3
3 5
4 9
10
Dq
3
4.络合物的畸变和姜-泰勒效应 ( Jahn—Teller )
配位场理论和络合物结构

M
L Y
①
对准配位体
作用最强
②
在配位体所在平面 作用次强
③ 在XY平面有部分电子云 作用较弱
④
作用最弱
6Dq 1.78Dq
-2.67Dq
-4Dq
正四面 球形场 正八面
体场
体场
平面正 方形场
“重心规则” 如:6Dq*2+(-4Dq)*3=0
三、d轨道中电子的排布—高自旋态和低自旋态
1、分裂能Δ和成对能P (1)分裂能:一个电子从低能的d轨道跃迁到高能的d轨道所需要的
正四面体
八面体畸变 小畸变
(不显著)
大畸变
高 自旋(弱场)
d1(t2g)1 ; d2(t2g)2 ; d6(t2g)4 (eg)2; d7(t2g)5(eg)2
d4(t2g)3(eg)1 ; d9(t2g)6 (eg)3
低 自 旋(强场)
d1(t2g)1 ; d2(t2g)2; d4(t2g)4; d5(t2g)5 d7 (t2g)6(eg)1 ; d9 (t2g)6(eg)3
1、定义:将d电子从未分裂的d轨道Es能级进入分裂的d轨道时, 所产生的总能量下降值,称为晶体场稳定化能,用CFSE表示
2、 CFSE的计算
(1)高自旋态
例1:d6 ,八面体场
(t2g)4(eg)2 CFSE=0-[4*(- 4Dq)+2*6Dq]=4Dq
(2)低自旋态—需考虑成对能
例:d6 八面体场
3.分子轨道理论 配位化合物的分子轨道理论是用分子轨道理论的观点和 方法处理金属离子和配位体的成键作用。
4. 配位场理论 实质是配位化合物的分子轨道理论。 在处理中心金属原子在其周围配位体所产生的电场作
《配位场理论》课件

04
此外,配位场理论还在环境科学、地质学等领域有广泛的应用前景。
02
配位场理论的基本概念Fra bibliotek分子轨道理论认为分子中的电子不是局限在原子核周围,而是在整个分子中运动。
分子轨道的类型包括成键轨道、反键轨道和未占轨道,它们决定了分子的电子结构和性质。
分子轨道理论是配位场理论的基础,它描述了分子中电子的分布和运动状态。
《配位场理论》PPT课件
配位场理论概述配位场理论的基本概念配位场理论的应用实例配位场理论的挑战与展望参考文献
contents
目录
01
配位场理论概述
配位场理论是一种描述物质中电子行为的量子力学理论,主要应用于化学和材料科学领域。
该理论通过引入配位场的概念,描述了电子在分子或晶体中的运动状态和相互作用,从而解释了物质的物理和化学性质。
简化理论模型
随着实验技术的不断发展,未来有望通过更精确的实验手段验证配位场理论的预测结果,推动理论与实验的更紧密结合。
实验技术的进步
未来研究可能会寻求将配位场理论应用于更广泛的材料体系,以拓展其应用领域,更好地服务于材料科学和物理学的发展。
拓展应用领域
05
参考文献
- 配位场理论的发展历程
THANKS
详细描述
配位场理论可以描述分子在反应过程中的电子结构和几何结构变化,从而揭示反应机理和反应速率。通过配位场理论,可以预测和控制化学反应过程,为化学工业和绿色化学的发展提供支持。
04
配位场理论的挑战与展望
1
2
3
配位场理论涉及大量的数学和物理概念,模型构建和计算过程相当复杂,对理论理解和计算能力要求较高。
电子构型是指分子中原子的电子排布和分布状态,它决定了分子的化学性质和稳定性。
《结构化学》课程教学大纲

《结构化学》课程教学大纲学时:50学时学分:3.0学分适用专业:化学教育、应用化学、材料化学一、说明1、《结构化学》课程的性质和任务《结构化学》是研究原子、分子及晶体的结构,以及结构与性能之间关系的一门基础理论课。
设置本课程的目的在于培养学生在建立量子力学基本概念的基础上,掌握微粒运动的基本规律。
获得原子、分子及晶体结构的基本理论和实验研究方法,让学生在深入到原子、分子的电子层结构上来掌握物质的微观结构与宏观性质之间的关系。
明确“结构决定性能、性能反映结构”这一重要原则,为今后从事教学和科研或继续升造,打下坚实的理论基础。
2、《结构化学》课程的基本要求(1).在熟悉电子等实物微粒基本特性的基础上,掌握波函数、薜定谔方程及算符等量子力学重要原理、应用量子力学原理来研究原子结构。
(2).掌握分子轨道理论和配位场理论,应用分子轨道理论深入研究分子结构和配合物结构,了解分子光谱的基本原理和方法。
(3).掌握晶体的点阵理论,明确各类晶体结构特征及结构与性能之间的关系,理解x-射线晶体结构分析的基本原理以及联系衍射二要素和晶胞二要素的重要方程。
二、正文绪论《结构化学》主要内容及研究途径、学习方法第一章量子力学基础和原子结构1.量子论诞生和量子力学基本原理经典物理学困难和量子论诞生实物微粒的波粒二象性及“不确定关系”(重点)波函数、薜定谔方程、势箱中运动的粒子定态薜定谔方程的算符表达式2.氢原子与类氢离子的定态薜定谔方程及其解方程的直角坐标和球坐标表达式、基态解、变数分离法(难点)方程解的物理意义讨论、量子数、实复波函数(重点)波函数和电子云的图形表示3.多电子原子结构理论的轨道近似模型中心力场模型和原子轨道(重点)屏蔽模型、自洽场模型电子自旋及保里不相容原理自旋相关效应思考题见教材144页,思考题与习题3,5,6,9,11题第二章共价键理论和分子结构1.H+2中的分子轨道及共价键本质定核近似和H+2的薜定谔方程变分原理及线性变分法线性变分法对H+2的第一步近似处理第一步近似处理的讨论、离域效应2.分子轨道理论及其应用分子轨道理论的要点、概念、LCAO-MO法(重点)成键三原则、电子填充三原则(重点)双原子键和双原子分子结构饱和分子的离域轨道和定域轨道3.HMO法和共轭分子结构HMO法要点(重点)丁二烯和苯的HMO法处理电荷密度、键级自由价、分子图离域 键形成条件及类型4.分子对称性和分子点群对称元素和对称操作群概念和群的阶数分子点群、分子点群的确定对称性和分子的物理性质5.测定分子结构的实验方法分子光谱的分类及其所在波段分子的转动光谱分子的振动光谱思考题见教材299页,思考题与习题1,2,5,6,7题第三章配位场理论和络合物结构1.晶体场理论d轨道能级分裂(重点)d轨道中电子的排布——高自旋态和低自旋态晶体场稳定化能络合物畸变和姜——泰勒效应2.络合物的分子轨道理论理论要点正八面体络合物中的σ—配键正八面体络合物中的л—配键σ—л配键和羰基络合物、氮分子络合物结构不饱和烃络合物—л络合物结构思考题见教材374页,思考题与习题1,2,3题第四章晶体结构1.晶体的点阵理论点阵定义、分类晶胞定义及晶胞的二个基本要素(重点)晶面和晶面指标2.晶体的对称性晶体的宏观对称性:32点群,7个晶系14种空间点阵晶体的微观对称性:空间对称操作3.结晶化学金属晶体和金属键离子晶体和离子键共价键型晶体和混合键型晶体分子型晶体和分子间作用力4.X—射线晶体结构分析原理X—射线在晶体中的衍射机理衍射方向与晶胞参数Laue方程Bragg方程衍射强度与晶胞中原子的分布晶体结构分析方法思考题与习题1,2,4,5题考试方式及方法:举行一次期末闭卷考,时间2小时,教考分离。
配位场理论和络和物结构(精)

第三章 配位场理论和络和物结构配位化合物的一般概念1. 配位化合物(络和物)络和单元:由中心过渡金属的原子或离子及其周围的分子和离子(称配体)按一定的组成和空间构型组合成的结构单元叫络和单元。
中心离子M :通常是含d 电子的过渡金属原子或离子,具有空的价轨道。
配位体L :分子或离子,含孤对电子或π键L →M络离子: 带电荷的络合单元叫络离子,如[Fe(CN)6]4-,[Co(NH 3)6]3+等, 络合物: 络离子与带异性电荷的离子组成的化合物叫络合物。
不带电荷的络合单元本身就是络合物。
如Ni(CO)4,PtCl 2(NH 3)2等。
金属配位化合物的配位数常见的有2、4、6、8,最常见是4和6两种: 配位数为4的常见几何构型为正四面体和平面正方形;配位数为6的常为正八面体构型。
2、络合物的磁性:如果具有自旋未成对电子,络合物具有顺磁性。
磁矩大小ββμμ+=μ,)2n (n 为玻尔磁子。
根据磁矩大小可以分成高自旋,低自旋络合物。
3、络合物的化学键理论价键理论,晶体理论,分子轨道理论。
§3-1 络合物的价键理论价键理论是三十年代初由L.Pauling 在杂化理论基础上提出的。
他认为:络合物的中央离子与配位体之间的化学键可分为电价配键和共价配键,相应的络合物称电价络合物和共价络合物。
1. 电价配键与电价络合物带正电的中央离子与带负电或有偶极矩的配体之间靠静电引力结合,称电价配键。
中央离子与配位体间的静电作用不影响中央离子的电子层结构,所以中央离子的电子层结构和自由离子一样,服从洪特规则。
如:[FeF 6]3-、[Fe (H 2O )6]2+、[Ni(NH 3)6]2+、 [Co(NH 3)6]2+等,它们在形成络合物前后,自旋未成对电子数不变(分别为n=5,4,2,3),分子的磁性由中央离子的电子排布决定,所以电价络和物是高自旋络合物。
2、共价配键和共价络合物中央离子以空的价轨道接受配位体的孤对电子所形成的键叫共价配键。
结构化学-第三章配位场理论和络合物

• 教学内容 1、晶体场理论 2、络合物分子轨道理 论 3、晶体场理论与分子 轨道理论比较 4、配位场理论 5、有机金属络合物 6、原子簇化合物简介 重点 1、晶体场理论 2、络合物分子轨道理 论 3、晶体场理论与分子 轨道理论比较 4、配位场理论 难 点 1、晶体场理论
络合物的类型
(1)简单配位化合物 简单配位化合物是指由单基配位体与中心 离子配位而成的配合物。 (2)鳌合物 具有环状结构的配合物叫鳌合物或内配合 物。 (3)多核配合物 一个配位原子与二个中心离子结合所成的 配合物称多核配合物。
络合物的磁性
磁性:物质在磁场中表现出来的性质 顺磁性:被磁场吸引的性质。 例如:O2,NO,NO2等物质具有顺磁性 反磁性:被磁场排斥的性质。大多数物质具 有反磁性。 铁磁性:被磁场强烈吸引的性质。 例如:Fe,Co,Ni属于铁磁性物质。
4、四配位化合物(D4h和Td 点群)
四配位是常见的配位, 包括 平面正方形和四面体 两种构型。 一般非过渡元素的四配位化合物都是四面体构型。这是因 为采取四面体空间排列, 配体间能尽量远离, 静电排斥作用最小 能量最低。但当除了用于成键的四对电子外, 还多余两对电子时 , 也能形成平面正方形构型, 此时, 两对电子分别位于平面的上下 方, 如XeF4就是这样。
7、七配位化合物
五角双锥
单帽八面体
单帽三角棱柱体
两种43的形式
可以发现: 一个三角面上) 矩形面上) ①在中心离子周围的七个配位原子所构成的几何体远比其它配位 形式所构成的几何体对称性要差得多。 ②这些低对称性结构要比其它几何体更易发生畸变, 在溶液中极易 发生分子内重排。 ③含七个相同单齿配体的配合物数量极少, 含有两个或两个以上不 同配位原子所组成的七配位配合物更趋稳定, 结果又加剧了配位多 面体的畸变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章配位场理论和络合物结构第三章配位场理论和络合物结构一、选择题1.中央金属固定,下列离子或化合物作为配体时,场强最强的是:()A.-B. NH3C. CNHO D.SCN-22.具有理想正八面体的电子组态(高自旋时)是:()A.(t2g)3B.(t 2g)1 C. (t 2g)4(eg)2 D. 以上都不对3.平面正方形场中,d轨道的最高简并度是:()A. 2B. 3C.4 D.14.导致Ni2+水合能在第一系列过渡金属元素中最大的主要原因是:()A.CFSE最大B.电子成对能最大C. 原子序数最大D.H2O是弱场5.下列原子作为电子给予体时,哪个原子引起的分裂能最大:()A.CB.FC.OD.N6.决定成对能P的主要因素是:()A.分裂能B.库仑能C.交换能D.配位场强度7.下列配位化合物高自旋的是:()A.[Co(NH3)6]3+B.[Co(NH3)6]2+C.[Co(NO2)6]3-D.[Co(CN)6]4-8.下列配位化合物磁矩最大的是:()A.[FeF6]3-B.[Mn(CN)6]3-C.[Ni(H2O) 6]2+D.[Co(NH3)6]3+9.判断下列配位化合物的稳定化能大小的次序是: ()(1)[CoF6]4-(2)[NiF6]4-(3)[FeF 6]3-A.(1)>(2)>(3)B.(1)=(2)<(3)C.(1)<(2)<(3)D.(2)>(1)>(3)10.Ni和CO可形成羰基配合物Ni(CO)n,其中n是:( )A.6B.3C.4D.511.[Cu(HO)2+)·2HO]溶液出现蓝色的原因是:(2 4 2A.自旋相关效应B.d-d 跃迁C. σ-π跃迁D.姜-泰勒效应12.配位化合物d-d跃迁光谱一般出现在什么区域:()A.红外B.微波C. 远紫外D. 可见—紫外13.关于[FeF6]3-络离子,下列哪个叙述是错误的:()A.是高自旋络离子 B.CFSE 为0C.中心离子的电子排斥与Fe3+相同D.CFSE不为014.下列哪个轨道上的电子在XY平面上出现的几率密度为零:()A.3Pz B.3dx 2-y2 C.3s D.3dz215.下列分子中,呈反磁性的是:()A.B2B.NOC.COD.O 216.晶体场稳定化能正确的大小顺序是:()A.[Mn(H2O)6]2+<[Fe(CN)6]3-<[Fe(H2O)6]3+<[Ru(CN)6]3-B.[Fe(H2O)6]3+<[Mn(H2O)6]2+<[Ru(CN)6]3-<[Fe(CN)6]3-C.[Fe(CN)6]3-<[Fe(H2O)6]3+<Mn(H2O)6]2+<[Ru(CN)6]3-第1页共5页第三章配位场理论和络合物结构D.[Mn(H2O)6]2+<[Fe(H2O)6]3+<[Fe(CN)6]3-<[Ru(CN)6]3-17. 下列配合物中,磁矩最小的是:()A.[Cr(H2O)6]2+B.[Fe(CN)6] 3-C.[Co(H2O)6]2+D.[Co(NH3)6]3+18.下列分子和离子中,具有顺磁性的是:( )A .NO +B.[Fe(CN)6]4-C. B2D.CO 19. 分裂能0最大的是:()A. [FeF6]4-B.[Os(CN)6]4-C.[Ru(CN)6]4-D. [Fe(CN)6]4- 20. 下列配合物中,磁矩约为2.8μB 的是:() 3 6 B. K 3 6 ] C. 6 D. 2 6 3+A.K[CoF] [Fe(CN) Ba[TiF][V(H O)] 21.CO 与过渡金属形成羰基配位化合物时, C -O 键会产生什么变化?()A .不变B .加强C .削弱D .变短 22.下列配位体与金属离子形成σ—π配键时,哪个以侧基形式络合?()A .COB .C2H2C .N2D .CN -23.下列四种络合物中,d-d 跃迁能量最低的是()A 、[Fe(H 2 6 2+B 、[Fe(H 2 6 3+6 4- 6 ]3-O)] O)] C 、[FeF] D 、[FeF24.某一晶体场的△>P ,则( )A 、该场为强场B 、电子按高自旋排布C 、络合物的磁矩为零D 、晶体场稳定化能大于零25.在平面正方形络合物中,四个配体分别位于± x 和±y 上,下列d 轨道中能量最高的是()A 、dxyB 、dx2-y2C 、dyzD 、dz24水溶液呈蓝色的原因是( )26.CuSOA 、d —d 跃迁B 、σ—π跃迁C 、姜—泰勒效应D 、σ—π配键27.四种配位化合物 3- 3- 36 3+3- (1)CoF6 (2)Co(CN) 6(4)CoCl 6 的d-d 跃迁光谱,波数从大到小顺序为 (3)Co(NH)( ) A. (2)>(3)>(1)>(4)B.(4)>(1)>(3)>(2)C.(3)>(2)>(1)>(4)D.(2)>(3)>(4)>(1) 28. 下列分子中,不存在σ—π配键的是()A 、[Co(NH3)6]Cl3B 、Ni(CO)4C 、HCo(CO)4D、K[PtCl3(C2H4)]·H2O29.下列哪个络合物的磁矩最大?()(A) 六氰合钴(Ⅲ)离子(B)六氰合铁(Ⅲ)离子 (C) 六氨合钴(Ⅲ)离子(D)六水合锰(Ⅱ)离子30.推测下列三种络合物的d-d 跃迁频率大小顺序:() (1)六水合铁(Ⅲ) (2)六水合铁(Ⅱ)(3)六氟合铁(Ⅱ)(A) 1>2>3 (B)1>3>2 (C) 3> 2>1 (D)3> 1>2 二、多选题1.正八面体场中,d 轨道能级分裂为两组,其中能量较低的一组称为t2g ,包括下列哪 些轨道?( )A 、dxyB 、dx2-y2C 、dyzD 、dz2E 、dxz2.具有理想正八面体的电子组态(高自旋时)是?() A.(t2g)3B.(t2g)1C.(t2g)4(eg)2D. d 0Ed103.决定成对能P 的因素有?( )A.分裂能B.库仑能C.交换能D.配位场强度E. CFSE4.下列配位化合物低自旋的是?( )第2页共5页第三章配位场理论和络合物结构A.[Co(NH3)6]3+B.[Co(NH3)6]2+C.[Co(NO2)6]3-6 ] 4- 2 6 2+D.[Co(CN)E.[Co(HO)]5.下列分子和离子中,具有顺磁性的是?( )E.[Cu(H2O)6]2+A. [Co(NO2)6]3-B. [Fe(CN)6]4-C.B2D.CO 6.和H2O 相比,下列哪些配位体对 值影响较大?( )A. - - - E.OH -CNB.NH3 C.F D.SCN) .关于 [Fe(CN) 6]4-络离子,下列哪些叙述是错误的?(7A 、是高自旋络离子B 、CFSE 为0E 、是顺磁性的 、中心离子的电子排布与 3+ 相同D 、CFSE 不为0 C Fe 8.下列络合物中,哪些满足 18电子层结构?( ) E.Co(CO)A. Ni(CO) 4B. Fe(CO)C. Cr(CO) 6D. Mn(CO) 10 85 2 2 9.络合物的化学键理论主要有哪些?()A. 价键理论B. 晶体场理论C.分子轨道理论D. 配位场理论E.点阵理论10.利用CFSE ,可以解释?()A. 光谱化学系列B. 络合物的紫外可见光谱C. 第一系列过渡元素二价离子 六水合物的水化热D.第一系列过渡元素二价离子卤化物的晶格能E. 络合物中心离子d 轨道的分裂三、填空题1.说明配合物中心离子(或原子)与配位体之间化学键的理论有,, , 。
2.成对能(P)是由_ 和_贡献的。
3.在八面体场中,d 轨道的分裂结果是,与球对称部分的能量Es 相比eg 轨道能 量,t2g 轨道能量。
4.能的大小可以从理论上予以近似计算,但通常可借助于。
5.当配位体固定时,分裂能随中央金属离子而改变具体情况是 。
6.相同浓度三价铁水溶液的颜色比二价铁要深且偏红,这说明三价铁水合物的 值 。
7.同周期中,同价过渡金属离子,在弱场八面体作用下,其高自旋络合物的热力学稳定性的顺序是 。
(CH )]是1831年由W.C.Zeise 制得,第二个 8.第一个公认的有机金属络合物是K[PtCl3 2 4有机金属络合物是,是1952年制得。
9.按晶体场理论,正四面体型配合物中,中心离子d 轨道裂分为两组,能量较低者记为,包括的d 轨道有 ,能量较高者记为,包括的d 轨道有。
10. 正八面体强场的 P ,电子按自旋排布。
四、判断题1.过渡金属配合物的磁矩主要是中央金属的电子自旋运动贡献的。
( )2.物质的反磁性是任何物质都具有的。
( ) 3.晶体场分裂能越大越易形成高自旋络合物。
( )4. 同周期中,同价过渡金属离子,在弱场八面体作用下,其高自旋络合物的热力学稳定性第3页共5页第三章配位场理论和络合物结构的顺序是d 1<d 2<d 3>d 4>d 5<d 6<d 7<d 8>d 9>d 10。
( )5.当配位体场的对称性降低时 ,则d 轨道分裂组数增加。
()6.在八面体配合物中d 电子数从4-7时,强场和弱场具有相同的电子排布。
()7.晶体场分裂能的大小,既与配位体有关,也与中心离子有关。
( ) 8.配合物的CFSE 的大小,是衡量配合物稳定性的重要因素。
( )9.四面体配合物大多是低自旋络合物。
()10.在正八面体络合物中,有六个配位体的电场作用 ,使d 能级分裂,而在四面体络合物中,只有四个配位体的电场作用,故正八面体场的分裂能大于正四面体场的分裂能。
()五、简答题1、晶体场理论的主要观点是什么?2、试用晶体场理论解释为什么正四面体配位化合物大多是高自旋?3、按晶体场理论,正四面体配合物中,中央离子d 轨道分裂为几组,分别是哪些轨道?4、判断下列络离子哪些是顺磁性的,哪些是反磁性的,简要说明为什么?[Fe(CN)6] 3- - 为强场配离子);[Cr(H2O)6] 2+(<P) (CN [Co(NH3)6]3+(>P);[Mn(H2O)6]2+(<P)5、在羰基络合物Cr(CO)6中,中心原子Cr 与配体之间存在什么键?它的稳定性怎样?1 106、在八面体配合物中,中心离子的d~d 的排布,在弱场(电子成对能P>分裂能O)时与强场(分裂能O>电子成对能P)时有什么不同?六、计算题1、对于电子组态d 4的八面体过渡金属离子配合物,计算:①分别在高低自旋时基态的能量;②当高低自旋的构型具有相同能量时,成对能P 和晶体场分裂能l0Dq 的关系。