第3课时 植树问题(3)教学教案

公开课:植树问题教案

植树问题 ------ 两端都栽 教学内容:义务教育五年级上册第七单元植树问题第一课时两端都栽。 教学目标: 1、理解在线段上植树(两端要栽)的情况中“棵数 =间隔数 +1”的关系。 2、使学生经历和体验复杂问题简单化的解题策略和方法。 3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解 决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。 教学重点 : 引导学生发现植树棵树与间隔数之间的关系。 教学难点 : 理解间隔与棵树之间的规律并运用规律解决问题。 教法与学法:教法:创设情境,质疑引导 学法:自主探究,发现规律 教学过程: 一、情境导入 1、教学“间隔”的含义和间隔数。 师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样 宝贝。请你伸出你的右手,观察你有几根手指?几个手指缝? 生: 5 个手指, 4 个手指缝。 师:减掉 1 根手指,现在你有几根手指?几个手指缝? 生: 4 个手指, 3 个手指缝。 师:再减掉 1 根手指,现在你有几根手指?几个手指缝? 生: 3 个手指, 2 个手指缝。 师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

生: ,, 手指比手指缝多1,手指缝比手指少1。 师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫 间隔数。 师:其实这个手指数与间隔数的关系属于我们数学上非常有名的“植树问 题”,这节课我们就来探讨植树问题。 (板书课题:植树问题) 二、探索规律 (一)课件出示主题图。 同学们在全长 20 米的小路一边植树,每隔 5 米栽一棵(两端要栽)。一共要栽多少棵树? 1、学生读题,分析题意。 师:说一说植树都有什么要求? 预设:生:每隔 5 米种一棵。 师:这个要求很重要,那么 5 米指的是什么? 预设:间隔。 师:间隔指的是什么? 预设:生:两棵树之间的距离。 师:指数间隔是多少? 生:5 米。 师:还有别的要求吗? 预设:生:两端都要栽。 师:这个要求也很重要,两端都要栽是什么意思?谁来比划一下?

植树问题优秀教案

第七单元:数学广角——植树问题 不封闭路线的植树问题 教学内容:教材P106~107例1、例2及练习二十四。 教学目标: 知识与技能:通过学生熟悉的生活情境,学生会用线段图来表示植树问题中的三种植树情况,培养学生分析问题的能力。 过程与方法:学生能够初步建立植树问题的数学模型,能根据这个模型将生活中类似的问题进行分类,并试着应用模型中间隔与棵数的关系来解决问题。 情感、态度与价值观:培养学生认真审题的良好学习习惯。 教学重点:能理解不封闭路线的植树问题中间隔数与棵数之间的关系并应用到生活中去。 教学难点:理解间隔数与棵数之间的规律(总长÷间距=间隔数+1=植树棵数),并能运用规律解决问题。 教学方法:自主探索、合作交流。 教学准备:多媒体。 教学过程 一、情境导入 1.出示:公路两旁的树。(课件1) 师:为什么要在公路的两旁栽上树呢?学生自由发言。 教师讲解:树木能够涵养水分减少水分的流失,还能净化空气,因此植树造林有助于环境的改善。(渗透植树造林的环保意识。) 2、揭题:师:植树是一项环保活动,希望每个同学都积极响应,做到:保护环境,人人有责。今天我们就主要来研究有关植树的问题。 ( 板书课题:植树问题) 二、探究新知: (一) 提出问题——两端都栽、 一端栽 、两端不栽。 出示公告(为了迎接开放日的到来,学校将进行校园环境美化,特诚聘小设计师一名,请看招聘启示。)(出示课件1) 出示招聘启示和校园图片 1.出示教学例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树。一共需要多少棵小树? 2、学生动手在纸上设计植树方案。(同学们,请发挥你们的设计天份)(出示课件2) 3、学生汇报其设计的植树方案。 A 、我按要求每隔5米种一棵,我是按两头都种来设计的,所以我种了21棵。 B 、我是只种一头的。所以我只种了20棵。 C 、我是两头都不种的,我只种了19棵。

小学奥数教师版-6-1-14 植树问题(二)

5-1-3.植树问题(二) 教学目标 1.封闭与非封闭植树路线的讲解及生活运用。 2.掌握空心方阵和实心方阵的变化规律. 3.几何图形的设计与构造 知识点拨 一、植树问题分两种情况: (一)不封闭的植树路线. ①若题目中要求在植树的线路两端都植树,则棵数比段数多1. 全长、棵数、株距之间的关系就为:棵数=段数1 +=全长÷株距1+ 全长=株距?(棵数1-) 株距=全长÷(棵数1-) ②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等. 全长、棵数、株距之间的关系就为:全长=株距?棵数; 棵数=段数=全长÷株距; 株距=全长÷棵数. ③如果植树路线的两端都不植树,则棵数就比②中还少1棵. 全长、棵数、株距之间的关系就为:棵数=段数1 -=全长÷株距1-. 株距=全长÷(棵数1+). 全长=株距?(棵数+1) (二)封闭的植树路线. 在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距. 二、解植树问题的三要素 (1)总路线长(2)间距(棵距)长(3)棵数, 只要知道这三个要素中任意两个要素,就可以求出第三个. 三、方阵问题 (1)明确空心方阵和实心方阵的概念及区别. (2)每边的个数=总数÷41 +”; (3)每向里一层每边棋子数减少2; (4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。

例题精讲 模块一、封闭图形的植树问题 【例1】小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3米栽种一棵树.问:共需 树苗多少株? 【考点】封闭图形的植树问题【难度】1星【题型】解答 【解析】因为圆形池塘是一个封闭的模型,所以我们直接运用公式棵数=段数=周长÷株距,从而有树苗: 1500÷3=500(株). 【答案】500株 【巩固】周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳 树? 【考点】封闭图形的植树问题【难度】1星【题型】解答 【解析】40302140()+?=(米),140528÷=(棵). 【答案】28棵 【例2】在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中 点都正好栽一棵松树,则最少要买松树苗棵。 【考点】封闭图形的植树问题【难度】2星【题型】填空 【关键词】希望杯,五年级,二试,第9题 【解析】先找出两边中点数120、172.5的最大公约数为7.5草坪周长为:(345+240)÷7.5=156(棵) 【答案】156棵 【例3】公园内有一个圆形花坛,绕着它走一圈是120米.如果沿着这一圈每隔6米栽一棵丁香花, 再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少 株?两株相邻的丁香花之间的2株月季花相距多少米? 【考点】封闭图形的植树问题【难度】2星【题型】解答 【解析】在圆周上栽树时,由于开始栽的一棵与依次栽的最后一棵将会重合在一起,所以可栽的株数正好等 于分成的段数.由于每相邻的两株丁香花之间等距离地栽2株月季花,所以栽月季花的株数等于2 乘以段数的积.要求两株相邻的丁香花之间的2株月季花相距多少米?需要懂得两株相邻的丁香花 之间等距离地栽2株月季花,就是说这4株花之间有3段相等的距离.以6米为一段,圆形花坛一圈 可分的段数,即是栽丁香花的株数:120÷6=20(株),栽月季花的株数是:2×20=40(株),每段上丁 香花和月季花的总株数是:2+2=4(株),4株花栽在6米的距离中,有3段相等的距离,每两株之 间的距离是:6÷(4-1)=2(米). 【答案】丁香花的株数20株,月季花的株数40株,两株相邻的丁香花之间的2株月季花相距2米。 【巩固】一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季 花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米? 【考点】封闭图形的植树问题【难度】2星【题型】解答 【解析】①在圆形花坛上栽花,是封闭路线问题,其株数=段数.②由于相邻的两棵芍药花之间等距的栽有两 棵月季,则每6米之中共有3棵花,且月季花棵数是芍药的2倍. 解:共可栽芍药花:180630÷=(棵) 共种月季花:23060?=(棵) 两种花共:306090+=(棵) 两棵花之间距离:180902÷=(米) 相邻的花或者都是月季花或者一棵是月季花另一棵是芍药花,所以月季花的株距是2米或4米. 【答案】芍药花30棵,月季花60棵,月季花的株距是2米或4米 【巩固】在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面 黄旗,应准备红旗______面,黄旗______面. 【考点】封闭图形的植树问题【难度】2星【题型】填空

五年级上册数学广角植树问题第一课时教案

《数学广角——植树问题》第一课时(两端都种) 【学习内容】人教课标版小学数学五年级上册P106页例1。 【课程标准描述】 1.经历有目的、有设计、有步骤、有合作的实践活动。 2.结合实际情境,体验发现和提出问题、分析和解决问题的过程。 3.通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。 【学习目标】 1.动手观察,理解“间隔、间隔数、两端都栽的含义,发现并理解间隔数、棵数、总长之间的关系。 2.会解决生活中两端都种的植树问题,会根据间隔数、总长求棵数。 3.学会猜测、讨论、验证发现解决问题的规律,感悟构建数学模型(线段图)是解决实际问题的重要方法之一,激发研究的兴趣。 【学习重点】理解种树棵数与间隔数之间的关系。 【学习难点】会应用植树问题的模型解决一些相关的实际问题。 【评价活动方案】 1.通过观察手指间的间隔,初步了解“间隔”,说一说生活中的间隔,加强对“间隔”的理解,通过“在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗”这一情境进一步理解间隔数、两端都栽含义,通过猜想、验证“20米,每5米栽一棵(两端都栽),一共要栽几棵”发现并理解间隔数、棵数、总长之间的关系,以评价目标1。 2.通过应用规律,解决生活中的实际问题评价目标2。 3.通过经历探讨交流、猜想验证,画线段图发现规律解决“植树问题”的过程以及通过规律解决实际问题,评价目标3。 【学习过程】 一、创设情景、生成问题(评价目标1) 请同学们举出左手张开五指,每两个手指之间都有一条指缝。 师:在数学上,我们把这个指缝叫“间隔”。那么5个手指之间有几个间隔?(课件出示)师:生活中的“间隔”到处可见,说一说生活中还有哪些“间隔”?(两棵树之间、两个同学之间、楼梯等都有间隔。)出示课本106页例题1的图片,引出课题。(板书:植树问题) 二、探索交流、解决问题(评价目标1、2) 师出示完整问题:例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗? 1.理解信息。 (1)从题中你知道了哪些信息 (2)说一说:“一边”、“两端要栽”的含义(板:两端要栽) (3)每隔5米是什么意思

植树问题练习题分类汇总(附方阵问题) 2

植树问题练习题分类汇总(附方阵问题) 基本数量关系:全长=间距×间隔数 此外还可能有:总时间=每次用时×次数 总台阶=每个楼梯的台阶数×楼梯数 一、直线型植树问题 (一)两端都种:棵数=间隔数+1 间隔数=棵数-1 I求全长 1、在一条小路的一侧,每隔10米种一棵柳树,从头到尾共种20棵,则小路全长多少米? 2、在一条小路的一侧,从头到尾共安装10根电线杆,每隔10米安装一根,则小路全长多少米? 3、10路共公汽车从起点到终点共有13的车站,每两个车站相距2千米,则10路汽车全程多少千米? 4、时钟报时,5时敲5下,每两下之间间隔2秒,则一共用了多少时间?

6、小明家住在6层,他每上一层需要10秒种,则他从一楼到家需要多少秒? 7、小明家住在6层,每个楼梯上有16级台阶,则他从一楼到家需要走多少个台阶? II求棵数 1、在一条小路的一侧,每隔10米种一棵柳树,如果小路全长100米,则可种柳树多少棵? 2、在一条小路的一侧,从头到尾每隔10米安装一根电线杆,如果小路全长100米,则可以安装电线杆多少根? 3、10路共公汽车从起点到终点全长24千米,每两个车站相距2千米,则10路汽车全程共有多少个车站? 4、一根木料锯成若干段需要40分钟,每锯一下需要4分钟,则可以把它锯成多少段?

5、小明从一楼到家需要60秒,他每上一层需要10秒种,则他家住在多少层,? 6、小明从一楼到家需要走80个台阶,每个楼梯上有16级台阶,则家住在几层? III求间距 1、在一条小路的一侧从头到尾共种11棵树,小路全长100米,则每两棵树之间相距多少米? 2、在一条小路的一侧,从头到尾共安装10根电线根,如果小路全长90米,每两根电线杆之间相距多少米? 3、10路共公汽车从起点到终点全长24千米,10路车从头到尾共有13个车站,那么每两个车站之间相距多少千米? 4、一根木料锯成5段需要40分钟,每锯一下需要多少分钟?

五年级数学上册7数学广角__植树问题第1课时教学设计新人教版

7 数学广角——植树问题 本单元主要向学生渗透有关植树问题的一些思想方法。教科书以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究植树的棵数和间隔数之间的关系,经历猜想、实验、推理的探索过程,启发学生透过现象发现其中的规律,再利用规律回归生活解决生活实际问题。 本单元安排了三道例题,其中教科书P106的例1和P107的例2是探究线段上的植树问题,教科书P108例3是探究封闭曲线上的植树问题,学生在探究问题的过程中渗透化繁为简的思想,并且重点培养学生借助线段图建立数学模型的能力。在教科书P108例3中通过问题“如果把圆拉直成线段,你能发现什么?”启发学生联系已有的知识找出这种植树问题的规律,渗透转化的数学思想。 由于学生初次接触植树问题,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨。但根据以往的教学经验,这部分内容对学生来说,是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中对教科书内容进行适当调整,并充分利用学生原有的知识和生活经验来组织学生开展各个环节的数学活动。 1.经历建模的过程,感悟思想方法。“数学广角”的教学目的主要是让学生体验知识的形成过程和感悟数学思想方法。具体到本单元,教学时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现蕴含于不同的情形中的规律,经历抽象出数学模型的过程,体验数学思想方法在解决实际问题中的应用。比如,教科书P106例1的教学,可以让学生经历猜想、实验、归纳、推理的过程,渗透简单的化归、数形结合、对应、推理等数学思想,激发学生学习数学的兴趣。 2.突出画图的策略。几何直观是《义务教育数学课程标准(2011年版)》的核心概念之一。在教学过程中,帮助学生养成画图的习惯是非常重要的。本单元通过画示意图或线段图来解决植树问题,可以更直观发现规律、理解规律,建立模型找出解决问题的方法。另外,学生在学习中容易将两端都栽、一端栽另一端不栽,两端都不栽三种情况弄混。事实上,学生不用记每种模型的结论,遇到问题,只要画个线段图,问题就迎刃而解了,从而体会到画图策略的价值。

最新人教版五年级数学上册第七单元第一课时《植树问题》教学设计

植树问题(1) 学习目标: 1、通过探究发现一条线段上“两端都种”植树问题的规律。 2、经历和体验“复杂问题简单化”的解题策略和方法。 学习重、难点: 1、在探究活动中发现规律,并能够用发现的规律来解决生活中的一些简单实际问题。 2、理解“两端都种”情况下棵数和间隔数之间的规律。 使用说明及学法指导: 自学课本第106页,独立完成自主学习任务,针对自主学习中的疑惑点,课上小组讨论交流总结规律方法。 一、自主学习,了解“间隔”的含义。 1、伸出自己的一只手,张开五指。仔细观察,手指与手指之间出现了什么?这4个“空隙”也可以说成4个“间隔”,5个手指之间有4个间隔,那么4个手指之间有几个间隔?3个手指呢?2个呢?(在自己的手指上指一指,说一说) 2、手指数与间隔数之间存在着什么样的关系? 3、想一想:生活中还有类似的现象吗? 二、合作探究,学习例1。 1、你认为例1中哪些词语要引起我们的注意? 2、用什么办法可以知道一共需要多少棵树苗? 3、全长、间隔与棵数之间有什么关系?把公路看做一条线段画图看一看,并完成下面的表格。(两端都栽)

4、运用你发现的规律解决例1的问题。 三、自我总结 这节课你有哪些收获? 四、过关测评 1、(课本107页做一做第1题) 在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯? 2、在花园小区一条320米的小路的一边上栽树,从起点到终点每隔16米栽一棵,可以栽多少棵? 3、兰兰家住在七楼,芳芳到她家玩耍,从底楼爬到三楼用了18分钟,她从底楼到兰兰家需要多长时间? 4、园林工人沿公路的一侧植树(两端都植),每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远? 五、整理学案

小学奥数 植树问题(一) 精选练习例题 含答案解析(附知识点拨及考点)

1.封闭与非封闭植树路线的讲解及生活运用。 2.掌握空心方阵和实心方阵的变化规律. 3.几何图形的设计与构造 一、植树问题分两种情况: (一)不封闭的植树路线. ① 若题目中要求在植树的线路两端都植树,则棵数比段数多1. 全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+ 全长=株距?(棵数1-) 株距=全长÷(棵数1-) ② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等. 全长、棵数、株距之间的关系就为:全长=株距?棵数; 棵数=段数=全长÷株距; 株距=全长÷棵数. ③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵. 全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-. 株距=全长÷(棵数1+). 全长=株距?(棵数+1) (二)封闭的植树路线. 在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数. 全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距. 二、解植树问题的三要素 (1)总路线长(2)间距(棵距)长(3)棵数, 只要知道这三个要素中任意两个要素,就可以求出第三个. 三、方阵问题 (1)明确空心方阵和实心方阵的概念及区别. (2)每边的个数=总数÷41+”; 知识点拨 教学目标 5-1-3.植树问题(一)

(3)每向里一层每边棋子数减少2; (4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。 例题精讲 【例1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树? 【考点】直线上的植树问题【难度】1星【题型】解答 【巩固】在一条长240米的水渠边上植树,每隔3米植1棵。两端都植,共植树多少棵? 【考点】直线上的植树问题【难度】1星【题型】解答 【解析】2403181 ÷+=(棵) 【答案】81棵 【例2】一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种树___________棵。 【考点】直线上的植树问题【难度】2星【题型】填空 【关键词】希望杯,4年级,1试 【解析】考察植树问题,200÷4=50(段),(50+1)×2=102 【答案】102 【例3】一条公路的一旁连两端在内共植树91棵,每两棵之间的距离是5米,求公路长是多少米? 【考点】直线上的植树问题【难度】1星【题型】解答 【解析】根据植树问题得到:() 9115450 -?=(米) 【答案】450米 【例4】贝贝要去外婆家,他家门口有一根路灯杆,从这根杆开始,他边走边数,每50步有一根路灯杆,数到第10根时刚好到外婆家,他一共走了_____步. 【考点】直线上的植树问题【难度】1星【题型】填空 【关键词】走美杯,3年级,初赛 【解析】他从家门口的电线杆开始走,到第10根电线杆的时候刚好走了9段,每段需要走50步,所以共走的步子为:509=450 ?(步) 【答案】450步 【例5】校门口放着一排花,共10盆.从左往右数茉莉花摆在第6,从右往左数,月季花摆在第8,一串红花全都摆在了茉莉花和月季花之间.算一算,一串红花一共有多少盆? 【考点】直线上的植树问题【难度】1星【题型】解答 【解析】从左往右数茉莉花摆在第6,那么从右往左数茉莉花就是第:10(61)5 --=(盆)花,从右往左数,

部编版五年级上册数学 第7单元 数学广角——植树问题:植树问题(3课时)

植树问题 第1课时植树问题(一) 课时目标导航 植树问题(一)。(教材第106页例1) 1.理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。 2.掌握“植树问题”的第一种情况:两端都栽(即间隔数比棵数少1的情况)。 3.培养学生认真审题的好习惯。 重点:两端都栽的植树问题的解题方法。 难点:间隔数与棵数之间的规律。 一、情景引入 春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。 二、学习新课 教学教材第106页例1。 同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树? (1)思考:用画线段图探究棵数与间隔数的关系。 (2)解决问题。 因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而

每个间隔的长度是已知的,就可以求出一共植树多少棵。 在100米长的小路上共有20个间隔,那么就可以栽21棵树。 100÷5=20 20+1=21(棵) 答:一共要栽21棵树。 三、巩固反馈 1.有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米? 14-1=13 2×13=26(米) 2..新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯? 1000÷8=125 125+1=126(盏) 126×2=252(盏) 四、课堂小结 谈谈在解决植树问题时有哪些需要注意或不太懂得地方? 植树问题(一) 两端都种:棵数=间隔数+1 例1100÷5=20 20+1=21(棵) 1.体验是学生从旧知识向隐含的新知识迁移的过程。教学中,创设游戏情境,向学生提供多次体验的机会,为学生创设一种民主、宽松、和谐的学习氛围,给学生充分的时间与空间。 2.学生的认知起点与知识结构逻辑起点存在差异。学生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。 备课资料参考 【例题】一座桥长116米,在桥的两侧栏杆上各安装16块花纹图案,图案的长为2米,

植树问题教学设计与反思

植树问题教学设计与 反思 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

植树问题教学设计与反思 基本信息名称植树问题 执教者李忠课时 1 所属教材目录新人教版五年级上册 教材分析在本节课里,学生第一次接触到“植树问 题”。解决植树问题的思想方法是实际生活中应用 比较广泛的“复杂问题简单化”的数学方法。让学 生能够理解植树问题中两端都栽的情况下数量之间 的关系,并能解决生活中的一些简单实际问题。 学情分析“植树问题”原本属于经典的奥数教学内容,说明这一教学内容本身具有很高的数学思维含量和很 强的探究空间,既需要教师本身的有效引领,也需 要学生的自主探究。从学生的思维特点看,五年级 的学生仍以形象思维为主,但抽象逻辑思维有了初 步的发展,具备了一定的分析综合、抽象概括、归 类梳理的数学活动经验。教学时可以从实际的问题 入手,引导学生在分析、思考问题的过程中,逐步 发现隐含于不同情形中的规律,经历抽取出数学模 型的过程,体验数学思想方法在解决问题中的应 用。 教学目标知识与能 力目标 使学生经历将实际问题抽象出数学模型的过程,掌握植树问题中棵数与间隔数之间的关系,并能利用这一关系解决简单的新的实际问题。 过程与方法目标 通过观察、猜想、验证、推理等活动,使学生经历和体验“复杂问题简单化”、“一一对应”等解题策略和数学思想方法。 情感态度与价值观目标 感受数学在日常生活中的广泛应用,体会数学的价值,激发热爱数学的情感。 教学重难点重点让学生探究发现植树问题的规律,经 历数学建模的过程,体验“复杂问题简单 化”的解题策略和数学思想方法 难点在探究活动中发现规律,抽取数学模 型,并能够用发现的规律来解决生活中的 一些简单实际问题。 教学策略与设计说明 新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会

”植树问题“案例

植树问题 授课教师: 教学背景分析 1、教材分析: 本节课是人教版四年级第八单元《数学广角》的内容。和前面几册教材一样,本册也专门安排了“数学广角”单元,向学生渗透一些重要的数学思想方法。本节课主要是渗透有关植树问题的一些思想方法(植树问题分为:两端都栽、两端不栽、环形情况以及方阵问题等),在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。本课的教学,不仅要让学生会解决与植树问题相类似的问题,而且要把解决植树问题作为渗透数学思想方法的一个学习支点。从而发展学生的思维,提高学生的思维能力。 2、学情分析: 为了更好地了解学生情况,我进行了前测。 前测题目:同学们在20米的小路一边植树,每隔4米栽一棵树,一共需要多少棵树苗请你写出思考过程。 结果与分析: 情况如下表:(全班共25人) 分析: ;

(1)从前测的结果看,大部分学生都是很直观的认为总长÷间隔就是植树棵树。 (2)部分学生有了画图的意识,能够通过画图得出正确结果。 (3)全班只有1个学生对此有所了解,但是却对总长÷间隔表示什么不清楚。 (4)全班所有学生都没有想到生活实际。 3、我的思考 基于对教材和学生状况的分析,我有以下的思考: (1)在研究运用数学方法解答两端都栽的方案时,教师组织和引导学生进行互动交流,引导学生围绕“20÷5=4,‘4’是棵树还是间隔数”的问题在辨中思辨,使学生在辩论的过程中思维、认识不断地得到修正和深入,使学生对一一对应的数学思想有更深切的感悟,对数学思想方法在解决问题中的作用有更深入的体会。 (2)让学生明白三种情况是根据生活实际而产生的 植树问题是生活中比较常见的一类问题,如果间隔数是n,那么到底是n+1,还是n-1又或者是n是由谁决定的是由实际情况决定的。因此,本节课一开始,我就用一张图先明确了这三种情况,再分别对这三种情况进行研究。 ) 教学目标: 1、使学生经历将实际问题抽象出数学模型的过程,掌握植树问题中棵数与间隔数之间的关系,并能利用这一关系解决简单的新的实际问题。 2、使学生体验“化繁为简”、“一一对应”等解题策略和数学思想方法。 3、感受数学在日常生活中的广泛应用,体会数学的价值,激发热爱数学的情感。 教学目标分析: 达成目标(1)的标志:让学生从画直观图—〉画线段图—〉列式的过程中,逐步抽象出植树问题的数学模型;在分析、解决队列问题、锯木头问题等实际问题时,进一步巩固这一模型的同时,还进行了新的应用。

五年级上册数学教案-第7单元《第3课时%E3%80%80植树问题(3)》人教版

《第3课时植树问题(3)》教学设计 教学目标 1.通过猜测、试验、验证等数学探究活动,使学生初步体会到两端都种的植树问题的规律,并能推算出两端都不种的情况。 2.通过合作、交流,理解间隔数与棵树之间的关系,能够用自己喜欢的方法去解决两端都不种的情况 3.渗透归纳推理和转化的思想、方法,培养学生研究问题的科学素养。 教学重点 发现并理解两端都种的植树问题中间隔数与棵树的规律,能够自己解决两端都不种的情况。 教学难点 运用“植树问题”的解题思想解决生活中的实际问题。 教学方法 讲授、小组合作 课时安排 1课时 教学过程 一、情景导入 1.猜谜语: 一棵小树五个叉,不长叶子不长花。 能写会算还会画,天天干活不说话。 2.师:张老师为了让大家轻松一点,特地给大家带来了一个谜语,请认真思考。 找手上的数学知识,引出“间隔” 3.师:请伸出你的左手,手上蕴含着很多数学问题,你能找到吗?手指数和间隔数有什么关系?

二、探究新知 1.讨论植树路线的特点。 同学们,请想一想在正方形或长方形广场周围植树,在池塘周围栽树,栽树的路线有什么特点? 学生互相讨论。汇报交流讨论结果。 根据同学们发表的意见,指出在广场周围栽树,在池塘周围栽树,栽树的路线是封闭的,对吗? 2.探讨封闭曲线中的植树问题。 出示例3 张伯伯准备在圆形池塘周围栽树。池塘的周长是120m,如果每隔10m栽一棵,一共要栽多少棵? (1)题中你知道了哪些数学信息?要解决的数学问题是什么? (2)小组合作、探究。 (3)交流汇报。 如果把封闭图形拉成直线,这就相当于一端栽,一端不栽的情况,间隔数与树是一一对应的。 (4)归纳板书: 封闭图形的植树问题 栽树的棵数=间隔数 (5)学生汇报例3算法,老师板书:120÷10=12(棵) 答:一共要栽12棵树。 三、课堂练习 教科书第108页“做一做”及练习二十四第11题。 四、课堂总结 通过这节课的学习,你有什么收获?

第1课时 植树问题(1)

第7单元数学广角—植树问题 第1课时植树问题(1) 【教学内容】 教科书第106页例1及相对应的“做一做”第1题,练习二十四第1~5题。 【教学目标】 1.理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”的关系。 2.利用线段图理解“点数=间隔数+1”、“总长=间隔数×间隔”及间隔数与点数、总长、间距的关系,解决生活中的实际问题。 3.能从植树问题推广到生活中的其它问题,学会通过画线段图来分析理解题意。 【教学重点】 用不完全归纳法总结并理解“点数=间隔数+1”。 【教学难点】 掌握用线段图解决生活中的数学问题的方法。 一、新课导入 1.小游戏。 师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,数一数一共可以系几个扣。学生动手试一试。

集体交流:通过刚才的游戏,你得出了什么结论? 通过操作观察讨论后得出系扣的个数比间隔数多1。 2.验证。 学生拿出一根20厘米长的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数一共系了几个扣?指名说说自己系了几个扣。 验证扣的个数与间隔数的关系。 3.教师导入。 师:春天是植树的季节,同学们,你们每年都会参加植树造林的活动吗?你们可曾注意到植树也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究如何解决这类问题。 [板书课题:植树问题(1)] 二、探究新知 1.教学例1。(课件出示例1) 同学们在全长100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树? (出示线段图)问题分析: 两端都栽: 学生看图读题,理解题意。 让学生交流从题目中获取的信息和所要解决的问题。 教师引导学生明确:已知在全长100m的小路一边植树,每隔5m 栽一棵,两端都要栽。问题是一共需要栽多少棵树?

公开课:植树问题教案

植树问题------两端都栽 教学内容:义务教育五年级上册第七单元植树问题第一课时两端都栽。 教学目标: 1、理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”的关系。 2、使学生经历和体验复杂问题简单化的解题策略和方法。 3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。 教学重点:引导学生发现植树棵树与间隔数之间的关系。 教学难点:理解间隔与棵树之间的规律并运用规律解决问题。 教法与学法:教法:创设情境,质疑引导 学法:自主探究,发现规律 教学过程: 一、情境导入 1、教学“间隔”的含义和间隔数。 师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝。请你伸出你的右手,观察你有几根手指?几个手指缝? 生:5个手指,4个手指缝。 师:减掉1根手指,现在你有几根手指?几个手指缝? 生:4个手指,3个手指缝。 师:再减掉1根手指,现在你有几根手指?几个手指缝? 生:3个手指,2个手指缝。 师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

生:……手指比手指缝多1,手指缝比手指少1。 师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。 师:其实这个手指数与间隔数的关系属于我们数学上非常有名的“植树问题”,这节课我们就来探讨植树问题。 (板书课题:植树问题) 二、探索规律 (一)课件出示主题图。 同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树? 1、学生读题,分析题意。 师:说一说植树都有什么要求? 预设:生:每隔5米种一棵。 师:这个要求很重要,那么5米指的是什么? 预设:间隔。 师:间隔指的是什么? 预设:生:两棵树之间的距离。 师:指数间隔是多少? 生:5米。 师:还有别的要求吗? 预设:生:两端都要栽。 师:这个要求也很重要,两端都要栽是什么意思?谁来比划一下?

小学四年级数学植树问题教案

植树问题教案 四年级数学教案 ●一、说教材: “植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在生活上很重要的数学思想方法——化归思想,通过生活中一些常见的问题,让学生从中发现一些规律,学会解决生活中的实际问题,并且借助教学,从而提高学生的思维能力。 ●二、说教学目标:、 1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与树的棵数之间的关系,并通过小组合作、交流,使学生自己归纳出间隔数与树的棵数之间的规律。 2.能够借助图形分析,利用规律来解决生活中简单植树的问题。 3.渗透数形结合的思想,培养学生借助图形解决问题的意识。 4.培养学生的合作意识,养成良好的合作交流习惯。并且,也从中感受到生活中处处有数学、体验学习成功的喜悦。 引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并运用规律解决实际问题是本节课的教学重点。 ●三、说教法、学法:

本节课我采用“在生活中找间隔----在动手操作中找方法-----在方法中找规律---在规律中学会应用”的教学过程,让每个学生都动手、动脑、合作探究,并经历分析、思考、并最终解决问题。在教学上,我还借助媒体等的直观演示,引导学生意趣激思,以思促学,在创设的生活情境中尝试探索,形成概念,积极参与,促进学生全面发展。 四、说教学过程 本课教学分四大环节: (一)、激趣导入: 1、同学们你们知道吗?在我们的手中,还藏着怎样的数学知识呢,你们想了解一下吗? 2、伸出你们的右手,张开,数一数,5个手指之间有几个空格?其实这样的数学问题在我们的生活中随处可见。(通过摆动手指,创设情境,一下子就激发学生浓厚的兴趣。) (二)、创设情境,提出问题 当学生发现,五根小指头之间,有四个间隔。这时,我就提出,诚聘环境设计师这一招聘启事,一下子就激发了所有学生兴趣,让同学们自己设计,并说出自己的方案,自己分析,发现规律,从而巧妙地引出:植树问题。 (三)、在发现中找规律 通过同学们小组讨论,合作交流。并给学生故意设置路障,知道指数的棵树,说两端之间的距离,让学生再次合作交流,合作交流-----质疑问难,这样,

五年级上册数学第3课时植树问题(3)

第7单元数学广角——植树问题 第2课时植树问题(3) 教学目标: 1.运用转化的方法,使学生理解在一条首尾封闭的曲线上植树所需棵数与间隔数“一一对应”的数学模型。 2.进一步培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,以及抽取数学模型的能力。 教学重点:理解在一条首尾相接的封闭曲线上植树的基本数学模型。 教学难点:培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。 教学过程: 一、谈话引入,复习旧知 教师:在前面两节课中,我们共同探讨了在一条线段上植树的问题,还运用发现的规律解决了许多生活中的实际问题。谁来帮助大家一起回顾这些知识? 预设:在一条线段上植树可以分成三种情况:两端都栽时,棵数比间隔数多1;两端都不栽时,棵数比间隔数少1;一端栽一端不栽时,棵数和间隔数相等。 教师:在解决复杂问题时,我们是怎么做的? 预设:可以先给出一个猜测,要判断这个猜测对不对,可以从简单的事例中发现规律,再应用找到的规律来解决原来的问题。 教师:同学们对已学知识掌握得很好!今天这节课,我们要一起来研究植树问题中的另一种情况。 二、自主探索,学习新知 1.出示情境,展开探索 例3:张伯伯准备在圆形池塘周围栽树。池塘的周长是120 m,如果每隔10 m栽一棵,一共要栽多少棵树? 教师:这道题与前面学习的植树问题相比,有什么相同和不同的地方?

预设:不同之处在于前面学习的是在线段上植树的问题,这道题是在一个圆形周围植树。(教师追问1:线段是怎样的?圆形又是怎样的?)线段是直的,圆形是一条曲线。(教师追问2:一条什么样的曲线?) 逐步引导得出:一条首尾相接的封闭曲线。 预设:相同之处是,都是已知长度和间隔距离。 教师:你能联系已经学过的知识,自主解决“一共要栽多少棵树”的问题吗? 学生独立思考,讨论汇报。 2.概括归纳,得出模型 教师:大家想到了用什么方法来解决问题?(画图)120 m的长度太长了,怎么办?(先用简单的数据试一试) (1)以周长为40 m的圆为例,通过下图得知,能栽4棵树。 (2)如果把圆拉直成线段,你能发现什么? 预设:相当于在线段上植树的问题中“一端栽一端不栽”的情况。 (3)我们还可以用这样的方式来理解。 引导得出:植树的棵数与间隔数“一一对应”。 教师:利用发现的知识,你能解决例3的问题吗?(出示:池塘的周长是120 m?)120÷10=12(棵) 答:一共要栽12棵树。 教师:谁能完整地概括一下刚才的发现? 预设:在一条首尾相接的封闭曲线上植树,所需棵数与间隔数“一一对应”,相当于在线段上植树的一端栽一端不栽的情况。 三、课堂练习,巩固强化 教师:运用刚才的发现,解决以下实际问题。

植树问题 例1教学设计

《植树问题》教学设计 南华县龙川小学黄文纪 教学目标 知识技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。 数学思考:渗透数形结合的思想,培养学生借助图形解决问题的意识。问题解决:能够借助图形,利用规律来解决简单的植树问题。 情感态度:让学生在积极参与的过程中获得成功的体验,在学会与人分享的过程中体验学习数学的乐趣,同时也培养学生爱护环境的意识。 学情分析 由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中点对教材进行适当的整合,并充分利用学生原有的知识和生活经验,来组织学生开展各个环节的教学活动。 重点难点 能理解间隔数与棵数之间的关系并应用到生活中去 教学过程 教学目标 通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,知道两端栽间隔数与棵数之间的规律(总长÷间距=间隔数+1=植树棵数),并能运用规律解决问题。 学时重点 能理解间隔数与棵数之间的关系并应用到生活中去。 学时难点

理解间隔数与棵数之间的规律(总长÷间距=间隔数+1=植树棵数),并能运用规律解决问题。 教学活动 一、情境导入 1、出示:公路两旁的树。 师:为什么要在公路的两旁栽上树呢?(学生自由回答) 教师讲解:树木能够涵养水分减少水分的流失,还能净化空气,因此植树造林有助于环境的改善。(渗透植树造林的环保意识) 2、揭题:今天我们就来研究有关植树的问题。(板书课题:植树问题) 二、互动新授 (一)提出问题——两端都栽。 1、(多媒体)出示教材第106页例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树(两端都栽)。一共需要多少棵小树苗? 引导:请同学们先在纸上用线段图画一画你的种法,再在小组中交流、讨论。 2、(多媒体出示线段图)问题分析:两端都栽 (二)探索棵数与间隔数之间的关系(公式) 提问:刚才同学们用线段图表示了植树情况,现在同学们能否用算式来表示这两种植树情况呢? 1、假设小路长10米,小树之间的距离为2米,那么可以栽几棵? (1)画一画 (2)算一算:10÷2=5,要栽6棵。 2、假设小路长20米,小树之间的距离为5米,那么可以栽几棵? (1)画一画 (2)算一算:20÷5=4,要栽5棵。 3、假设小路长40米,小树之间的距离为4米,那么可以栽几棵?(1)画一画 (2)算一算:40÷4=10,要栽11棵。 4、例1如果用算式计算怎么算呢?

植树问题练习题分类汇总

植树问题练习题分类汇总 基本数量关系:全长=间距×间隔数 爬楼梯:总时间=每次用时×次数总阶数=每层阶数×(层数-1) 层数=总阶数÷每层阶数+1 一、直线型植树问题 (一)两端都种:棵数=间隔数+1 间隔数=棵数-1 I求全长 1、在一条小路的一侧,每隔10米种一棵柳树,从头到尾共种20棵,则小路全长多少米? 2、在一条小路的一侧,从头到尾共安装10根电线杆,每隔10米安装一根,则小路全长多少米? 3、10路共公汽车从起点到终点共有13的车站,每两个车站相距2千米,则10路汽车全程多少千米? 4、时钟报时,5时敲5下,每两下之间间隔2秒,则一共用了多少时间? 5、小明家住在6层,他每上一层需要10秒种,则他从一楼到家需要多少秒? 6、小明家住在6层,每个楼梯上有16级台阶,则他从一楼到家需要走多少个台阶? II求棵数 1、在一条小路的一侧,每隔10米种一棵柳树,如果小路全长100米,则可种柳树多少棵? 2、在一条小路的一侧,从头到尾每隔10米安装一根电线杆,如果小路全长100米,则可以安装电线杆多少根? 3、10路共公汽车从起点到终点全长24千米,每两个车站相距2千米,则10路汽车全程共有多少个车站? 4、一根木料锯成若干段需要40分钟,每锯一下需要4分钟,则可以把它锯成多少段? 5、小明从一楼到家需要60秒,他每上一层需要10秒种,则他家住在多少层,? 6、小明从一楼到家需要走80个台阶,每个楼梯上有16级台阶,则家住在几层? III求间距 1、在一条小路的一侧从头到尾共种11棵树,小路全长100米,则每两棵树之间相距多少米? 2、在一条小路的一侧,从头到尾共安装10根电线根,如果小路全长90米,每两根电线杆之间相距多少米? 3、10路共公汽车从起点到终点全长24千米,10路车从头到尾共有13个车站,那么每两个车站之间相距多少千米? (二)只种一端棵数=间隔数 I求全长 1、在教学楼前小路的一侧,每隔10米种一棵柳树,共种20棵,则小路全长多少米? 2、在校门前小路的一侧,共安装10根电线杆,每隔10米安装一根,则小路全长多少米? II求棵数 1、在教学楼前小路的一侧,每隔10米种一棵柳树,如果小路全长100米,则可种柳树多少棵? 2、在校门前小路的一侧,每隔10米安装一根电线杆,如果小路全长200米,则可以安装电线杆多少根?III求间距 1、在教学楼前一侧共种11棵树,小路全长100米,则每两棵树之间相距多少米? 2、在校门前小路的一侧,共安装10根电线根,如果小路全长90米,每两根电线杆之间相距多少米?(三)两端都不种棵数=间隔数-1 间隔数=棵数+1 I求全长 1、在教学楼与图书馆之间小路的一侧,每隔10米种一棵柳树,共种20棵,则小路全长多少米? 2、在校门前至公共汽车站的小路一侧,共安装10根电线杆,每隔10米安装一根,则小路全长多少米?II求棵数 1、在教学楼与图书馆之间小路的一侧,每隔9米种一棵柳树,如果小路全长100米,则可种柳树多少棵?

相关文档
最新文档