2017年高考数学试题分类汇编之概率统计

合集下载

江西省各地2017届高三最新考试数学理试题分类汇编:统计与概率 Word版含答案

江西省各地2017届高三最新考试数学理试题分类汇编:统计与概率 Word版含答案

江西省各地2017届高三最新考试数学理试题分类汇编统计与概率2017.02一、选择、填空题1、(红色七校2017届高三第二次联考)已知直线AB :x+y ﹣6=0与抛物线y=x 2及x 轴正半轴围成的图形为Ω,若从Rt △AOB 区域内任取一点M (x ,y ),则点M 取自图形Ω的概率为 .2、(赣州市2017届高三上学期期末考试)已知变量,x y 成负相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能是( ) A .0.4 2.3y x =+ B .2 2.4y x =+ C .29.5y x =-+ D . 0.4 4.4y x =-+3、(江西省师大附中、临川一中2017届高三1月联考)“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( ) A.12 B. 14 C. 13 D. 164、(新余市2017高三上学期期末考试)若实数x y 、满足约束条件101010x y x y y +-≤⎧⎪-+≥⎨+≥⎪⎩,将一颗骰子投掷两次得到的点数分别为a b 、,则函数2ax by Z =+在点(2,1)-处取得最大值的概率为( )A. 15B. 25C. 16D. 565、(江西省重点中学协作体2017届高三下学期第一次联考) 已知变量,x y 呈现线性相关关系,回归方程为ˆ12yx =-,则变量,x y 是( ) A .线性正相关关系B .由回归方程无法判断其正负相关关系C .线性负相关关系D .不存在线性相关关系6、(江西省重点中学协作体2017届高三下学期第一次联考) 如右图所示矩形ABCD 边长1,4AB AD ==,抛物线顶点为边AD 的中点E ,且,B C 两点在抛物线上,则从矩形内任取一点落在抛物线与边BC 围成的封闭区域(包含边界上的点)内的概率是 .二、解答题 1、(红色七校2017届高三第二次联考)某电视台推出一档游戏类综艺节目,选手面对1﹣5号五扇大门,依次按响门上的门铃,门铃会播放一段音乐,选手需正确回答这首歌的名字,回答正确,大门打开,并获得相应的家庭梦想基金,回答每一扇门后,选手可自由选择带着目前的奖金离开,还是继续挑战后面的门以获得更多的梦想基金,但是一旦回答错误,游戏结束并将之前获得的所有梦想基金清零;整个游戏过程中,选手有一次求助机会,选手可以询问亲友团成员以获得正确答案.1﹣5号门对应的家庭梦想基金依次为3000元、6000元、8000元、12000元、24000元(以上基金金额为打开大门后的累积金额,如第三扇大门打开,选手可获基金总金额为8000元);设某选手正确回答每一扇门的歌曲名字的概率为p i (i=1,2,…,5),且p i =(i=1,2,…,5),亲友团正确回答每一扇门的歌曲名字的概率均为,该选手正确回答每一扇门的歌名后选择继续挑战后面的门的概率均为;(1)求选手在第三扇门使用求助且最终获得12000元家庭梦想基金的概率;(2)若选手在整个游戏过程中不使用求助,且获得的家庭梦想基金数额为X (元),求X 的分布列和数学期望. 2、(南昌市八一中学2017届高三2月测试)某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示. (1)求d c b a ,,,的值;(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?(3)在(2)的前提下,已知面试有4位考官,被抽到的6名学生中有两名被指定甲考官面试,其余4名则随机分配给3位考官中的一位对其进行面试,求这4名学生分配到的考官个数X 的分布列和期望.3、(赣中南五校2017届高三下学期第一次联考)江西景德镇某陶瓷厂准备烧制甲、乙、丙三件不同的2017年新上市工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,,,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,,.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望.4、(赣州市2017届高三上学期期末考试)传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然、、、、五个等级进行数据统计如下:后就其成绩分为A B C D E根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;、、、、分别对应100分、80分、60分、40分、20分,学校要求“平(2)若等级A B C D E均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?、的学生中,按分层抽样抽取7人,再从(3)为更深入了解教学情况,将成绩等级为A B中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.5、(上饶市2017届高三第一次模拟考试)水是地球上宝贵的资源,由于介个比较便宜在很多不缺水的城市居民经常无节制的使用水资源造成严重的资源浪费.某市政府为了提倡低碳环保的生活理念鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;(2)若该市政府拟采取分层抽样的方法在用水量吨数为[1,1.5)和[1.5,2)之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设X 为用水量吨数在[1,1.5)中的获奖的家庭数,Y 为用水量吨数在[1.5,2)中的获奖家庭数,记随机变量||Z X Y =-,求Z 的分布列和数学期望.6、(江西省师大附中、临川一中2017届高三1月联考)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率; (2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为23,答对文科题的概率均为14,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X 的分布列与数学期望()E X .7、(新余市2017高三上学期期末考试)现有清华、北大、上海交大三所大学的招生负责人各一人来我市宣讲2017年高考自主招生政策,我市四所重点中学必须且只能邀请其中一所大学的负责人,且邀请其中任何一所大学的负责人是等可能的。

2017高考十年高考数学(理科)分项版 专题12 概率和统计(北京专版)(解析版) 含解析

2017高考十年高考数学(理科)分项版 专题12 概率和统计(北京专版)(解析版) 含解析

1. 【2012高考北京理第2题】设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(A )4π (B )22π- (C)6π (D )44π-【答案】D考点:几何概型概率。

2。

【2012高考北京理第8题】某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高m 值为( )A.5B.7C.9 D 。

11 【答案】C 【解析】试题分析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C. 考点:平均数.3。

【2010高考北京理第11题】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =__________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为__________.【答案】0。

030 3[]考点:频率分布直方图.4。

【2005高考北京理第17题】(本小题共13分)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为.32(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (Ⅱ)求乙至多击中目标2次的概率;(Ⅲ)求甲恰好比乙多击中目标2次的概率。

【答案】解:(I)03313(();28P C ξ=0)==13313(1();28P C ξ=)==23313(2();28P C ξ=)==33313(3();28P C ξ=)==ξ的概率分布如下表:13310. 1. 2. 3. 1.5(8888E ξ=+++=或13. 1.5.)2E ξ==5. 【2006高考北京理第18题】(本小题共13分)某公司招聘员工,指定三门考试课程,有两种考试方案。

湖北省各地2017届高三最新考试数学文试题分类汇编:统计与概率 Word版含答案

湖北省各地2017届高三最新考试数学文试题分类汇编:统计与概率 Word版含答案

湖北省各地2017届高三最新考试数学文试题分类汇编统计与概率2017.02一、选择、填空题 1、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)从数字1,2,3,4中任取两个不同的数字构成一个两位数,这个两位数大于20的概率是 A .14 B .34 C .13 D .232、(荆州市五县市区2017届高三上学期期末)经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x 与数学成绩y 进行数据收集如下:由表中样本数据求得回归方程为y bx a =+,则点(,)a b 与直线11018=+y x 的位置关系是( )A .点在直线左侧B .点在直线右侧C .点在直线上D .无法确定3、(天门、仙桃、潜江市2017届高三上学期期末联合考试)对于一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P 1,P 2,P 3,则 A .P 1= P 2<P 3B .P 2= P 3<P 1C .P 1= P 2=P 3D .P 1= P 3<P 24、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知集合{|28}M x x =-≤≤,2{|320}N x x x =-+≤,在集合M 中任取一个元素x ,则“x M N ∈ ”的概率为A .110B .16C .310D .125、(天门、仙桃、潜江市2017届高三上学期期末联合考试)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg ),得到频率分布直方图如下根据上图,可得这100名学生中体重在).,.[564556的学生人数是 ▲ .6、(武汉市2017届高三毕业生二月调研考)从装有3个红球和2个白球的袋中任取3个球,则所取的3个球中至少有2个红球的概率是 A.12 B. 25 C. 710 D.357、(武汉市武昌区2017届高三1月调研)已知某射击运动员每次射击击中目标的概率都为,现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,再以每4个随机数为一组,代表4次射击的结果,经随机模拟产生了如下20组随机数: 7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 据此估计,该射击运动员4次射击至少3次击中目标的概率为8、(孝感市七校教学联盟2017届高三上学期期末)一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为( ) A.18 B.38 C. 827 D.12279、(孝感市2017届高三上学期期中)从4,5,6,7,8这5个数中任取两个数,则所取两个数之积能被3整除概率是( )A .B .C .D .二、解答题1、(黄冈市2017届高三上学期期末)某赛季甲、乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.(1)用十位数为茎,在答题卡中画出原始数据的茎叶图;(2)用分层抽样的方法在乙运动员得分十位数为2,3,4的比赛中抽取一个容量为5的样本,从该样本中随机抽取2场,求其中恰有1场得分大于40分的概率.2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)某手机厂商推出一款6吋大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:计算具体值,给出结论即可);(Ⅱ)分别求女性用户评分的众数,男性用户评分的中位数;(Ⅲ)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,附:()()()()()22n ad bcKa b c d a c b d-=++++3、(荆门市2017届高三元月调考)某中学对高三学生进行体能测试,已知高三某文科班有学生30人,立定跳远的测试成绩用茎叶图表示如下图(单位:cm);男生成绩在195cm 以上(包括195cm)定义为“合格”,成绩在195cm以下(不包括195cm)定义为“不合格”;女生成绩在185cm以上(包括185cm)定义为“合格”,成绩在185cm以下(不包括185cm)定义为“不合格”.(Ⅰ)求女生立定跳远测试成绩的中位数;(Ⅱ)若在男生中按成绩是否合格进行分层抽样,抽取6人,求抽取成绩为“合格”的学生人数;(Ⅲ)若从(Ⅱ)的抽取6名男生中任意选取4人,求这4人中至少有3人“合格”的概率.4、(荆州市五县市区2017届高三上学期期末)某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300],绘制成如图所示的频率分布直方图.(Ⅰ)求直方图中x的值;(Ⅱ)求续驶里程在[200,300]的车辆数;(Ⅲ)从续驶里程在[200,300]的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为[200,250)的概率.5、(武汉市2017届高三毕业生二月调研考)如图所示茎叶图记录了甲、乙两组5名工人制造某种零件的个数(1)求甲组工人制造零件的平均数和方差;(2)分别从甲、乙两组中随机选取一个工人,求这两个工人制造的零件总数不超过20的概率.6、(武汉市武昌区2017届高三1月调研)我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x (吨),用水量不超过x 的部分按平价收费,超过x 的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照[)0,0.5,[)0.5,1,…,[]4,4.5分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a 的值;(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由;7、(襄阳市优质高中2017届高三1月联考) 某研究小组到社区了解参加健美操运动人员的情况,用分层抽样的方法抽取了40人进行调查,按照年龄分成五个小组:[](](](](]30,40,40,50,50,60,60,70,70,80,并绘制成如图所示的频率分布直方图.(1)求该社区参加健美操运动人员的平均年龄;(2)如果研究小组从该样本中年龄在[]30,40和(]70,80的6人中随机地抽取出2人进行深入采访,求被采访的2人,年龄恰好都在(]70,80内的概率.8、(孝感市七校教学联盟2017届高三上学期期末)孝汉城铁于12月1日开通,C5302、C5321两列车乘务组工作人员为了了解乘坐本次列车的乘客每月需求情况,分别在两个车次各随机抽取了100名旅客进行调查,下面是根据调查结果,绘制了乘车次数的频率分布直方图和频数分布表。

三年高考(2017_2019)高考数学真题分项汇编专题14概率与统计(选择题、填空题)文(含解析)

三年高考(2017_2019)高考数学真题分项汇编专题14概率与统计(选择题、填空题)文(含解析)

专题14 概率与统计(选择题、填空题)1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若{}n a 10d =610n a n =+()n *∈N ,解得,不合题意;若,解得,不合题意;若,8610n =+15n =200610n =+19.4n =616610n =+则,符合题意;若,则,不合题意.故选C .61n =815610n =+80.9n =3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .B .2335C .D .2515【答案】B【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式即可求解.【解析】设其中做过测试的3只兔子为,剩余的2只为,,,a b c ,A B 则从这5只中任取3只的所有取法有,{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,共10种.{,,},{,,},{,,}b c B b A B c A B 其中恰有2只做过测试的取法有,共6种,{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B 所以恰有2只做过测试的概率为,故选B .63105【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.【2018年高考全国Ⅰ卷文数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入为0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D 正确;故选A .30%+28%=58%>50%5.【2018年高考全国Ⅱ卷文数】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .B .0.60.5C .D .0.40.3【答案】D【解析】设2名男同学为,3名女同学为,A 1,A 2B 1,B 2,B 3从以上5名同学中任选2人总共有,共10种可能,选A 1A 2,A 1B 1,A 1B 2,A 1B 3,A 2B 1,A 2B 2,A 2B 3,B 1B 2,B 1B 3,B 2B 3中的2人都是女同学的情况共有,共3种可能,B 1B 2,B 1B 3,B 2B 3则选中的2人都是女同学的概率为,故选D .P =310=0.3【名师点睛】应用古典概型求概率的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;A 第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式n A m P(A)=mn求出事件的概率.A 6.【2017年高考全国Ⅰ卷文数】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .B .14π8C .D .12π4【答案】B【解析】不妨设正方形边长为,由图形的对称性可知,太极图中黑、白部分面积相等,即各占圆面积a 的一半.由几何概型概率的计算公式得,所求概率为,选B .221π()π228a a ⨯⨯=【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.7.【2017年高考全国Ⅰ卷文数】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B .【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反映一组数据的多数水平;中位数:一组数据中间的数(起到分水岭的作用),中位数反映一组数据的中间水平;平均数:反映一组数据的平均水平;方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一组数据的离散程度.8.【2017年高考山东卷文数】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A .3,5B .5,5C .3,7D .5,7【答案】A【解析】由题意,甲组数据为56,62,65,,74,乙组数据为59,61,67,,78.70x +60y +要使两组数据的中位数相等,则,所以,6560y =+5y =又平均数相同,则,解得.故选A .566265(70)74596167657855x +++++++++=3x =【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失;第二点是茎叶图便于记录和表示.缺点是当样本容量较大时,作图较烦琐.利用茎叶图对样本进行估计时,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.9.【2017年高考全国Ⅲ卷文数】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,可知每年7月到8月折线图呈下降趋势,月接待游客量减少,A 错误;折线图整体呈现出增长的趋势,年接待游客量逐年增加,B 正确;每年的接待游客量7,8月份达到最高点,即各年的月接待游客量高峰期大致在7,8月,C 正确;每年1月至6月的月折线图平稳,月接待游客量波动性更小,7月至12月折线图不平稳,月接待游客量波动性大,D 正确.所以选A .【名师点睛】用样本估计总体时统计图表主要有:(1)频率分布直方图,特点:频率分布直方图中各小长方形的面积等于对应区间的频率,所有小长方形的面积之和为1;(2)频率分布折线图,连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图;(3)茎叶图,对于统计图表类题目,最重要的是认真观察图表,从中提炼出有用的信息和数据.10.【2017年高考天津卷文数】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A .B .4535C .D .2515【答案】C【解析】选取两支彩笔的方法有:红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,含有红色彩笔的选法有:红黄、红蓝、红绿、红紫,共4种,由古典概型的概率计算公式,可得所求概率.故选C .42105P ==【名师点睛】本题主要考查古典概型及其概率计算,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,然后找出随机事件A 包含的基本事件的个数和试验中基本事件的总数,代入公式即可得解.()()n A P n Ω=11.【2017年高考全国Ⅱ卷文数】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A .B .11015C .D .31025【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:123451(1,1)(1,2)(1,3)(1,4)(1,5)2(2,1)(2,2)(2,3)(2,4)(2,5)3(3,1)(3,2)(3,3)(3,4)(3,5)4(4,1)(4,2)(4,3)(4,4)(4,5)5(5,1)(5,2)(5,3)(5,4)(5,5)总计有25种情况,满足条件的有10种.所以所求概率为.102255=【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.12.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为,100.97200.98100.9939.2⨯+⨯+⨯=其中高铁个数为,所以该站所有高铁平均正点率约为.10201040++=39.20.9840=【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.13.【2018年高考全国Ⅲ卷文数】公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是______________.【答案】分层抽样【解析】由于从不同年龄段客户中抽取,故采用分层抽样,故答案为:分层抽样.14.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.【答案】53【解析】由题意,该组数据的平均数为,678891086+++++=所以该组数据的方差是.22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=15.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为,89,89,90,91,91故平均数为.8989909191905++++=16.【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________.【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为.31017.【2017年高考江苏卷】记函数.在区间上随机取一个数,则()f x =D [4,5]-x 的概率是______________.x D ∈【答案】59【解析】由,即,得,根据几何概型的概率计算公式得260x x +-≥260x x --≤23x -≤≤x D∈的概率是.3(2)55(4)9--=--【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解.18.【2017年高考江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取______________件.【答案】18【解析】应从丙种型号的产品中抽取件,故答案为18.30060181000⨯=【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .。

湖北省各地2017届高三最新考试数学理试题分类汇编:统计与概率含答案

湖北省各地2017届高三最新考试数学理试题分类汇编:统计与概率含答案

湖北省各地2017届高三最新考试数学理试题分类汇编统计与概率 2017。

02一、选择、填空题1、(黄冈市2017届高三上学期期末)有一个电动玩具,它有一个96⨯的长方形(单位:cm )和一个半径为1cm 的小圆盘(盘中娃娃脸),他们的连接点为A,E ,打开电源,小圆盘沿着长方形内壁,从点A 出发不停地滚动(无滑动),如图所示,若此时某人向该长方形盘投掷一枚飞镖,则能射中小圆盘运行区域内的概率为 .2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)有一长、宽分别为50m 、30m 的矩形游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置可能性相同,一人在池中心(对角线交点)处呼唤工作人员,其声音可传出152m ,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是A 。

34B.38C.316π D.12332π+3、(荆门市2017届高三元月调考)某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A 车和B 车,同时进来C ,D 两车,在C,D 不相邻的条件下,C 和D 至少有一辆与A 和B 车相邻的概率是A.1017B.1417C.916D.794、(天门、仙桃、潜江市2017届高三上学期期末联合考试)高考后,4位考生各自在甲、乙两所大学中任选一所参观,则甲、乙两所大学都有考生参观的概率为A.18B.38C.58D.785、(武汉市武昌区2017届高三1月调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A=“4个人去的景点不相同”,事件B=“小赵独自去一个景点”,则()P A B==()A.29B.13C. 49D.596、(襄阳市优质高中2017届高三1月联考)从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示。

若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为。

2017年文科概率统计高考真题

2017年文科概率统计高考真题

统计[2017年卷第14题]某学习小组由学生和&教师组成,人员构成同时满足以下三个条件:〔ⅰ〕男学生人数多于女学生人数;〔ⅱ〕女学生人数多于教师人数;〔ⅲ〕教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________.②该小组人数的最小值为__________.[2017年XX卷第3题]某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.[2017年XX卷第8题]如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据〔单位:件〕.若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为〔A〕3,5 〔B〕5,5 〔C〕3,7 〔D〕5,7算法框图[2017年卷第3题]执行如图所示的程序框图,输出的s值为〔A〕2 〔B〕32〔C〕53〔D〕85[2017年XX卷第4题]右图是一个算法流程图,若输入x的值为116,则输出的y的值是.第6题图[2017年XX 卷第6题]执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为〔A 〕3x >〔B 〕4x >〔C 〕4x ≤〔D 〕5x ≤[2017年XX 卷第4题]阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为〔A 〕0 〔B 〕1〔C 〕2〔D 〕3概率[2017年XX 卷第7题]记函数2()6f x x x =+- D.在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是[2017年XX 卷第3题]有5支彩笔〔除颜色外无差别〕,颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 〔A 〕45〔B 〕35〔C 〕25〔D 〕15[2017年卷第17题]某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30〕,[30,40〕,┄,[80,90],并整理得到如下频率分布直方图:〔Ⅰ〕从总体的400名学生中随机抽取一人,估计其分数小于70的概率;〔Ⅱ〕已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50〕内的人数;〔Ⅲ〕已知样本中有一半男生的分数学.科网不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.[2017年XX卷第16题]某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.[2017年XX卷第16题]从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.〔用数字作答〕[2017年新课标I卷第4题]如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是〔〕A.14B.π8C.12D.π4[2017年新课标II第9题]甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩[2017年新课标II第11题]从分别写有1,2,3,4,5的5X卡片中随机抽取1X,放回后再随机抽取1X,则抽得的第一X卡片上的数大于第二X卡片上的数的概率为A.110B.15C.310D.25[2017年新课标I卷第2题]为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量〔单位:kg〕分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是〔〕A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数[2017年新课标III卷第3题]某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20XX1月至2016年12月期间月接待游客量〔单位:万人〕的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳[2017年新课标III卷第18题]某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温〔单位:℃〕有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25〕,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15〕[15,20〕[20,25〕[25,30〕[30,35〕[35,40〕天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率。

2017年高考全国名校试题数学分项汇编专题11 概率与统计(解析版)

2017年高考全国名校试题数学分项汇编专题11 概率与统计(解析版)

一、填空题1. 【 2016年第二次全国大联考(江苏卷)】已知一组数据8,10,9,12,11,那么这组数据的方差为_______.【答案】2【解析】先算平均值:8+10+9+12+11=105,再算方差:22222(810)+(1010)+(910)+(1210)+(1110)=25-----.2. 【 2016年第二次全国大联考(江苏卷)】袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为_______.3. 【2016年第三次全国大联考【江苏卷】】春风商店对某类商品销售数量(单位:个)进行统计,统计时间是9月1日至9月30日,每5天一组分组统计,绘制了如图的销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的此类商品数(单位:个)为.【答案】1200【解析】由直方图得12003146432180=+++++⨯.4. 【2016年第三次全国大联考【江苏卷】】已知实数]10,0[∈a ,则函数3)4()(--=x a x f 在区间(0,+∞)内为增函数的概率为________. 【答案】52【解析】因4)4(3)('---=x a x f ,故当)(x f 在区间(0,+∞)内为增函数时,04<-a ,即4<a ,因]10,0[∈a ,故所求概率为52104==P . 5. 【2016年第四次全国大联考【江苏卷】】 已知一组数据:8,10,,12,11a 的方差为2,那么相对应的另一组数据:17,21,21,25,23a +的方差为_______. 【答案】8【解析】由题意得:所求方差为222=8.⨯6. 【2016年第四次全国大联考【江苏卷】】袋中有形状、大小都相同的五只球,其中2只红球,3只白球,从中一次随机摸出2只球,则至少有1只白球的概率为_______. 【答案】910【解析】从五只球中一次随机摸出2只球共有10种基本事件,其中全是红球包含1种基本事件,因此至少有1只白球的概率为191=.1010-7. 【2016年第一次全国大联考【江苏卷】】分别在集合{1234}A =,,,和集合{5678}B =,,,中各取一个数相乘,则乘积为偶数的概率为_______.8. 【2016高考押题卷(1)【江苏卷】】袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为_______.【答案】1 3【解析】从中4个球中任取两个球共有6种基本事件,其中两个球颜色相同包含两种基本事件,故概率为21=63.9. 【2016高考押题卷(3)【江苏卷】】一汽车检测站对100辆汽车在一个时段经过某一雷达测速区进行测试,并将这些汽车运行时速绘制成频率分布直方图,则从图中可以看出时速超过hkm/60的汽车数目约为辆.频率组距时速km/h8070605040300。

决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题11 概率与统计(解析版) Word版含解析

决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题11 概率与统计(解析版) Word版含解析

一、填空题1. 【 2016年第二次全国大联考(江苏卷)】已知一组数据8,10,9,12,11,那么这组数据的方差为_______. 【答案】2【解析】先算平均值:8+10+9+12+11=105,再算方差:22222(810)+(1010)+(910)+(1210)+(1110)=25-----.2. 【 2016年第二次全国大联考(江苏卷)】袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为_______.3. 【2016年第三次全国大联考【江苏卷】】春风商店对某类商品销售数量(单位:个)进行统计,统计时间是9月1日至9月30日,每5天一组分组统计,绘制了如图的销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的此类商品数(单位:个)为 .【答案】1200【解析】由直方图得12003146432180=+++++⨯.4. 【2016年第三次全国大联考【江苏卷】】已知实数]10,0[∈a ,则函数3)4()(--=x a x f 在区间(0,+∞)内为增函数的概率为________. 【答案】52【解析】因4)4(3)('---=x a x f ,故当)(x f 在区间(0,+∞)内为增函数时,04<-a ,即4<a ,因]10,0[∈a ,故所求概率为52104==P . 5. 【2016年第四次全国大联考【江苏卷】】 已知一组数据:8,10,,12,11a 的方差为2,那么相对应的另一组数据:17,21,21,25,23a +的方差为_______. 【答案】8【解析】由题意得:所求方差为222=8.⨯6. 【2016年第四次全国大联考【江苏卷】】袋中有形状、大小都相同的五只球,其中2只红球,3只白球,从中一次随机摸出2只球,则至少有1只白球的概率为_______. 【答案】910【解析】从五只球中一次随机摸出2只球共有10种基本事件,其中全是红球包含1种基本事件,因此至少有1只白球的概率为191=.1010-7. 【2016年第一次全国大联考【江苏卷】】分别在集合{1234}A =,,,和集合{5678}B =,,,中各取一个数相乘,则乘积为偶数的概率为_______.8. 【2016高考押题卷(1)【江苏卷】】袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为_______.【答案】13【解析】从中4个球中任取两个球共有6种基本事件,其中两个球颜色相同包含两种基本事件,故概率为21=63.9. 【2016高考押题卷(3)【江苏卷】】一汽车检测站对100辆汽车在一个时段经过某一雷达测速区进行测试,并将这些汽车运行时速绘制成频率分布直方图,则从图中可以看出时速超过h km /60的汽车数目约为 辆.km/h0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考试题分类汇编之概率统计一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课标I 理)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中 的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自 黑色部分的概率是( )41.A8.πB 21.C4.πD2.(2017课标III 理)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ).A 月接待游客量逐月增加 .B 年接待游客量逐年增加 .C 各年的月接待游客量高峰期大致在8,7月.D 各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017课标Ⅱ文)从分别写有5,4,3,2,1的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ).A 110 .B 15 .C 310 .D 254.(2017课标I 文)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为n x x x ⋯,,21,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )n x x x A ⋯,,.21的平均数 n x x x B ⋯,,.21的标准差 n x x x C ⋯,,.21的最大值n x x x D ⋯,,.21的中位数5.(2017天津文)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )(第1题)(第2题).A 45 .B 35 .C 25 .D 156.(2017山东文)如图所示的茎叶图记录了甲、乙 两组各5名工人某日的产量数据(单位:件).若这 两组数据的中位数相等,且平均值也相等,则x 和y 的 值分别为( )5,3.A 5,5.B 7,3.C 7,5.D7.(2017浙江)已知随机变量i ξ满足2,1,1)0(,)1(=-====i p P p P i i i i ξξ. 若21021<<<p p ,则( ) .A 1E()ξ<2E()ξ,1D()ξ<2D()ξ.B 1E()ξ<2E()ξ,1D()ξ>2D()ξ.C 1E()ξ>2E()ξ,1D()ξ<2D()ξ.D 1E()ξ>2E()ξ,1D()ξ>2D()ξ8.(2017山东理)为了研究某班学生的脚长x (单位厘米)和身高y (单位厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为( ).A 160 .B 163 .C 166 .D 1709.(2017山东理)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是( ).A 518 .B 49 .C 59.D 79 二、填空题(将正确的答案填在题中横线上)10.(2017江苏) 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,300,400,200件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.11.(2017江苏) 记函数2()6f x x x +-D .在区间[4,5]-上随机取一个数x , 则x D ∈的概率是 .12.(2017课标II 理)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则=DX 。

三、解答题(应写出必要的文字说明、证明过程或演算步骤)13.(2017北京文)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:]90,80[),40,30[),30,20[, ,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.14.(2017课标I 文)为了监控某种零件的一条生产线的生产过程,检验员每隔min 30从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i=--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到01.0)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.15.(2017山东理)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含1A 但不包含3B 的频率。

(2)用x 表示接受乙种心理暗示的女志愿者人数,求x 的分布列与数学期望Ex .16.(2017天津理)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.41,31,21 (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.17.(2017课标III 理)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位C 0)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间)25,20[,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量x (单位瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为y (单位:元).当六月份这种酸奶一天的进货量n (单位瓶)为多少时,y 的数学期望达到最大值?(文科)(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.22()()()()()n ad bc K a b c d a c b d -=++++18.(2017课标II 理)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位kg :)某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于kg 50, 新养殖法的箱产量不低于kg 50”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有%99的把握认为箱产量与养殖方法有关箱产量kg 50<箱产量kg 50≥旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到01.0)附19.(2017课标I 理)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记x 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.20.(2017北京理)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中D C B A ,,,四人中随机选出两人,记ξ为选出的两人中指标x 的值大于7.1的人数,求ξ的分布列和数学期望)(ξE ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)21.(2017江苏) 已知一个口袋有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,,m n +的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+.(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明()()(1)nE X m n n <+-1 2 3m n +。

相关文档
最新文档