拉丁方实验设计涉及的统计学原理以及使用中的几个问题
拉丁方试验设计

拉丁方试验设计拉丁方试验设计在统计上控制两个不相互作用的外部变量并且操纵自变量。
每个外部变量或分区变量被划分为一个相等数目的区组或级别,自变量也同样被分为相同数目的级别。
它是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
拉丁方——以n个拉丁字母A,B,C……,为元素,作一个n 阶方阵,若这n个拉丁方字母在这n阶方阵的每一行、每一列都出现、且只出现一次,则称该n阶方阵为n×n阶拉丁方。
第一行与第一列的拉丁字母按自然顺序排列的拉丁方,叫标准型拉丁方。
拉丁方设计一般用于5~8个处理的试验,设计的基本要求:①必须是三个因素的试验,且三个因素的水平数相等;②三因素间是相互独立的,均无交互作用;③各行、列、字母所得实验数据的方差齐(F 检验)。
试验设计的步骤:①根据主要处理因素的水平数,确定基本型拉丁方,并从专业角度使另外两个次要因素的水平数与之相同;②先将基本型拉丁方随机化,然后按随机化后的拉丁方阵安排实验。
可通过对拉丁方的任两列交换位置或任两行交换位置实现随机化;③规定行、列、字母所代表的因素与水平,通常用字母表示主要处理因素。
数据处理的相关理论:拉丁方设计实验结果的分析,是将两个单位组因素与试验因素一起,按三因素试验单独观测值的方差分析法进行。
将横行单位组因素记为A ,直列单位组因素记为B ,处理因素记为C ,横行单位组数、直列单位组数与处理数记为r ,对拉丁方试验结果进行方差分析的数学模型为:),,2,1()()(r k j i x k ij k j i k ij ===++++=εγβαμ式中:μ为总平均数;i α为第i 横行单位组效应;j β为第j 直列单位组效应,)(k γ为第k 处理效应。
拉丁方设计

拉丁方设计--——--—--——-—----————--——-—--———-—--——---———--------—-———-——-———-“拉丁方”的名字最初是由R、A、Fisher给出的。
拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位组设计小,试验精确性比随机单位组设计高。
拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计.这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。
所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。
所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。
因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。
所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。
例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。
像这样的一个方阵列就称为一个拉丁方。
要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。
拉丁方的一个性质及应用

一、定义及引论1.拉丁方的定义。
设是含有S 个n 元素的集合,这些元素构成一个n ×n 矩阵L=(l ij ),如果S 的每一个元素在每一行和每一列中恰好出现一次,则该矩阵就叫做S 上的n 阶拉丁方。
本文讨论的拉丁方指的是S={1,2,Λ,n}上的拉丁方。
拉丁方的一个性质及应用刘崇华(广西工业职业技术学院,广西南宁530001)摘要:拉丁方是组合数学中的一个重要课题,在试验设计中有着重要的应用。
本文证明了拉丁方的非奇异性,同时给出了它的行列式的计算公式。
关键词:拉丁方;非奇异;行列式中图分类号:G712文献标志码:A 文章编号:1674-9324(2013)52-0094-02易否定的结论,这就是通常把不能被轻易否定的结论作为原假设的基本原理和基本依据。
特别地,在进行单侧检验时,一般取与预想结果的相反面为原假设。
比如说,当病人前来问诊时,医生要对病情作出诊断,这时医生可能会犯“无病看成有病”或者“有病看成无病”的错误,而这两种结果相对比较来说,更严重的错误是把“有病看成无病”的结论,所以应将“看病的人有病”作为原假设H 0,“看病的人无病”作为备择假设H 1。
三、实例应用,对假设检验一个误区的解释在统计学教学实践中,有些学生甚至是教师,对于下面的假设检验问题常常会得出一个令人困惑的结论。
问题如下:从某厂生产的一批灯泡中随机地抽取20只进行寿命测试。
由测试结果计算得这批灯泡的平均寿命为x=1960(小时),s=2000(小时)。
假定灯泡寿命服从正态分布:X~N (μ,σ2)其中μ,σ均未知。
那么在显著性水平α=0.05下能否认为这批灯泡的平均寿命达到国家标准2000小时?对上述问题,给出以下有两种解法,确得到了截然相反的结论。
解法1:提出原假设H 0:μ≥2000备择假设H 1∶μ<2000,作检验统计量T=X ⎺-2000S/20√,显然,该统计量符合自由度为19的T 分布,即:T=X ⎺-2000S/20√~t (19).结合假设,确定拒绝域的形式为{T <-t 0.05(19)}由α=0.05,查t 分布表,定出临界值-t 0.05(19)=-1.729,从而求出拒绝域{T <-1.729}.由测试结果得到:T=x ⎺-μ0S/20√=1960-2000200/20√=-0.894,由于T >-1.729,作出接受假设H 0的判定,即认为这批灯泡的平均寿命达到国家标准2000小时.解法2:提出原假设H 0:μ<2000备择假设H 1μ≥2000,作检验统计量T=X ⎺-2000S/20√,显然,该统计量符合自由度为19的T 分布,即:T=X ⎺-2000S/20√~t (19).结合假设确定拒绝域的形式{T >t 0.05(19)}由α=0.05,查t 分布表,定出临界值t 0.05(19)=1.729,从而求出拒绝域{T >1.729}。
如何理解拉丁方实验设计

如何理解“拉丁方实验设计”(邓涛)近来,不少学生问到拉丁方设计如何理解的问题,而且提出不同教材的表述也不一样.为了不去一一解答,我这里再结合《应用实验心理学》上的表述作一说明.我的基本看法是:拉丁方实验设计与区组实验设计一样,都是为了平衡额外变量,以防止这些额外变量成为混淆因子,破坏实验研究的内部效度.如果简化点来解释,一般来说,区组实验设计多用于对一个额外变量的平衡,如被试因素、时间顺序因素、空间位置因素等;拉丁方实验设计则可以看成是区组设计的扩展,即扩展到可以平衡两个额外变量(当然,如果设计巧妙,也可以达到对多于两个额外变量的平衡,但那也是在二维平衡模式上变化出来的).为了说明,拉丁方设计及其与区组设计的联系,我们先说一说区组设计.区组实验设计是在考察自变量影响效应的实验中,考虑到一个额外变量的影响,将这个额外变量作为区组变量,对其在各种实验处理条件下产生的影响进行平衡,同时将该区组变量引起的变异从残差中分离出来.比如,限于实验室条件,研究者开展某一实验研究时每天只能为4名被试进行测试,实验处理也有四个水平:A1、A2、A3、A4.如果认为不在每周中的同一天进行测试,可能会引起测试结果的变化,这种影响又是比较重要的.于是可以将测试时间作为区组变量,即把同一天接受测试的被试看作是一个区组.这样就可以形成一个区组实验设计,如表2-8所示.表2-8 四种实验处理的随机区组实验设计现在我们进一步设想:假如,在每天的实验中,一次只能测试一人,每天参加实验的四名被试只能分别在下午2~3点、3~4点、4~5点和5~6点的四个时段接受测试,而测试时段不同也可能会造成结果变化.这样一来,每一种实验处理条件安排的时段就也要取得平衡才行,你不能每天都在2点钟安排所有被试接受A1处理条件,或3点钟接受A1处理条件.于是,研究中采用测试天和测试时段两方面因素的平衡方法安排实验,构成了一个单因素的拉丁方实验设计,设计模式如图2-9所示.在这一设计中,测试是在星期几、测试是在每一天的哪一时段,这两个额外变量就都取得了很好的平衡.表2-9 四种实验处理的拉丁方实验设计从这一例子可以看出,拉丁方(latinsquare)是一个含P行P列,把P个实验处理分配给P×P方格的管理方案,它便于在复杂研究程序中有条理地管理各个工作单元,并平衡两种额外变量的影响.在工农业生产试验和心理与教育研究中,拉丁方都得到普遍应用.在这种实验设计中,首先根据自变量处理的水平数确定两个额外变量的水平数,然后利用两个额外变量的各个水平结合在一起构造一个拉丁方格,最后再将自变量的不同处理平衡地安排在这个方格中,就构成了一个研究方案,其结果要保证自变量的每一个水平在拉丁方格的每一行和每一列都出现且只出现一次.很明显,在这种设计中,自变量的水平数或水平结合数、额外变量的水平数必须相等.拉丁方设计常被用于平衡实验安排的时空顺序,也可被用于平衡机体变量的影响.我们再以下面这个例子对拉丁方做进一步说明.问题模式:为了研究简单反应时间与光刺激的颜色和强度的关系,研究者同时考虑到被试的气质类型及年龄因素可能对反应时间具有明显影响,为了将这两个因素的影响从变异的残差项中分离出去,研究者采用了拉丁方实验设计.拉丁方格的组成:拉丁方格是由实验中明显存在的两个额外变量即被试的气质类型和被试年龄档组成,其中年龄分为四档:10~13岁、15~18岁、20~23岁、25~28 岁.从四个年龄档的青少年中筛选出四种典型气质类型者各2人,这样就有共计32名被试参加这一实验.根据气质类型和年龄档组成拉丁方格,拉丁方格中的每一个格子中可以有年龄档相同、气质类型相同的两名被试,如表2-10所示.表2-10 4×4拉丁方格被试气质类型被试年龄档次多血质胆汁质粘液质抑郁质10~1315~1820~2325~28实验处理的组成:实验中自变量有两个,即光的颜色和强度.自变量的颜色取两个水平,红光和绿光,分别用A1和A2表示;光的强度也取两个水平,相对强度为1和1/4,分别用B1和B2表示.于是两个自变量结合而成的实验处理分别为:A1B1——红光+1(即光的颜色为红光、光的相对强度为1)A1B2——红光+1/4A2B1——绿光+1A2B2——绿光+1/4实验处理的编排:按照拉丁方实验设计的基本原则,将四种实验处理安排在拉丁方格中,某种实验处理被分配到拉丁方格中的某一方格,该方格中对应的两个被试就要完成这一种实验处理.首先,我们给出一个基本的拉丁方设计形式,如表2-11所示.表2-11 标准的4×4拉丁方实验方案被试气质类型被试年龄档次多血质胆汁质粘液质抑郁质10~13A1B1A1B2A2B1A2B215~18A1B2A2B1A2B2A1B120~23A2B1A2B2A1B1A1B225~28A2B2A1B1A1B2A2B1表2-11所示的实验设计方案就是一个标准的或基本的4×4拉丁方的实验设计.有了这样的设计方案之后,实验程序的编排就非常清晰了.按照这一设计进行实验,不仅能将两个额外变量的效应从残差项中分离出来,而且也有利于增进复杂实验过程的条理性.有了表2-11所示的实验方案,每个被试需要完成什么样的实验就很清晰了,比如15~18岁组两个胆汁质的学生只需完成A2B1实验处理,即“绿光+1”实验处理、25~28岁组两个粘液质的学生只需完成A1B2实验处理,即“红光+1/4”实验处理.有了表2-11所示的标准拉丁方实验设计方案之后,还可以将该方案进行随机化处理,即可以对其中的实验安排做随机的两行互换或两列互换,得到各种不同的拉丁方实验方案.比如,将表2-11中第1列和第四列对换就可以得到表2-12所示的拉丁方实验方案.表2-12 在标准4×4拉丁方实验方案基础上变换得到的实验方案被试气质类型被试年龄档次多血质胆汁质粘液质抑郁质10~13A2B2A1B2A2B1A1B115~18A1B1A2B1A2B2A1B220~23A1B2A2B2A1B1A2B125~28A2B1A1B1A1B2A2B2再将表2-12中的第2行和第3行对换就可以得到表2-13所示的拉丁方实验方案.表2-13 在表2-12基础上变换得到的拉丁方实验方案被试气质类型被试年龄档次多血质胆汁质粘液质抑郁质10~13A2B2A1B2A2B1A1B115~18A1B2A2B2A1B1A2B120~23A1B1A2B1A2B2A1B225~28A2B1A1B1A1B2A2B2进行拉丁方实验设计中,其选取用来构成拉丁方格的额外变量不能与研究的自变量之间存在交互效应,两个额外变量之间也不能存在交互效应.其数据的方差分析方法与随机区组实验设计相似,可以对数据的变异及其自由度进行分解,计算过程是:首先计算总变异,然后计算自变量及其交互效应引起的变异、两个额外变量主效应引起的变异,再计算误差项变异,即可得到各种变异方差及其与误差方差的比率F.拉丁方实验设计既有优点也有缺点.其优点是,在许多研究情境中,这种设计比完全随机和随机区组设计更加有效,它可以使研究者平衡并分离出两个额外变量的影响,因而减小实验误差,可获得对实验处理效应的更精确的估价.另外,通过对方格单元内误差与残差的F检验,可以检验额外变量与自变量是否有交互作用,以检验采用拉丁方设计是否合适.拉丁方设计的缺点是,它的关于自变量与额外变量不存在交互作用的假设在很多情况下都难以保证,尤其当实验中含有多个自变量的时候.因此,拉丁方实验设计在多因素实验中不常用.另外,拉丁方实验设计要求每个额外变量的水平数与实验处理数必须相等,这也在一定程度上限制了拉丁方实验设计的使用[1].(其他实验设计的模式可参见《应用实验心理学》第一、第二、第三章)[1] 舒华. 心理与教育研究中的多因素实验设计. 北京:北京师范大学出版社. 1994:58。
拉丁方试验设计方案统计分析

拉丁方实验设计及分析1前言“拉丁方”的名字最初是由R、A、Fisher给出的。
拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,实验处理数=横行单位组数=直列单位组数=实验处理的重复数。
在对拉丁方设计实验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从实验误差中分离出来,因而拉丁方设计的实验误差比随机单位就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。
组设计小,实验精确性比随机单位组设计高。
拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计。
这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。
所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用。
所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。
因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。
所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。
例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。
像这样的一个方阵列就称为一个拉丁方。
要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。
在只有两个实验处理的情况下,通常采用的平衡对抗设计是以ABBA的顺序来安排实验处理的顺序。
或者把单组被试分为两半.一半按照ABBA的顺序实施处理,另一半按照BAAB的顺序实施处理。
拉丁方设计

拉丁方设计-----------------------------------------------------------------“拉丁方”的名字最初是由R、A、Fisher给出的。
拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位组设计小,试验精确性比随机单位组设计高。
拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计。
这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。
所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。
所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。
因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。
所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。
例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。
像这样的一个方阵列就称为一个拉丁方。
要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。
S4 拉丁方设计
D47
192 A314
C31
202 B145
A87
236 C136
A87
205 D240
213
835
1.H0:(1)各动物对药液的反应总体均数相等 (2)各用药次序的反应总体均数相等 (3)各药液的反应总体均数相等 H1:(1)各动物对药液的反应总体均数不全相等 (2)各用药次序的反应总体均数不全相等 (3)各药液的反应总体均数不全相等
自由度
15 3 3 3 6
MS
F值
257.73 90.23 1784.23 176.65
1.46 0.511 10.101
4.P值
F0.05,3,6 5.14 F0.01,3,6 9.78 药液间F>F0.01,3,6 9.78, P 0.01, 有统计学意义。
5.结论
统计分析举例:
例 四只大白鼠对不同药液、不同次序的反 应的拉丁方试验设计的实验数据的方差分 析。
用药次序 大白鼠编号 Ⅰ Ⅱ Ⅲ 1 A75 B45 C25 2 B29 D71 A71 3 C27 A81 D80 4 D42 C53 B23 各动物 合计 173 250 199
Ⅳ
各次序合计 各药液合计
0.05
C
( X ) 2 n
835
16
2
43576.56
2 2 2
2.
SS
总
2
X 2 C 75 45 87 C 7456.44
SS动物间
各动物小计的平方和 C 动物数
2
173
SS次序间
213 C 773.19 4 各次序小计的平方和 C 次序数 205 C 270.69 4 各药液小计的平方和 C 药液种类
第八章 单因素拉丁方设计
第三节 拉丁方设计的优缺点 (一)拉丁方设计的主要优点
1、精确性高
拉丁方设计在不增加实验单位的情况下,
比随机单位组设计多设置了一个区组因素,能
将横行和直列两个单位组间的变异从实验误差
中分离出来,因而实验误差比随机区组设计小,
实验的精确性比随机区组设计高。 2、实验结果的分析简便
(二)拉丁方设计的主要缺点
b4
∑
a2
9 48
a3
15 44
a4
19 48
a1
12 52
a1 35
a2 31
a3 56
a4 70
第一步:作统计假设
1) 处理水平总体平均数相等
H0 : 1 2 3 4
2) 无关变量(横行)的总体平均数相等
H0 : 1 2 3 4
五、实验工具
拉丁方格 标准型拉丁方 拉丁方块随机化
(一) 拉丁方 以 n 个 拉 丁 字 母 A, B, C……,为元素,列出一个 n阶方阵,若这 n个 拉丁方字母在这 n 阶方阵的每一行、 每一列都 出现、且只出现一次,则称该 n阶方阵 为n×n 阶 拉 丁方。
例如: A B B A B A A B
3) 无关变量(纵列)的总体平均数相等
H0 : 1 2 3 4
第二步:平方和及自由度的计算
SS总变异 = SS处理间 +SS处理内
= SS处理间 +(SSb+ SSc+ d f处理内
= d f A +(d f B + d f C +d fe)
在选定拉丁方之后,若是非标准型,则可 直接由拉丁方中的字母获得实验设计。若是标 准型拉丁方,还应按下列要求对直列、横行和 实验处理的顺序进行随机排列。
拉丁方实验设计涉及的统计学原理以及使用中的几个问题
拉丁方实验设计涉及的统计学原理以及使用中的几个问题拉丁方实验设计(Latinsquaredesign,LSD)是指利用全排列采样技术对地层因素(如温度、盐度、污染物等)和人工因素(如抽样时期、采样设备等)为每个试验单元构建定量模型的一类实验设计方法,它已经成为多元统计分析(Multivariate statistical analysis)中的重要工具之一。
它使实验者能够迅速而有效地研究出实验变量,也能够发现更多实验变量与实验结果之间的关系及其趋势。
拉丁方实验设计涉及的统计学原理主要有:(1)排列和组合原理。
实验设计的本质是一种排列,因此拉丁方实验设计的基本思想是利用排列的原理来解决实验问题。
拉丁方实验设计需要通过排列和组合手段,让实验变量的不同效应在实验中得到充分展现。
(2)分组原理。
拉丁方实验设计是把所有实验观测数据进行分组处理,使实验结果能够达到最大程度的描述和控制。
每一个分组中,实验设计要求所有变量的单位观测值(平均)达到均衡,这样就可以有效地消除每个实验变量的误差影响。
(3)协方差原理。
拉丁方实验设计涉及的统计学原理还包括协方差原理,它是实验设计时最重要的原理之一。
协方差原理指的是两个变量之间的关系,它可以帮助实验者有效地控制实验当中的干扰因素,以便更好地控制实验结果。
在实际使用拉丁方实验设计过程中,实验者会遇到几个常见的问题:(1)实验变量选择问题。
由于拉丁方实验设计本身具有排列、组合、分组和协方差原理,在实际使用中,实验变量的选择非常重要,否则试验结果会不准确。
(2)试验设计问题。
拉丁方实验设计的本质是实验变量的排列,因此实验者需要合理设计实验,以便能够更好地揭示不同实验变量之间的关系。
(3)实验结果分析问题。
拉丁方实验设计得出的实验结果需要进行相应的分析才能够得出准确的结论,而且拉丁方实验设计是包含多种因素的实验设计,实验结果分析需要对多种变量进行分析,因此,分析的结果会更加准确。
拉丁方试验设计
精品文档。
1欢迎下载拉丁方试验设计拉丁方试验设计在统计上控制两个不相互作用的外部变量并且操纵自变量。
每个外部变量或分区变量被划分为一个相等数目的区组或级别,自变量也同样被分为相同数目的级别。
它是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
拉丁方—— 以n 个拉丁字母A ,B ,C ……,为元素,作一个n 阶方阵,若这n 个拉丁方字母在这n 阶方阵的每一行、每一列都出现、且只出现一次,则称该n 阶方阵为n ×n 阶拉丁方。
第一行与第一列的拉丁字母按自然顺序排列的拉丁方,叫标准型拉丁方。
拉丁方设计一般用于5~8个处理的试验,设计的基本要求:①必须是三个因素的试验,且三个因素的水平数相等;②三因素间是相互独立的,均无交互作用;③各行、列、字母所得实验数据的方差齐(F 检验)。
试验设计的步骤:①根据主要处理因素的水平数,确定基本型拉丁方,并从专业角度使另外两个次要因素的水平数与之相同;②先将基本型拉丁方随机化,然后按随机化后的拉丁方阵安排实验。
可通过对拉丁方的任两列交换位置或任两行交换位置实现随机化;③规定行、列、字母所代表的因素与水平,通常用字母表示主要处理因素。
数据处理的相关理论:拉丁方设计实验结果的分析,是将两个单位组因素与试验因素一起,按三因素试验单独观测值的方差分析法进行。
将横行单位组因素记为A ,直列单位组因素记为B ,处理因素记为C ,横行单位组数、直列单位组数与处理数记为r ,对拉丁方试验结果进行方差分析的数学模型为:),,2,1()()(r k j i x k ij k j i k ij ===++++=εγβαμ式中:μ为总平均数;i α为第i 横行单位组效应;j β为第j 直列单位组效应,)(k γ为第k 处理效应。