关系模式的分解-无损连接与保持函数依赖

合集下载

[总结]关系数据库设计基础(函数依赖、无损连接性、保持函数依赖、范式、……)

[总结]关系数据库设计基础(函数依赖、无损连接性、保持函数依赖、范式、……)

[总结]关系数据库设计基础(函数依赖、⽆损连接性、保持函数依赖、范式、……)≏≎≟≗≖≍≭∼∽≁≃≂≅≊≈≉≇≳⪞⪆⋧⪊≵≲⪝⪅⋦⪉≴⊂ subset ⋐⊄⊊ ⊈⊃⊇ ⋑⊅⊋ ⊉≺⪯≼⋞≾⪷⋨⪵⪹⊀≻⪰≽⋟≿⪸⋩⪶⪺⊁ in ∋∉∌∝≬⊸函数依赖(Function Dependency)定义设关系模式R(U),属性集合U= {A1,A2,…,An},X,Y为属性集合U的⼦集,如果对于关系模式R(U)的任⼀可能的关系r,r中的任意两个元组u、v,若有 u[X]=v[X],就有u[Y]=v[Y],则称X函数决定Y,或称Y函数依赖于X。

⽤符号X→Y表⽰。

其中X为决定因素,Y为被决定因素。

若对于R(U)的任意⼀个可能的关系r,r中不可能存在两个元组在X上的属性值性等,⽽在Y上的属性值不等。

 (1) 函数依赖是语义范畴的概念,只能根据语义来确定⼀个函数依赖关系。

 (2) 函数依赖X→Y的定义要求关系模式R的任何可能的关系r中的元组都满⾜函数依赖条件。

术语 (1)若X→Y,则X称作决定因素(Determinant) (2)若X→Y,Y→X,称作X<->Y。

 (3)若Y不函数依赖于X,称作X -/-> Y。

 (4)X→Y,若Y不包含X,即X ⊄ Y,则称X→Y为⾮平凡的函数依赖。

正常讨论的都是⾮平凡的函数依赖。

 (5)X→Y,若Y包含X,即X ⊂ Y,则称X→Y为平凡的函数依赖。

 (6)完全函数依赖(full functional dependency):在R(U)中,设X、Y是关系模式R(U)中不同的属性⼦集(即X ⊂ U,Y ⊂ U), 若存在 X→Y,且不存在 X的任何真⼦集X'(即 X' ⊊ X),使得 X'→Y,则称Y完全函数依赖 ( full functional dependency ) 于X。

记作 X-F->Y。

 (7)部分函数依赖:在关系模式R(U)中,X、Y是关系模式R(U)中不同的属性⼦集(即X ⊂ U,Y ⊂ U), 若X→Y成⽴,如果X中存在任何真⼦集X'(即 X' ⊊ X),⽽且有X'→Y也成⽴,则称Y对X是部分函数依赖,记作:X-P->Y。

关系模式分解的无损连接和保持函数依赖

关系模式分解的无损连接和保持函数依赖

关系模式分解的无损连接和保持函数依赖一、引言关系模式是关系数据库中的核心元素之一,它描述了数据的结构和关系。

在设计关系数据库时,我们常常需要对关系模式进行分解,以满足数据库的需求。

本文将讨论关系模式分解的无损连接和保持函数依赖的相关概念和方法。

二、关系模式分解关系模式分解是将一个关系模式拆分成多个较小的关系模式的过程。

在分解关系模式时,我们需要考虑两个重要的性质:无损连接和保持函数依赖。

2.1 无损连接无损连接是指在关系模式分解后,通过对分解后的关系进行连接操作能够恢复原始关系模式。

换句话说,无损连接要求分解后的关系能够完整地保留原始关系中的所有信息。

2.2 保持函数依赖保持函数依赖是指在关系模式分解后,分解后的关系中依然能够保持原始关系中的函数依赖关系。

函数依赖是指一个属性或者属性集合的值决定了另一个属性或者属性集合的值。

三、关系模式分解的方法关系模式分解有多种方法,下面介绍三种常用的方法:自然连接、垂直分解和水平分解。

3.1 自然连接自然连接是指通过公共属性将两个或多个关系模式进行连接,得到一个具有完整信息的新关系模式。

自然连接的特点是能够保持原始关系中的所有信息和函数依赖。

3.2 垂直分解垂直分解是指根据属性集合的划分,将一个关系模式分解成多个关系模式。

垂直分解的优点是能够消除冗余数据,提高查询效率。

但是需要注意的是,垂直分解可能会造成关系丢失或信息损失。

3.3 水平分解水平分解是指将一个关系模式的元组进行水平划分,得到多个关系模式。

水平分解的特点是能够提高并发性能和容错性。

但是需要注意的是,水平分解可能会造成查询的复杂性增加和数据的分布不均衡。

四、关系模式分解的应用关系模式分解在实际的数据库设计中有着广泛的应用。

下面介绍两个例子以说明关系模式分解的应用。

4.1 学生课程关系考虑一个学生选课系统,其中包含学生和课程两个关系模式。

学生关系模式包括学生ID、姓名和年龄等属性,课程关系模式包括课程ID、课程名称和教师名称等属性。

关系模式无损及保持函数依赖的判定

关系模式无损及保持函数依赖的判定

关系模式无损及保持函数依赖的判定在数据库的世界里,有一门课非常重要,听起来复杂,其实一旦了解了,就像喝水一样简单。

这门课就是关于关系模式无损及保持函数依赖的判定。

说实话,乍一听这名字,很多人都会觉得有点绕。

但是,咱们可以轻松搞定这事儿。

想象一下你家里的冰箱。

里面各种各样的食材,鱼、肉、蔬菜,真是五花八门。

每次打开冰箱门,看到那些东东,你就知道要做什么了。

可是,如果这些食材全乱七八糟地放在一起,那可就糟了,找个东西就得翻半天。

关系模式就有点像这个冰箱,食材(数据)得好好分门别类。

无损性在这里就相当于我们把冰箱整理得井井有条,随取随用,不会出错。

比如,牛肉和鸡肉放在一起,那你一不小心把牛肉用错了,哎呀,可就麻烦了。

再说说保持函数依赖,这就像家里的规矩。

比如,家里规定:晚饭前不可以玩手机。

这样一来,大家都得遵守这个规矩,才能和谐相处。

在数据库中,函数依赖就是指某些数据项之间的关系。

如果有一个函数依赖存在,就意味着一个数据项的值决定了另一个数据项的值。

比如,学生的学号决定了他的姓名,学号就是那个“规矩”,保证大家都能遵循。

咱们可不能随便乱来,要保持这些依赖关系,才能让数据的完整性得到保障。

再回到关系模式无损的事情上。

无损分解就像咱们把冰箱里的食材分类,保证每种食材都能用得上。

比如,先把鱼和肉分开,再把鸡蛋和蔬菜放在一边,这样无论你想做什么,都能很方便地找到需要的食材。

如果分解得不好,可能一分开,整个菜都做不好了。

要是你把肉和蔬菜分开,但在某个地方漏掉了牛肉,那你就可能做不出你想要的红烧肉了。

无损性就像是保证了这个分解过程的有效性,确保你分开了,但是每样东西还在,没丢。

这里再给大家讲一个小故事。

前几天我去朋友家做客,看到他家冰箱简直乱得像个战场,啧啧,根本找不到东西。

后来他跟我说,最近工作太忙,没时间整理。

于是,我就给他提议,不如一起分类一下,把常用的东西放在最上面,少用的放在下面。

你猜怎么着?他真的开始整理了,整理完之后,连我都觉得轻松多了。

规范化无损分解及保持函数依赖

规范化无损分解及保持函数依赖

AB BC CD
a1
a2
b13 a3 a3
b14 b24 a4
b 21 a 2 b31 b32
无损分解的测试方法
(2)把表格看成模式R的一个关系,反复检查F中每个FD在表格中是否成立, 若不成立,则修改表格中的值。修改方法如下: 对于F中一个FD X Y ,如果表格中有两行在X值上相等,在Y值上不相等, ai 那么把这两行在Y值上也改成相等的值。如果Y值中有一个是 ,那么另一 aj aj bij 个也改成 ;如果没有 ,那么用其中一个 替换另一个值(尽量把下标 ij改成较小的数)。一直到表格不能修改为止。 (3)若修改的最后一张表格中有一行全 是a,即 a1a 2 a n ,那么称ρ 相对于F 是无损分解,否则称有损分解。 A B C D
分解成3NF模式集既无损 又保持函数依赖的方法
① 对于关系模式R和R上成立的FD集F,先求出F的最小依赖集,然后再把最小依 赖集中那些左部相同的FD用合并性合并起来。 ② 对最小依赖集中每个FD X→Y去构成一个模式XY。 ③ 在构成的模式集中,如果每个模式都不包含R的候选键,那么把候选键作为一 个模式放入模式集中。
保持函数依赖的模式分解
设关系模式R<U,F>被分解为若干个关系模式 R1<U1,F1>,R2<U2,F2>,…,Rn<Un,Fn> (其中U=U1∪U2∪…∪Un,且不存在Ui Uj,Fi为F 在Ui上的投影),若F所逻辑蕴含的函数依赖一定
也由分解得到的某个关系模式中的函数依赖Fi所逻
辑蕴含,则称关系模式R的这个分解是保持函数依
, Rk 是R
例:设关系模式R(ABCD),R分解成 {AB, BC, CD} 。如果R上成立的函数依赖 集 F1 {B A, C D},那么ρ 相对于F 是否无损分解?如果R上成立的函数依赖集 1 F2 {A B, C D} 呢? (1)构建一张k行n列的表格,每 列对应一个属性 A j 1 j n ,每行 对应一个模式 R i 1 i K 。如 果 A j在 R i 中,那么在表格的第i行 第j列处填上符号 a j ,否则填上 bij。 A B C D

教你如何判断无损连接和函数依赖

教你如何判断无损连接和函数依赖

教你如何判断无损连接和函数依赖教你如何判断无损连接和函数依赖无损分解和保持依赖的判断大部分是对一个关系模式分解成两个模式的考察,分解为三个以上模式时无损分解和保持依赖的判断比较复杂,考的可能性不大,因此我们只对“一个关系模式分解成两个模式”这种类型的题的相关判断做一个总结。

以下的论述都基于这样一个前提:R是具有函数依赖集F的关系模式,(R1 ,R2)是R的一个分解。

首先我们给出一个看似无关却非常重要的概念:属性集的闭包。

令α为一属性集。

我们称在函数依赖集F下由α函数确定的所有属性的集合为F下α的闭包,记为α+ 。

下面给出一个计算α+的算法,该算法的输入是函数依赖集F和属性集α,输出存储在变量result 中。

算法一:result:=α;while(result发生变化)dofor each 函数依赖β→γ in F dobeginif β∈result then result:=result∪γ;end属性集闭包的计算有以下两个常用用途:·判断α是否为超码,通过计算α+(α在F下的闭包),看α+ 是否包含了R中的所有属性。

若是,则α为R的超码。

·通过检验是否β∈α+,来验证函数依赖是否成立。

也就是说,用属性闭包计算α+,看它是否包含β。

(请原谅我用∈符号来表示两个集合之间的包含关系,那个表示包含的符号我找不到,大家知道是什么意思就行了。

)看一个例子吧,2005年11月系分上午37题:● 给定关系R(A1,A2,A3,A4)上的函数依赖集F={A1→A2,A3→A2,A2→A3,A2→A4},R的候选关键字为________。

(37)A. A1 B. A1A3 C. A1A3A4 D. A1A2A3首先我们按照上面的算法计算A1+ 。

result=A1,由于A1→A2,A1∈result,所以result=result∪A2=A1A2由于A2→A3,A2∈result,所以result=result∪A3=A1A2A3由于A2→A4,A2∈result,所以result=result∪A3=A1A2A3A4由于A3→A2,A3∈result,所以result=result∪A2=A1A2A3A4通过计算我们看到,A1+ =result={A1A2A3A4},所以A1是R 的超码,理所当然是R的候选关键字。

关系模式分解的两种主要准则

关系模式分解的两种主要准则

关系模式分解的两种主要准则关系模式分解是数据库设计中非常重要的一个环节,它可以将一个复杂的关系模式分解成若干个更简单的关系模式,从而提高数据库的性能和可维护性。

在进行关系模式分解时,需要遵循一些准则,本文将介绍其中的两种主要准则。

一、函数依赖分解准则函数依赖是指一个或多个属性的值决定另一个属性的值。

在关系模式中,函数依赖是关系模式中数据之间的约束关系,也是关系模式分解的重要依据。

在进行函数依赖分解时,可以根据以下准则进行分解:1.不产生冗余数据:分解后的新关系模式不能产生冗余数据,即不能存在同一条数据在不同的关系模式中重复出现的情况。

2.保持原有的函数依赖关系:分解后的新关系模式应该能够与原有的函数依赖关系对应,保证数据的完整性和一致性。

3.尽可能保持关系模式的最小性:在函数依赖分解时,应该尽可能降低关系模式的冗余度,保持关系模式的最小性。

二、多值依赖分解准则多值依赖是指一个或多个属性的值决定另一组属性的值,这与函数依赖有所不同。

在进行多值依赖分解时,需要遵循以下准则:1.保持原有的多值依赖关系:分解后的新关系模式应该能够与原有的多值依赖关系对应,保证数据的完整性和一致性。

2.不产生冗余数据:分解后的新关系模式不能产生冗余数据,即不能出现同一条数据在不同的关系模式中重复出现的情况。

3.保留原有的关系模式属性:分解后的新关系模式应该保留原有的关系模式属性,且数据应该可以通过新关系模式及相应的联结操作还原到原有的关系模式中。

总结:以上是关系模式分解的两种主要准则,无论是进行函数依赖分解还是多值依赖分解,都需要遵循不产生冗余数据、保持原有的依赖关系以及保留原有属性的原则。

在分解过程中,不同的准则可能会产生冲突,此时需要根据实际情况进行权衡,选择最优的方案。

分解结果必须保证数据的完整性和一致性,还可以提高数据库的性能和可维护性。

无损连接和保持函数依赖的关系

无损连接和保持函数依赖的关系

无损连接和保持函数依赖的关系引言在数据库管理系统中,数据的一致性和完整性对于数据的正确性非常重要。

在设计和组织数据库时,无损连接和保持函数依赖是两个关键概念。

它们用于确保数据库中的数据能够正确地存储和检索。

在本文中,我们将深入探讨无损连接和保持函数依赖的关系,以及它们在数据库设计中的重要性。

无损连接什么是无损连接无损连接是指数据库中的数据能够在连接操作中保持完整性和一致性。

也就是说,当我们将数据拆分成多个表时,并通过连接操作将它们关联起来,数据之间的关系应该能够正确地重建。

无损连接确保了数据在表之间的关联上是完整的。

无损连接的实现方法无损连接的实现方法有两种:函数依赖和多值依赖。

函数依赖函数依赖是指一个数据集中的一组属性的取值能够决定另外一组属性的取值。

在数据库中,函数依赖用于建立关系数据库表之间的连接。

通过定义表之间的函数依赖关系,我们可以在数据插入、更新或删除时保持数据的一致性。

多值依赖多值依赖是指一个数据集中的一组属性的取值能够决定另外一组属性的取值,但不能由单个属性的取值决定。

与函数依赖不同,多值依赖处理的是属性之间的多对多关系。

保持函数依赖什么是保持函数依赖保持函数依赖是指在数据库设计中,通过分解关系数据库表来满足函数依赖的要求。

当一个关系数据库表中存在多个函数依赖时,我们可能需要对其进行拆分,以满足函数依赖的要求。

保持函数依赖的方法保持函数依赖的方法主要有:分解、合成和冗余消除。

分解分解是将一个关系数据库表拆分成两个或多个表的过程。

在分解时,我们需要确保新的表能够保持函数依赖关系。

通过分解,我们可以消除冗余和提高数据的一致性和完整性。

合成合成与分解相反,是将多个表合并成一个表的过程。

合成主要用于优化查询和降低数据访问的开销。

然而,在合成时,我们需要确保合并后的表能够保持函数依赖关系和数据的一致性。

冗余消除冗余消除是指通过合并表或优化表结构来消除冗余数据。

冗余数据可能会导致数据的不一致性和完整性问题。

关系模式分解的无损连接和保持函数依赖

关系模式分解的无损连接和保持函数依赖

关系模式分解的无损连接和保持函数依赖一、关系模式分解的概念关系模式分解是指将一个复杂的关系模式分解为若干个简单的关系模式的过程。

在实际应用中,由于某些原因(如性能、数据冗余等),需要将一个大型的关系模式分解成多个小型的关系模式,从而提高数据库系统的效率和可维护性。

二、无损连接和保持函数依赖在进行关系模式分解时,有两种重要的约束条件:无损连接和保持函数依赖。

无损连接是指在进行关系模式分解后,仍然能够通过连接操作得到原始数据集合。

保持函数依赖是指在进行关系模式分解后,仍然能够维护原始数据集合中所有函数依赖。

三、无损连接和保持函数依赖的定义1. 无损连接假设R是一个关系模式,R1和R2是R的两个投影。

如果存在一个连接操作J(R1,R2),使得J(R1,R2)中包含了所有R中元组,则称R1和R2对于R具有无损连接。

2. 保持函数依赖假设R是一个关系模式,F是R上的一组函数依赖集合。

如果对于F中任何一个函数依赖X→Y,都存在一个关系模式R1和R2,使得R=R1⋈R2,且X和Y分别属于R1和R2的属性集合,则称关系模式分解后,仍然能够维护原始数据集合中所有函数依赖。

四、无损连接和保持函数依赖的算法在进行关系模式分解时,需要考虑如何保证无损连接和保持函数依赖。

以下是两种常用的算法。

1. 剖析算法剖析算法是一种自顶向下的分解方法。

该方法首先将原始关系模式拆分成两个投影,并检查它们是否具有无损连接。

如果没有,则再次拆分,并重复该过程直到满足无损连接为止。

剖析算法的优点是简单易懂,容易实现。

但是缺点也很明显,即可能会产生大量冗余数据。

2. 合成算法合成算法是一种自底向上的分解方法。

该方法首先将原始关系模式拆分为多个小型关系模式,并检查它们是否能够维护原始数据集合中所有函数依赖。

如果不能,则将两个小型关系模式合并,并重复该过程直到满足保持函数依赖为止。

合成算法的优点是能够保证数据的最小化,减少数据冗余。

但是缺点也很明显,即实现难度较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表5-14
SNO
CLASSNO
DEPTNO
S1
C1
D1
S2
C2
D2
S3
C2
D2
S4
C3
D1
若按分解方案一将关系模式S分解为:
S11(SNO,DEPTNO)和
S12(CLASSNO,DEPTNO),
则将r投影到S11和S12的属性上,得到关系r11如表5-15,r12如表5-16。
表5-15
SNO
DEPTNO
表5-18
SNO
CLASSNO
S1
C1
S2
C2
S3
C2
S4
C3
表5-19
SNO
DEPTNO
S1
D1
S2
D2
S3
D2
S4
D1
在这种分解中,假设学生S3从C2班转到C3班,于是我们需要在r21中将元组S3C2修改为S3C3,同时在r22中将元组S3D2修改为S3D1。如果这两个修改没有同时完成,数据库中就会存在不一致信息。这是因为分解得到的两个关系模式不是互相独立造成的。F中的函数依赖CLASSNO→DEPTNO既没有投影到关系模式R22中,而是跨在两个关系模式上。函数依赖是数据库中的完整性约束条件。在r中,若两个元组的X值相等,则Y值也必须相等。现在r的一个元组中的X值和Y值跨在两个不同的关系中,为维护数据库的一致性,在一个关系中修改X值时就需要相应的在另外一个关系中修改Y值,这当然是很麻烦而且是容易出错的,于是我们要求模式分解保持函数依赖这条等价标准。
事实上,将关系r投影为r1,r2,…,rn时并不会丢失信息,关键是对r1,r2,…,rn作自然连接可能会产生一些原来r中没有的元组,从而无法区别那些元组是r中原来有的,即数据库中应该存在的数据,在这个意义上丢失了信息。
例如:设关系模式S(SNO,CLASSNO,DEPTNO)在某一时刻的关系r如下表5-14
S1Biblioteka D1S2D2S3
D2
S4
D1
表5-16
CLASSNO
DEPTNO
C1
D1
C2
D2
C3
D1
对分解后的两个关系作自然连接r11*r12,得到r'如表5-17如下:
表5-17
SNO
CLASSNO
DEPTNO
S1
C1
D1
S1
C3
D1
S2
C2
D2
S3
C2
D2
S4
C1
D1
S4
C3
D1
r'中的元组S1C3D1和S4C1D1都不是原来r中的元组。就是说,我们无法知道原来r中到底有哪些元组,这是我们不希望的。
关系模式的分解-无损连接与保持函数依赖
2012.11.02
/54219288.html
1.模式分解的等价标准
规范化过程中将一个关系模式分解为若干个关系模式,应该保证分解后产生的模式和原来的模式等价。常用的等价标准有要求:
●分解是具有无损连接性的;
在将一个关系模式分解为三个或者更多个关系模式的情况下,要判别分解是否具有无损连接性需要比较复杂的算法。然而若将一个关系模式分解为两个关系模式,则很容易判别分解是否具有无损连接性。
关系模式R(U,F)分解为关系模式R1(U1,F1),R2(U2,F2)是具有无损连接性的分解的充分必要条件是(U1∩U2→U1-U2)∈F+,或者(U2∩U1→U2-U1)∈F+。
SC(SNO,CLASSNO,COURSENO,CREDIT),
其属性集合上的函数依赖集为:
F={SNO→CLASSNO, COURSENO→CREDIT},
分解为两个关系模式:
SC1(SNO,CLASSNO),
SC2(COURSENO,CREDIT),
这个分解是保持函数依赖的,但是不具有无损连接性。
让我们再考察第二种分解方案,将关系模式S分解为:
S21(SNO,CLASSNO),
S22(SNO,DEPTNO)
由于U1∩U2=SNO,U1-U2=CLASSNO,显然U1 U2→U1-U2,所以分解2具有无损连接性。然而分解2也不是一个很好的分解方案,将前面例子的关系r投影到S21,S22的属性上,得到关系r21如表5-18和r22如表5-19:
因此,关系模式的一个分解可能是保持函数依赖的,可能是具有无损连接性的,也可能是既具有无损连接性又保持函数依赖的。
(2)若要求分解具有无损连接性,那么模式分解一定可以达到4NF。
(3)若要求分界保持函数依赖,那么模式分解可以达到3NF,但不一定能达到BCNF。
(4)若要求分解既具有无损连接性,又保持函数依赖,则模式分解可以达到3NF,但不一定能达到BCNF。
定义2:设关系模式R(U,F)分解为关系模式R1(U1,F1),R2(U2,F2),…,Rn(Un,Fn),若F=(F1F2…Fn),即F所逻辑蕴含的函数依赖一定也由分解得到的各个关系式中的函数依赖所逻辑蕴含,则称关系模式R的这个分解是保持函数依赖的。
分解方案二不是保持函数依赖的,因为分解得到的关系模式中只有函数依赖SNO→CLASSNO,丢失了函数依赖CLASSNO→DEPTNO。不是一个好的分解。
分解方案三是保持函数依赖的。
2.关于模式分解的几个事实
(1)分解具有无损连接性和分解保持函数依赖是两个互相独立的标准。具有无损连接性的分解不一定保持函数依赖,例如分解方案二;保持函数依赖的分解不一定具有无损连接性。
例如,有学号SNO,班级号CLASSNO,课程号COURSENO,学分CREDIT,构成关系模式:
●分解是保持函数依赖的;
●分解既要具有无损连接又要保持函数依赖两种。
将一个关系模式R(U,F)分解为若干个关系模式R1(U1,F1),R2(U2,F2)…Rn(Un,Fn)(其中U=U1 U2 … Un,R1为F在U1上的投影),这意味着相应的将存储在一个二维表r中的数据分散到若干个二维表r1,r2,…,rn中(其中r1是r在属性组U1上的投影)。我们当然希望这样的分解不丢失信息,也就是说,希望能够通过对关系r1,r2…rn的自然连接运算重新得到关系r中的所有信息。
定义1:设关系模式R(U,F)分解为关系模式R1(U1,F1),R2(U2,F2),…,Rn(Un,Fn),若对于R的任何一个可能的关系r,都有r=r1*r2…*rn,即r在R1,R2,…,Rn上的投影的自然连接等于r,则称关系模式R的这个分解是具有无损连接性的。
分解1不具有无损连接性,这是一个不好的分解方案。
相关文档
最新文档