第章溶液的热力学性质计算
物理化学Ⅱ4.4+溶液体系热力学(四)-稀溶液的依数性(沈伟)+2

Tb = kbmB
Tb = kb mB (分子形式有变化)
kb= RTb剂2 MA/ lgHAm(Tb剂)
求 MA,MB
——只与A有关,与B性质无关 ——Tb越大,l,gHAm越小, Tb 越大。
物理化学II
5
溶液体系热力学
稀溶液及其性质
A,g - A,l = -RTb液ln(yA/ xA)
yA=1,xA + xB = 1
A,g- A,l = RTb液ln xA = RTb液ln(1- xB)
ln(1- xB) = (A,g- A,l)/RTb液= lgGAm(Tb液) /RTb液
2
溶液体系热力学
稀溶液及其性质
热力学分析 假设
(1)溶质不挥发,气体中仅有
溶剂: Ag = Ag*(T, p)
(2)溶质不凝固,固体中仅有
溶剂: As = As*(T, p)
(3)液体中既有A, 也有B:
Al = A*(T, p) + RT ln xA
2019/10/15
物理化学II
3
常用溶剂的 kf 值有表可查。用实验测定Tf 值,
查出 kf,就可计算溶质的摩尔质量。
2019/10/15
物理化学II
12
溶液体系热力学
稀溶液及其性质
凝固点降低效应是抗冻剂的作用基础
最 常 用 的 抗 冻 剂 是 乙 二 醇 ( 沸 点 197℃ , 凝 固 点 17.4℃)。等体积乙二醇和水组成的溶液,其凝固 点为36℃。采用乙二醇作抗冻剂是出于它具有高 沸点、高化学稳定性、以及水从溶液中结出时形成 淤泥状而不是块状冰等优点。
工程热力学第13讲-第7章-2理想溶液、相平衡基础

若溶液中有A, B 同时存在,平衡时,
pB (T ) RT ln p
l B g B
B
在上两式中消去
B
则得
pB (T , p ) RT ln * pB
过程装备与控制工程专业
工程热力学
第十三讲
山东大学机械工程学院 过程装备与控制工程研究所
本讲内容
7-2 溶液热力学
1 理想溶液 2 逸度和活度
7-3 相平衡基础
3 汽液相平衡 4 汽液平衡相图 5 汽液相平衡关系
6 汽液相平衡关系的应用
学习要求
1 掌握逸度、逸度系数、活度、活度系数、理想溶液、非 理想溶液、汽液相平衡等基本概念。 2 3 掌握理想溶液有关定律和相图的应用。 掌握低压汽液相平衡的计算。
V B ,m V m ( B )
(2)
mixV n BV B , m n BV m ( B ) 0
B B
mix S 0 定温定组成条件下:
* B (T , p ) B * B (T , p ) RT ln x B R ln x B T p ,n T p , n T p ,n
4
了解中、高压汽液相平衡的计算。
1.理想溶液
理想溶液的引入
理想溶液,顾名思义,就是理想化的溶液,是实际不存在的 溶液。 科学研究的前提往往是要首先建立一个理想化的模型,这个 模型是从各种实际现象中抽出来的,求其共性,舍其差异。 这就大大简化了科研中的困难,从而建立一套思想体系,在 具体应用中加以修正,就可以用于实际体系。
第四章 溶液的热力学性质

定义
偏摩尔性质:用偏微分 (nM ) Mi [ ]T , P,n ji ni 表示性质随组成变化
M V, U, H, S, F, G
35
(nM ) Mi [ ]T , P,n ji ni
1 2
3 4
变情况下,向无限多的溶液中加入1mol的 组分i所引起的一系列热力学性质的变化。
物理意义:在T、P和其它组分量nj不
强度性质:只有广度性质才有偏摩尔性质, 而偏摩尔性质是强度性质。 纯物质:偏摩尔性质就是它的摩尔性质。
影响因素:任何偏摩尔性质都是T,P和组 成X的函数。 影响作用力必影 响偏摩尔性质
46
§4.2.3 偏摩尔性质 M i 的计算
1
解析法:定义式
2
截距法:二元体系
47
2
截距法:二元体系
I1
dM M I 2 dx1 x1
切线
K 斜率
M
I2
M2
组分
M1
dM I 2 M x1 M2 dx1
0
x1
1
dM I1 M x2 M1 dx1
两个特殊点
M1 M
M 1 lim M 1
x1 1
M 2 lim M 2
x2 1
M lim M 1
x1 0
1
Mx2 0
2
例1. 实验室需要配制含有20%(wt%)的甲醇的水溶液 3×10-3m-3作防冻剂.问在20℃时需要多少体积的甲醇 (1)和水(2)混合,方能配制成3×10-3m3的防冻溶液。
高等工程热力学 童钧耕 第章溶液和相平衡

高等工程热力学童钧耕第章溶液和相平衡第一节:溶液的基本概念1.1 溶液的定义溶液是指由两个或两个以上的物质在一定温度和压力下混合形成的均相体系。
1.2 溶解度溶解度是指在某一温度和压力下,单位体积溶剂中最多溶解的物质的量,通常用摩尔溶解度表示。
在给定的温度和压力下,溶液中溶质的摩尔浓度等于溶解度,此时称为饱和溶液。
1.3 等温线等温线是指在恒定温度下,溶质在溶剂中溶解度随压力变化的曲线。
当某一压强下,溶质的摩尔浓度等于溶解度时,称为等温线上的点,该点就是该压强下的平衡点。
第二节:相平衡2.1 相平衡的定义相平衡是指在一定温度和压力下,两个或两个以上的不同相处于平衡状态时所对应的状态,即两个或两个以上的相间存在相互转化的正逆反应,并且反应速率相等,达到动态平衡。
2.2 平衡常数平衡常数是指在一定温度下,反应物与生成物之间的摩尔浓度比值,即为反应的平衡常数。
反应的正逆反应之间的平衡常数满足比例关系。
2.3 相图相图是描述物质(纯物质或混合物)在不同条件下相平衡关系的图形记录。
它通常是以温度和压力为轴,画出不同相的出现范围,用以研究物质在不同条件下的相变规律。
第三节:二元液体体系3.1 物质在不同条件下的相变物质在不同条件下的相变表现为液态、固态、气态之间的相互转化。
同一物质在不同条件下的相变规律与其在相图上的相变曲线有关。
3.2 系统的有序性和无序性在研究液体体系时,通常采用统计力学的方法。
在这种方法中,系统的有序程度通常用熵来描述。
对于二元液体体系,其混合熵对于温度和组成都是函数,因此可以得到相互作用参数。
3.3 凝聚度模型凝聚度模型用于描述液-液混合,其核心是假设体系可以分为两类分子,一类是聚集分子(偏好型分子),一类是单体分子(排斥型分子)。
据此可以得到混合自由能,用于计算热力学性质。
第四节:非理想溶液4.1 溶液中混合气体的非理想性在高压条件下,气体分子之间的相互作用不能忽略,导致混合气体的非理想性。
冶金熔体和溶液的计算热力学

冶金熔体和溶液的计算热力学1.引言1.1 概述热力学是研究能量转化和传递的一门科学,它为我们理解和解释自然界中各种现象提供了重要的理论基础。
在冶金过程中,熔体和溶液是广泛存在的物质形态,其热力学性质对于工艺设计和优化至关重要。
熔体是指在高温条件下,物质变为液体状态的物质,而溶液则是指在液体中溶解的其他物质的混合物。
研究熔体和溶液的热力学性质,可以帮助我们理解冶金过程中物质与能量之间的相互作用,探索材料的性能和特性,从而实现冶金工艺的优化和控制。
1.2 目的本文旨在探讨熔体和溶液的热力学特性,以期为冶金工艺的研究和应用提供参考和指导。
具体目的包括以下几个方面:我们将介绍热力学的基本概念和原理,包括热力学系统、状态函数、热力学方程等。
通过深入理解热力学的基本知识,我们可以建立起对熔体和溶液热力学性质的全面认识。
我们将详细讨论熔体的热力学性质。
熔体的特点包括其高温状态、内部结构和相变行为等,这些特性对于冶金工艺的研究具有重要的影响。
我们将探讨熔体的热容、熵、热传导等重要性质,以及在不同温度和压力下的热力学行为。
通过研究熔体的热力学性质,我们可以了解材料在高温条件下的特性,为冶金工艺的设计和操作提供依据。
我们将研究溶液的热力学性质。
溶液是冶金过程中常见的物质形态,其热力学性质对于材料的分离、提纯以及合金化等工艺具有重要的影响。
我们将讨论溶液的热力学行为,包括溶解度、溶液的基本性质和热力学模型等方面。
通过研究溶液的热力学性质,我们可以探索不同物质之间的相互作用,优化溶液的配比和制备方法,为冶金工艺的发展和进步提供支持。
综上所述,通过对熔体和溶液的热力学性质进行研究和分析,我们可以更好地理解材料的特性和行为,为冶金工艺的改进和创新提供理论依据和实践指导。
本文的研究结果将对各类冶金工程师、科研人员和学者具有重要的参考价值,也将为冶金行业的发展和应用做出贡献。
2.正文2.1 冶金熔体的热力学特性冶金熔体是在高温条件下形成的一种流动状态的金属或金属间化合物的混合物。
冶金热力学-第一章[1]
![冶金热力学-第一章[1]](https://img.taocdn.com/s3/m/8d2dda51ad02de80d4d8406d.png)
课程内容
第一章 溶液的热力学性质
第二章 溶液的统计热力学模型
第三章 铁液中溶质的相互作用参数
第四章 铁液中溶质的活度系数
第五章 熔渣的热力学模型(Ⅰ)—经典热力学模型
第六章 熔渣的热力学模型(Ⅱ)—统计热力学模型
第七章 多相多元系平衡计算
第一章 溶液的热力学性质
1.1 溶液及其热力学量
1.2
1.3
i i
(1-6)
dG Gi,m dni
(1-7)
T , P, n j
G (n1 , n2 , )
或
n G
i
i, m
G(n1, n2 , )
(1-8)
方程两边同时微分,并将(1-7)代入,得
G
i ,m
dni ni dGi,m Gi,mdni
(1-9)
两边比较,得
1 2
1 T , P , n2 2 T , P , n1 1 2
强度函数
或强度性质(intensive properties) 特点: 1. 不具加和性。其数值取决于体系自身的特性,与 体系的数量无关。 2. 在数学上是零次齐函数 3. 某种广度性质除以物质的量后成为强度性质(或 两种广度性质相除,由性质1);两个一次奇函 数相除是零次齐函数。
冶金热力学(2)
郭汉杰 讲授
北京科技大学
教材
冶金物理化学教程
郭汉杰 编著
参考书目
魏寿昆主编,冶金过程热力学,冶金工业出版社,1981
冶金物理化学课程的地位与作用
冶金工程专业本科阶段的必修课; 冶金工程专业本科考研必考课; 冶金工程专业硕士研究生的学位课; 冶金工程专业研究生考博士必考课-专业基础 课; 冶金工程专业攻读博士学位期间必选课; 在未来的工作中非常重要。
高分子溶液热力学

2
2
代入
G M 1 2 1 T , P , n RT In 1 (1 ) 2 2 n1 x
2
1 RT [
2
x
(
1 2
) 2 ]
2
14
对很稀的理想溶液,有
1 RTInx
m
Gm H m TSm 0
17
极性高分子化合物溶解在极性溶剂中,高分子与 溶剂分子相互作用强烈,溶解时放热, 即 H 0 ,结果体系的 G 0 ,溶解过程能 够进行。非极性高分子化合物,溶解过程一般是 吸热的,即 H 0 ,故只有在 H T S 时, 才能满足17式的溶解条件。
H m kT N 1 2 kT N 1 2 RT n 1 2
7
kT 的物理意义:把一个溶剂分子放入高聚物中时 引起的能量变化。 17
高分子溶液混合过程中化学位的变化
对G作偏微分可得到化学位 对△G作偏微分可得
i (
G ni )T , P ,n G i
1
2
1 2
i
i
i
所以
H m V 1 2 ( 1 2 )
2
20
26
小分子化合物的溶解度参数值用该化合物的 汽化热计算
2
( H V RT ) / V
21
但高分子化合物没有汽化热,故高分子化合物的溶解 度参数需要用间接方法测定。当高分子化合物的溶解 度参数与溶剂的溶解度参数越接近,溶解倾向越大, 溶液的粘度也越大。通常将粘度最大的溶液多用溶剂 的溶解度参数作为高分子化合物的溶解度参数。
化工热力学

i
0
对二元系统:
x1d ln γ1 x2 d ln γ 2 0
用途: 由已知组分的活度系数计算未知组分的活度系数。
4-9-2 不对称超额性质
定义:真实溶液与理想稀溶液的摩尔性质之差
若M=G:
M
G G
is*
E
M M
is*
is
G
E*
xi (G i Gi ) xi RT ln γ* i
is fi
其中上标 is " 理想稀溶液 "
2 溶质的计算:Herry规则
H i , solvent xi
H i , solvent 溶质i在溶剂中的 Herry 常数
4-8
活度系数及其归一化
•
根据参考态不同活度系数分为:
1 对称归一化的活度系数 2 不对称归一化的活度系数
4-8-1对称归一化的活度系数
4-10-4 NRTL方程和Uniquac方程
为了改进Wilson方程,出现了许多修正的Wilson方
程,有代表性的有NRTL和Uniquac方程。
优点: 1.二者和Wilson一样,能进行多元系统的计算。 2.能用于液相分层系统,因此可用于L-L平衡计算。
1.NRTL方程:
ln i
x j jiG ji
2 3 4 ln γ1 2 x2 3 x2 4 x2
其中 2 , 3 , 4 仅是T的函数,求:在同T下溶质组分 的活度系数模型。 解: ∵在低P下,对液体的影响不大,故可按 等T、P处理。由G-D的简化式: 有 x d ln γ 0
i
i
x1d ln γ1 x2 d ln γ 2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8、超额性质的定义是___________________________________。
9、当M=V,U,H,Cv,Cp时,△Mig=_____。
10、当M=S时,△Mig=_________________。
解:
2、常压下的三元气体混合物的 ,求等摩尔混合物的 。
解:
3、三元混合物的各组分的摩尔分数分别为0.25,0.3和0.45,在6.585MPa和348K下的各组分的逸度系数分别是0.72,0.65和0.91,求混合物的逸度。
解:
4、采用合适的方法和合理的假设计算下列甲醇(1)-水(2)系统的组分逸度(a)p=10325Pa,T=81.48℃,y1=0.582的汽相;(b)p=10325Pa,T=81.48℃,x1=0.2的液相。已知Antoine方程lnps=A-B/(C+T),甲醇的常数为A=9.4138,B=3477.90,C=-40.53;水的常数为A=9.3876,B=3826.36,C=-45.47。液相符合Wilson方程,其模型参数是Λ12=0.43738,Λ21=1.11598。
2 重点与难点
(1)敞开系统的热力学基本方程
(2)化学位与偏摩尔量
(3) Gibbs-Duhem方程
(4)混合物中组分的逸度和逸度系数
(5)理想溶液
(6)溶液的过量性质、活度与活度系数
一、是否题(正确划√号,错误划×号,并写清正确与错误的原因)
1、偏摩尔体积的定义可表示为 。
答:
2、对于理想溶液,所有的混合过程性质变化均为零。
答:
8、纯流体的汽液平衡准则为 。
答:
9、混合物系统达到汽液平衡时,总是有 , , 。
答:
10、理想溶液一定符合Lewis-Randall规则和Henry规则。4-10、理想溶液一定符合Lewis-Randall规则和Henry规则。
答:
11、符合Lewis-Randall规则的溶液称为理想稀溶液。
专业班级:姓名:学号:评分:
均相混合物的热力学性质计算方法有二:一是将混合物作为均相封闭系统(即定组成混合物);二是将混合物看作是均相敞开系统(即变组成混合物)。这两种方法本质上是一样的,所得结果是也应是等同的,但在实际使用中有所不同,前者依据的模型是状态方程(EOS),用于气、液相时表达了混合物性质随着温度、压力和组成的变化;后者采用的模型为液相溶液模型,表达液相在等温、等压下混合物性质与组成的变化关系。
解:
5、采用合适的方法和合理的假设计算p=16.39kPa,T=308.15K时下列甲醇(1)-水(2)系统的组分逸度(a)y1=0.7559的气体混合物;(b)x1=0.3603的液体混合物。已知Antoine方程lnps=A-B/(C+T),甲醇的常数为A=9.4138,B=3477.90,C=-40.53;水的常数为A=9.3876,B=3826.36,C=-45.47。液相符合Wilson方程,其模型参数是Λ12=0.43738,Λ21=1.11598。
答:
12、符合Henry规则的溶液称为理想溶液。
答:
二、填空题
1、已知某二元系统的 则对称归一化的活度系数 是____________。
2、ቤተ መጻሕፍቲ ባይዱ混合物的逸度的表达式 知, 的状态为系统温度、p=_____的纯组分i的理想气体状态。
3、常温、常压下二元液相系统的溶剂组分的活度系数为 (α,β是常数),则溶质组分的活度系数表达式是 _________________。
非均相系统由两个或两个以上的均相系统组成,在达到相平衡状态之前,每个相都是均相敞开系统,通过相之间的物质和能量传递,使系统达到平衡。均相敞开系统的热力学关系,不仅描述了系统性质随状态、组成变化,而且也是研究相平衡热力学的基础。
1 本章学习要求
本章要求学生掌握均相敞开系统的热力学基本方程、偏摩尔量和化学位基本概念、偏摩尔量与总量或摩尔量的关系、Gibbs-Duhem方程及其应用、溶液混合性质的变化和计算方法、理想溶液、过量函数与活度的概念及活度系数模型等。
4*、偏摩尔性质的定义式为___________,其含义为_____________________________。
5、若溶液性质(M)为lnf,则其偏摩尔性质( )为______,二者间的关系式 为_______________________。
6、若溶液性质(M)为lnΦ,则其偏摩尔性质( )为______,二者间的关系式 为_______________________。
答:
3、对于理想溶液所有的超额性质均为零。
答:
4、系统混合过程的性质变化与该系统相应的超额性质是相同的。
答:
5、理想气体有f=p,而理想溶液有 。
答:
6、温度和压力相同的两种理想气体混合后,则温度和压力不变,总体积为原来两气体体积之和,总内能为原两气体热力学能之和,总熵为原来两气体熵之和。
答:
7、因为GE(或活度系数)模型是温度和组成的函数,故理论上 与压力无关。
11、当M=A,G时,△Mig=_________________。
12、在温度、压力一定时,二元混合物的偏摩尔性质可以用摩尔性质来表达,分别是 =_________________; =_________________。
三、计算题
1、298.15K,若干NaCl(B)溶解于1kg水(A)中形成的溶液的总体积的关系为Vt=1001.38+16.625nB+1.773nB3/2+0.119nB2(cm3)。求nB=0.5mol时,水和NaCl的偏摩尔体积 。
第章-溶液的热力学性质计算
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
化工热力学标准化作业三
课程名称:化工热力学课程编号:01033080适用专业:化工工艺、应用化学
课程章次:4、溶液的热力学性质共7页
解:
6、已知环己烷(1)-苯(2)系统在40℃时的超额吉氏函数是GE/RT=0.458x1x2和p1s=24.6,p2s=24.3kPa,求γ1,γ2, , 。